xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 64c70b1c)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling unit.
23  *
24  * This unit is responsible for wear-leveling. It works in terms of physical
25  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26  * volumes, etc. From this unit's perspective all physical eraseblocks are of
27  * two types - used and free. Used physical eraseblocks are those that were
28  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29  * those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only 0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL unit by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL unit.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL unit may pick a free physical eraseblock with low erase counter, and
47  * so forth.
48  *
49  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50  *
51  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52  * physical eraseblock, it has to be moved. Technically this is the same as
53  * moving it for wear-leveling reasons.
54  *
55  * As it was said, for the UBI unit all physical eraseblocks are either "free"
56  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57  * eraseblocks are kept in a set of different RB-trees: @wl->used,
58  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59  *
60  * Note, in this implementation, we keep a small in-RAM object for each physical
61  * eraseblock. This is surely not a scalable solution. But it appears to be good
62  * enough for moderately large flashes and it is simple. In future, one may
63  * re-work this unit and make it more scalable.
64  *
65  * At the moment this unit does not utilize the sequence number, which was
66  * introduced relatively recently. But it would be wise to do this because the
67  * sequence number of a logical eraseblock characterizes how old is it. For
68  * example, when we move a PEB with low erase counter, and we need to pick the
69  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70  * pick target PEB with an average EC if our PEB is not very "old". This is a
71  * room for future re-works of the WL unit.
72  *
73  * FIXME: looks too complex, should be simplified (later).
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/freezer.h>
79 #include <linux/kthread.h>
80 #include "ubi.h"
81 
82 /* Number of physical eraseblocks reserved for wear-leveling purposes */
83 #define WL_RESERVED_PEBS 1
84 
85 /*
86  * How many erase cycles are short term, unknown, and long term physical
87  * eraseblocks protected.
88  */
89 #define ST_PROTECTION 16
90 #define U_PROTECTION  10
91 #define LT_PROTECTION 4
92 
93 /*
94  * Maximum difference between two erase counters. If this threshold is
95  * exceeded, the WL unit starts moving data from used physical eraseblocks with
96  * low erase counter to free physical eraseblocks with high erase counter.
97  */
98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
99 
100 /*
101  * When a physical eraseblock is moved, the WL unit has to pick the target
102  * physical eraseblock to move to. The simplest way would be just to pick the
103  * one with the highest erase counter. But in certain workloads this could lead
104  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
105  * situation when the picked physical eraseblock is constantly erased after the
106  * data is written to it. So, we have a constant which limits the highest erase
107  * counter of the free physical eraseblock to pick. Namely, the WL unit does
108  * not pick eraseblocks with erase counter greater then the lowest erase
109  * counter plus %WL_FREE_MAX_DIFF.
110  */
111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
112 
113 /*
114  * Maximum number of consecutive background thread failures which is enough to
115  * switch to read-only mode.
116  */
117 #define WL_MAX_FAILURES 32
118 
119 /**
120  * struct ubi_wl_entry - wear-leveling entry.
121  * @rb: link in the corresponding RB-tree
122  * @ec: erase counter
123  * @pnum: physical eraseblock number
124  *
125  * Each physical eraseblock has a corresponding &struct wl_entry object which
126  * may be kept in different RB-trees.
127  */
128 struct ubi_wl_entry {
129 	struct rb_node rb;
130 	int ec;
131 	int pnum;
132 };
133 
134 /**
135  * struct ubi_wl_prot_entry - PEB protection entry.
136  * @rb_pnum: link in the @wl->prot.pnum RB-tree
137  * @rb_aec: link in the @wl->prot.aec RB-tree
138  * @abs_ec: the absolute erase counter value when the protection ends
139  * @e: the wear-leveling entry of the physical eraseblock under protection
140  *
141  * When the WL unit returns a physical eraseblock, the physical eraseblock is
142  * protected from being moved for some "time". For this reason, the physical
143  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
144  * tree. There is one more tree in between where this physical eraseblock is
145  * temporarily stored (@wl->prot).
146  *
147  * All this protection stuff is needed because:
148  *  o we don't want to move physical eraseblocks just after we have given them
149  *    to the user; instead, we first want to let users fill them up with data;
150  *
151  *  o there is a chance that the user will put the physical eraseblock very
152  *    soon, so it makes sense not to move it for some time, but wait; this is
153  *    especially important in case of "short term" physical eraseblocks.
154  *
155  * Physical eraseblocks stay protected only for limited time. But the "time" is
156  * measured in erase cycles in this case. This is implemented with help of the
157  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
158  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
159  * the @wl->used tree.
160  *
161  * Protected physical eraseblocks are searched by physical eraseblock number
162  * (when they are put) and by the absolute erase counter (to check if it is
163  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
164  * storing the protected physical eraseblocks: @wl->prot.pnum and
165  * @wl->prot.aec. They are referred to as the "protection" trees. The
166  * first one is indexed by the physical eraseblock number. The second one is
167  * indexed by the absolute erase counter. Both trees store
168  * &struct ubi_wl_prot_entry objects.
169  *
170  * Each physical eraseblock has 2 main states: free and used. The former state
171  * corresponds to the @wl->free tree. The latter state is split up on several
172  * sub-states:
173  * o the WL movement is allowed (@wl->used tree);
174  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
175  * @wl->prot.aec trees);
176  * o scrubbing is needed (@wl->scrub tree).
177  *
178  * Depending on the sub-state, wear-leveling entries of the used physical
179  * eraseblocks may be kept in one of those trees.
180  */
181 struct ubi_wl_prot_entry {
182 	struct rb_node rb_pnum;
183 	struct rb_node rb_aec;
184 	unsigned long long abs_ec;
185 	struct ubi_wl_entry *e;
186 };
187 
188 /**
189  * struct ubi_work - UBI work description data structure.
190  * @list: a link in the list of pending works
191  * @func: worker function
192  * @priv: private data of the worker function
193  *
194  * @e: physical eraseblock to erase
195  * @torture: if the physical eraseblock has to be tortured
196  *
197  * The @func pointer points to the worker function. If the @cancel argument is
198  * not zero, the worker has to free the resources and exit immediately. The
199  * worker has to return zero in case of success and a negative error code in
200  * case of failure.
201  */
202 struct ubi_work {
203 	struct list_head list;
204 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
205 	/* The below fields are only relevant to erasure works */
206 	struct ubi_wl_entry *e;
207 	int torture;
208 };
209 
210 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
211 static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec);
212 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
213 				     struct rb_root *root);
214 #else
215 #define paranoid_check_ec(ubi, pnum, ec) 0
216 #define paranoid_check_in_wl_tree(e, root)
217 #endif
218 
219 /* Slab cache for wear-leveling entries */
220 static struct kmem_cache *wl_entries_slab;
221 
222 /**
223  * tree_empty - a helper function to check if an RB-tree is empty.
224  * @root: the root of the tree
225  *
226  * This function returns non-zero if the RB-tree is empty and zero if not.
227  */
228 static inline int tree_empty(struct rb_root *root)
229 {
230 	return root->rb_node == NULL;
231 }
232 
233 /**
234  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
235  * @e: the wear-leveling entry to add
236  * @root: the root of the tree
237  *
238  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
239  * the @ubi->used and @ubi->free RB-trees.
240  */
241 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
242 {
243 	struct rb_node **p, *parent = NULL;
244 
245 	p = &root->rb_node;
246 	while (*p) {
247 		struct ubi_wl_entry *e1;
248 
249 		parent = *p;
250 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
251 
252 		if (e->ec < e1->ec)
253 			p = &(*p)->rb_left;
254 		else if (e->ec > e1->ec)
255 			p = &(*p)->rb_right;
256 		else {
257 			ubi_assert(e->pnum != e1->pnum);
258 			if (e->pnum < e1->pnum)
259 				p = &(*p)->rb_left;
260 			else
261 				p = &(*p)->rb_right;
262 		}
263 	}
264 
265 	rb_link_node(&e->rb, parent, p);
266 	rb_insert_color(&e->rb, root);
267 }
268 
269 
270 /*
271  * Helper functions to add and delete wear-leveling entries from different
272  * trees.
273  */
274 
275 static void free_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	wl_tree_add(e, &ubi->free);
278 }
279 static inline void used_tree_add(struct ubi_device *ubi,
280 				 struct ubi_wl_entry *e)
281 {
282 	wl_tree_add(e, &ubi->used);
283 }
284 static inline void scrub_tree_add(struct ubi_device *ubi,
285 				  struct ubi_wl_entry *e)
286 {
287 	wl_tree_add(e, &ubi->scrub);
288 }
289 static inline void free_tree_del(struct ubi_device *ubi,
290 				 struct ubi_wl_entry *e)
291 {
292 	paranoid_check_in_wl_tree(e, &ubi->free);
293 	rb_erase(&e->rb, &ubi->free);
294 }
295 static inline void used_tree_del(struct ubi_device *ubi,
296 				 struct ubi_wl_entry *e)
297 {
298 	paranoid_check_in_wl_tree(e, &ubi->used);
299 	rb_erase(&e->rb, &ubi->used);
300 }
301 static inline void scrub_tree_del(struct ubi_device *ubi,
302 				  struct ubi_wl_entry *e)
303 {
304 	paranoid_check_in_wl_tree(e, &ubi->scrub);
305 	rb_erase(&e->rb, &ubi->scrub);
306 }
307 
308 /**
309  * do_work - do one pending work.
310  * @ubi: UBI device description object
311  *
312  * This function returns zero in case of success and a negative error code in
313  * case of failure.
314  */
315 static int do_work(struct ubi_device *ubi)
316 {
317 	int err;
318 	struct ubi_work *wrk;
319 
320 	spin_lock(&ubi->wl_lock);
321 
322 	if (list_empty(&ubi->works)) {
323 		spin_unlock(&ubi->wl_lock);
324 		return 0;
325 	}
326 
327 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
328 	list_del(&wrk->list);
329 	spin_unlock(&ubi->wl_lock);
330 
331 	/*
332 	 * Call the worker function. Do not touch the work structure
333 	 * after this call as it will have been freed or reused by that
334 	 * time by the worker function.
335 	 */
336 	err = wrk->func(ubi, wrk, 0);
337 	if (err)
338 		ubi_err("work failed with error code %d", err);
339 
340 	spin_lock(&ubi->wl_lock);
341 	ubi->works_count -= 1;
342 	ubi_assert(ubi->works_count >= 0);
343 	spin_unlock(&ubi->wl_lock);
344 	return err;
345 }
346 
347 /**
348  * produce_free_peb - produce a free physical eraseblock.
349  * @ubi: UBI device description object
350  *
351  * This function tries to make a free PEB by means of synchronous execution of
352  * pending works. This may be needed if, for example the background thread is
353  * disabled. Returns zero in case of success and a negative error code in case
354  * of failure.
355  */
356 static int produce_free_peb(struct ubi_device *ubi)
357 {
358 	int err;
359 
360 	spin_lock(&ubi->wl_lock);
361 	while (tree_empty(&ubi->free)) {
362 		spin_unlock(&ubi->wl_lock);
363 
364 		dbg_wl("do one work synchronously");
365 		err = do_work(ubi);
366 		if (err)
367 			return err;
368 
369 		spin_lock(&ubi->wl_lock);
370 	}
371 	spin_unlock(&ubi->wl_lock);
372 
373 	return 0;
374 }
375 
376 /**
377  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
378  * @e: the wear-leveling entry to check
379  * @root: the root of the tree
380  *
381  * This function returns non-zero if @e is in the @root RB-tree and zero if it
382  * is not.
383  */
384 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
385 {
386 	struct rb_node *p;
387 
388 	p = root->rb_node;
389 	while (p) {
390 		struct ubi_wl_entry *e1;
391 
392 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
393 
394 		if (e->pnum == e1->pnum) {
395 			ubi_assert(e == e1);
396 			return 1;
397 		}
398 
399 		if (e->ec < e1->ec)
400 			p = p->rb_left;
401 		else if (e->ec > e1->ec)
402 			p = p->rb_right;
403 		else {
404 			ubi_assert(e->pnum != e1->pnum);
405 			if (e->pnum < e1->pnum)
406 				p = p->rb_left;
407 			else
408 				p = p->rb_right;
409 		}
410 	}
411 
412 	return 0;
413 }
414 
415 /**
416  * prot_tree_add - add physical eraseblock to protection trees.
417  * @ubi: UBI device description object
418  * @e: the physical eraseblock to add
419  * @pe: protection entry object to use
420  * @abs_ec: absolute erase counter value when this physical eraseblock has
421  * to be removed from the protection trees.
422  *
423  * @wl->lock has to be locked.
424  */
425 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
426 			  struct ubi_wl_prot_entry *pe, int abs_ec)
427 {
428 	struct rb_node **p, *parent = NULL;
429 	struct ubi_wl_prot_entry *pe1;
430 
431 	pe->e = e;
432 	pe->abs_ec = ubi->abs_ec + abs_ec;
433 
434 	p = &ubi->prot.pnum.rb_node;
435 	while (*p) {
436 		parent = *p;
437 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
438 
439 		if (e->pnum < pe1->e->pnum)
440 			p = &(*p)->rb_left;
441 		else
442 			p = &(*p)->rb_right;
443 	}
444 	rb_link_node(&pe->rb_pnum, parent, p);
445 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
446 
447 	p = &ubi->prot.aec.rb_node;
448 	parent = NULL;
449 	while (*p) {
450 		parent = *p;
451 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
452 
453 		if (pe->abs_ec < pe1->abs_ec)
454 			p = &(*p)->rb_left;
455 		else
456 			p = &(*p)->rb_right;
457 	}
458 	rb_link_node(&pe->rb_aec, parent, p);
459 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
460 }
461 
462 /**
463  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
464  * @root: the RB-tree where to look for
465  * @max: highest possible erase counter
466  *
467  * This function looks for a wear leveling entry with erase counter closest to
468  * @max and less then @max.
469  */
470 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
471 {
472 	struct rb_node *p;
473 	struct ubi_wl_entry *e;
474 
475 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
476 	max += e->ec;
477 
478 	p = root->rb_node;
479 	while (p) {
480 		struct ubi_wl_entry *e1;
481 
482 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
483 		if (e1->ec >= max)
484 			p = p->rb_left;
485 		else {
486 			p = p->rb_right;
487 			e = e1;
488 		}
489 	}
490 
491 	return e;
492 }
493 
494 /**
495  * ubi_wl_get_peb - get a physical eraseblock.
496  * @ubi: UBI device description object
497  * @dtype: type of data which will be stored in this physical eraseblock
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure. Might sleep.
501  */
502 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
503 {
504 	int err, protect, medium_ec;
505 	struct ubi_wl_entry *e, *first, *last;
506 	struct ubi_wl_prot_entry *pe;
507 
508 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
509 		   dtype == UBI_UNKNOWN);
510 
511 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_KERNEL);
512 	if (!pe)
513 		return -ENOMEM;
514 
515 retry:
516 	spin_lock(&ubi->wl_lock);
517 	if (tree_empty(&ubi->free)) {
518 		if (ubi->works_count == 0) {
519 			ubi_assert(list_empty(&ubi->works));
520 			ubi_err("no free eraseblocks");
521 			spin_unlock(&ubi->wl_lock);
522 			kfree(pe);
523 			return -ENOSPC;
524 		}
525 		spin_unlock(&ubi->wl_lock);
526 
527 		err = produce_free_peb(ubi);
528 		if (err < 0) {
529 			kfree(pe);
530 			return err;
531 		}
532 		goto retry;
533 	}
534 
535 	switch (dtype) {
536 		case UBI_LONGTERM:
537 			/*
538 			 * For long term data we pick a physical eraseblock
539 			 * with high erase counter. But the highest erase
540 			 * counter we can pick is bounded by the the lowest
541 			 * erase counter plus %WL_FREE_MAX_DIFF.
542 			 */
543 			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
544 			protect = LT_PROTECTION;
545 			break;
546 		case UBI_UNKNOWN:
547 			/*
548 			 * For unknown data we pick a physical eraseblock with
549 			 * medium erase counter. But we by no means can pick a
550 			 * physical eraseblock with erase counter greater or
551 			 * equivalent than the lowest erase counter plus
552 			 * %WL_FREE_MAX_DIFF.
553 			 */
554 			first = rb_entry(rb_first(&ubi->free),
555 					 struct ubi_wl_entry, rb);
556 			last = rb_entry(rb_last(&ubi->free),
557 					struct ubi_wl_entry, rb);
558 
559 			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
560 				e = rb_entry(ubi->free.rb_node,
561 						struct ubi_wl_entry, rb);
562 			else {
563 				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
564 				e = find_wl_entry(&ubi->free, medium_ec);
565 			}
566 			protect = U_PROTECTION;
567 			break;
568 		case UBI_SHORTTERM:
569 			/*
570 			 * For short term data we pick a physical eraseblock
571 			 * with the lowest erase counter as we expect it will
572 			 * be erased soon.
573 			 */
574 			e = rb_entry(rb_first(&ubi->free),
575 				     struct ubi_wl_entry, rb);
576 			protect = ST_PROTECTION;
577 			break;
578 		default:
579 			protect = 0;
580 			e = NULL;
581 			BUG();
582 	}
583 
584 	/*
585 	 * Move the physical eraseblock to the protection trees where it will
586 	 * be protected from being moved for some time.
587 	 */
588 	free_tree_del(ubi, e);
589 	prot_tree_add(ubi, e, pe, protect);
590 
591 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
592 	spin_unlock(&ubi->wl_lock);
593 
594 	return e->pnum;
595 }
596 
597 /**
598  * prot_tree_del - remove a physical eraseblock from the protection trees
599  * @ubi: UBI device description object
600  * @pnum: the physical eraseblock to remove
601  */
602 static void prot_tree_del(struct ubi_device *ubi, int pnum)
603 {
604 	struct rb_node *p;
605 	struct ubi_wl_prot_entry *pe = NULL;
606 
607 	p = ubi->prot.pnum.rb_node;
608 	while (p) {
609 
610 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
611 
612 		if (pnum == pe->e->pnum)
613 			break;
614 
615 		if (pnum < pe->e->pnum)
616 			p = p->rb_left;
617 		else
618 			p = p->rb_right;
619 	}
620 
621 	ubi_assert(pe->e->pnum == pnum);
622 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
623 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
624 	kfree(pe);
625 }
626 
627 /**
628  * sync_erase - synchronously erase a physical eraseblock.
629  * @ubi: UBI device description object
630  * @e: the the physical eraseblock to erase
631  * @torture: if the physical eraseblock has to be tortured
632  *
633  * This function returns zero in case of success and a negative error code in
634  * case of failure.
635  */
636 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
637 {
638 	int err;
639 	struct ubi_ec_hdr *ec_hdr;
640 	unsigned long long ec = e->ec;
641 
642 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
643 
644 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
645 	if (err > 0)
646 		return -EINVAL;
647 
648 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
649 	if (!ec_hdr)
650 		return -ENOMEM;
651 
652 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
653 	if (err < 0)
654 		goto out_free;
655 
656 	ec += err;
657 	if (ec > UBI_MAX_ERASECOUNTER) {
658 		/*
659 		 * Erase counter overflow. Upgrade UBI and use 64-bit
660 		 * erase counters internally.
661 		 */
662 		ubi_err("erase counter overflow at PEB %d, EC %llu",
663 			e->pnum, ec);
664 		err = -EINVAL;
665 		goto out_free;
666 	}
667 
668 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
669 
670 	ec_hdr->ec = cpu_to_ubi64(ec);
671 
672 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
673 	if (err)
674 		goto out_free;
675 
676 	e->ec = ec;
677 	spin_lock(&ubi->wl_lock);
678 	if (e->ec > ubi->max_ec)
679 		ubi->max_ec = e->ec;
680 	spin_unlock(&ubi->wl_lock);
681 
682 out_free:
683 	kfree(ec_hdr);
684 	return err;
685 }
686 
687 /**
688  * check_protection_over - check if it is time to stop protecting some
689  * physical eraseblocks.
690  * @ubi: UBI device description object
691  *
692  * This function is called after each erase operation, when the absolute erase
693  * counter is incremented, to check if some physical eraseblock  have not to be
694  * protected any longer. These physical eraseblocks are moved from the
695  * protection trees to the used tree.
696  */
697 static void check_protection_over(struct ubi_device *ubi)
698 {
699 	struct ubi_wl_prot_entry *pe;
700 
701 	/*
702 	 * There may be several protected physical eraseblock to remove,
703 	 * process them all.
704 	 */
705 	while (1) {
706 		spin_lock(&ubi->wl_lock);
707 		if (tree_empty(&ubi->prot.aec)) {
708 			spin_unlock(&ubi->wl_lock);
709 			break;
710 		}
711 
712 		pe = rb_entry(rb_first(&ubi->prot.aec),
713 			      struct ubi_wl_prot_entry, rb_aec);
714 
715 		if (pe->abs_ec > ubi->abs_ec) {
716 			spin_unlock(&ubi->wl_lock);
717 			break;
718 		}
719 
720 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
721 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
722 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
723 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
724 		used_tree_add(ubi, pe->e);
725 		spin_unlock(&ubi->wl_lock);
726 
727 		kfree(pe);
728 		cond_resched();
729 	}
730 }
731 
732 /**
733  * schedule_ubi_work - schedule a work.
734  * @ubi: UBI device description object
735  * @wrk: the work to schedule
736  *
737  * This function enqueues a work defined by @wrk to the tail of the pending
738  * works list.
739  */
740 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
741 {
742 	spin_lock(&ubi->wl_lock);
743 	list_add_tail(&wrk->list, &ubi->works);
744 	ubi_assert(ubi->works_count >= 0);
745 	ubi->works_count += 1;
746 	if (ubi->thread_enabled)
747 		wake_up_process(ubi->bgt_thread);
748 	spin_unlock(&ubi->wl_lock);
749 }
750 
751 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
752 			int cancel);
753 
754 /**
755  * schedule_erase - schedule an erase work.
756  * @ubi: UBI device description object
757  * @e: the WL entry of the physical eraseblock to erase
758  * @torture: if the physical eraseblock has to be tortured
759  *
760  * This function returns zero in case of success and a %-ENOMEM in case of
761  * failure.
762  */
763 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
764 			  int torture)
765 {
766 	struct ubi_work *wl_wrk;
767 
768 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
769 	       e->pnum, e->ec, torture);
770 
771 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
772 	if (!wl_wrk)
773 		return -ENOMEM;
774 
775 	wl_wrk->func = &erase_worker;
776 	wl_wrk->e = e;
777 	wl_wrk->torture = torture;
778 
779 	schedule_ubi_work(ubi, wl_wrk);
780 	return 0;
781 }
782 
783 /**
784  * wear_leveling_worker - wear-leveling worker function.
785  * @ubi: UBI device description object
786  * @wrk: the work object
787  * @cancel: non-zero if the worker has to free memory and exit
788  *
789  * This function copies a more worn out physical eraseblock to a less worn out
790  * one. Returns zero in case of success and a negative error code in case of
791  * failure.
792  */
793 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
794 				int cancel)
795 {
796 	int err, put = 0;
797 	struct ubi_wl_entry *e1, *e2;
798 	struct ubi_vid_hdr *vid_hdr;
799 
800 	kfree(wrk);
801 
802 	if (cancel)
803 		return 0;
804 
805 	vid_hdr = ubi_zalloc_vid_hdr(ubi);
806 	if (!vid_hdr)
807 		return -ENOMEM;
808 
809 	spin_lock(&ubi->wl_lock);
810 
811 	/*
812 	 * Only one WL worker at a time is supported at this implementation, so
813 	 * make sure a PEB is not being moved already.
814 	 */
815 	if (ubi->move_to || tree_empty(&ubi->free) ||
816 	    (tree_empty(&ubi->used) && tree_empty(&ubi->scrub))) {
817 		/*
818 		 * Only one WL worker at a time is supported at this
819 		 * implementation, so if a LEB is already being moved, cancel.
820 		 *
821 		 * No free physical eraseblocks? Well, we cancel wear-leveling
822 		 * then. It will be triggered again when a free physical
823 		 * eraseblock appears.
824 		 *
825 		 * No used physical eraseblocks? They must be temporarily
826 		 * protected from being moved. They will be moved to the
827 		 * @ubi->used tree later and the wear-leveling will be
828 		 * triggered again.
829 		 */
830 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
831 		       tree_empty(&ubi->free), tree_empty(&ubi->used));
832 		ubi->wl_scheduled = 0;
833 		spin_unlock(&ubi->wl_lock);
834 		ubi_free_vid_hdr(ubi, vid_hdr);
835 		return 0;
836 	}
837 
838 	if (tree_empty(&ubi->scrub)) {
839 		/*
840 		 * Now pick the least worn-out used physical eraseblock and a
841 		 * highly worn-out free physical eraseblock. If the erase
842 		 * counters differ much enough, start wear-leveling.
843 		 */
844 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
845 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
846 
847 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
848 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
849 			       e1->ec, e2->ec);
850 			ubi->wl_scheduled = 0;
851 			spin_unlock(&ubi->wl_lock);
852 			ubi_free_vid_hdr(ubi, vid_hdr);
853 			return 0;
854 		}
855 		used_tree_del(ubi, e1);
856 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
857 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
858 	} else {
859 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
860 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
861 		scrub_tree_del(ubi, e1);
862 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
863 	}
864 
865 	free_tree_del(ubi, e2);
866 	ubi_assert(!ubi->move_from && !ubi->move_to);
867 	ubi_assert(!ubi->move_to_put && !ubi->move_from_put);
868 	ubi->move_from = e1;
869 	ubi->move_to = e2;
870 	spin_unlock(&ubi->wl_lock);
871 
872 	/*
873 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
874 	 * We so far do not know which logical eraseblock our physical
875 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
876 	 * header first.
877 	 */
878 
879 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
880 	if (err && err != UBI_IO_BITFLIPS) {
881 		if (err == UBI_IO_PEB_FREE) {
882 			/*
883 			 * We are trying to move PEB without a VID header. UBI
884 			 * always write VID headers shortly after the PEB was
885 			 * given, so we have a situation when it did not have
886 			 * chance to write it down because it was preempted.
887 			 * Just re-schedule the work, so that next time it will
888 			 * likely have the VID header in place.
889 			 */
890 			dbg_wl("PEB %d has no VID header", e1->pnum);
891 			err = 0;
892 		} else {
893 			ubi_err("error %d while reading VID header from PEB %d",
894 				err, e1->pnum);
895 			if (err > 0)
896 				err = -EIO;
897 		}
898 		goto error;
899 	}
900 
901 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
902 	if (err) {
903 		if (err == UBI_IO_BITFLIPS)
904 			err = 0;
905 		goto error;
906 	}
907 
908 	ubi_free_vid_hdr(ubi, vid_hdr);
909 	spin_lock(&ubi->wl_lock);
910 	if (!ubi->move_to_put)
911 		used_tree_add(ubi, e2);
912 	else
913 		put = 1;
914 	ubi->move_from = ubi->move_to = NULL;
915 	ubi->move_from_put = ubi->move_to_put = 0;
916 	ubi->wl_scheduled = 0;
917 	spin_unlock(&ubi->wl_lock);
918 
919 	if (put) {
920 		/*
921 		 * Well, the target PEB was put meanwhile, schedule it for
922 		 * erasure.
923 		 */
924 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
925 		err = schedule_erase(ubi, e2, 0);
926 		if (err) {
927 			kmem_cache_free(wl_entries_slab, e2);
928 			ubi_ro_mode(ubi);
929 		}
930 	}
931 
932 	err = schedule_erase(ubi, e1, 0);
933 	if (err) {
934 		kmem_cache_free(wl_entries_slab, e1);
935 		ubi_ro_mode(ubi);
936 	}
937 
938 	dbg_wl("done");
939 	return err;
940 
941 	/*
942 	 * Some error occurred. @e1 was not changed, so return it back. @e2
943 	 * might be changed, schedule it for erasure.
944 	 */
945 error:
946 	if (err)
947 		dbg_wl("error %d occurred, cancel operation", err);
948 	ubi_assert(err <= 0);
949 
950 	ubi_free_vid_hdr(ubi, vid_hdr);
951 	spin_lock(&ubi->wl_lock);
952 	ubi->wl_scheduled = 0;
953 	if (ubi->move_from_put)
954 		put = 1;
955 	else
956 		used_tree_add(ubi, e1);
957 	ubi->move_from = ubi->move_to = NULL;
958 	ubi->move_from_put = ubi->move_to_put = 0;
959 	spin_unlock(&ubi->wl_lock);
960 
961 	if (put) {
962 		/*
963 		 * Well, the target PEB was put meanwhile, schedule it for
964 		 * erasure.
965 		 */
966 		dbg_wl("PEB %d was put meanwhile, erase", e1->pnum);
967 		err = schedule_erase(ubi, e1, 0);
968 		if (err) {
969 			kmem_cache_free(wl_entries_slab, e1);
970 			ubi_ro_mode(ubi);
971 		}
972 	}
973 
974 	err = schedule_erase(ubi, e2, 0);
975 	if (err) {
976 		kmem_cache_free(wl_entries_slab, e2);
977 		ubi_ro_mode(ubi);
978 	}
979 
980 	yield();
981 	return err;
982 }
983 
984 /**
985  * ensure_wear_leveling - schedule wear-leveling if it is needed.
986  * @ubi: UBI device description object
987  *
988  * This function checks if it is time to start wear-leveling and schedules it
989  * if yes. This function returns zero in case of success and a negative error
990  * code in case of failure.
991  */
992 static int ensure_wear_leveling(struct ubi_device *ubi)
993 {
994 	int err = 0;
995 	struct ubi_wl_entry *e1;
996 	struct ubi_wl_entry *e2;
997 	struct ubi_work *wrk;
998 
999 	spin_lock(&ubi->wl_lock);
1000 	if (ubi->wl_scheduled)
1001 		/* Wear-leveling is already in the work queue */
1002 		goto out_unlock;
1003 
1004 	/*
1005 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1006 	 * the WL worker has to be scheduled anyway.
1007 	 */
1008 	if (tree_empty(&ubi->scrub)) {
1009 		if (tree_empty(&ubi->used) || tree_empty(&ubi->free))
1010 			/* No physical eraseblocks - no deal */
1011 			goto out_unlock;
1012 
1013 		/*
1014 		 * We schedule wear-leveling only if the difference between the
1015 		 * lowest erase counter of used physical eraseblocks and a high
1016 		 * erase counter of free physical eraseblocks is greater then
1017 		 * %UBI_WL_THRESHOLD.
1018 		 */
1019 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
1020 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
1021 
1022 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1023 			goto out_unlock;
1024 		dbg_wl("schedule wear-leveling");
1025 	} else
1026 		dbg_wl("schedule scrubbing");
1027 
1028 	ubi->wl_scheduled = 1;
1029 	spin_unlock(&ubi->wl_lock);
1030 
1031 	wrk = kmalloc(sizeof(struct ubi_work), GFP_KERNEL);
1032 	if (!wrk) {
1033 		err = -ENOMEM;
1034 		goto out_cancel;
1035 	}
1036 
1037 	wrk->func = &wear_leveling_worker;
1038 	schedule_ubi_work(ubi, wrk);
1039 	return err;
1040 
1041 out_cancel:
1042 	spin_lock(&ubi->wl_lock);
1043 	ubi->wl_scheduled = 0;
1044 out_unlock:
1045 	spin_unlock(&ubi->wl_lock);
1046 	return err;
1047 }
1048 
1049 /**
1050  * erase_worker - physical eraseblock erase worker function.
1051  * @ubi: UBI device description object
1052  * @wl_wrk: the work object
1053  * @cancel: non-zero if the worker has to free memory and exit
1054  *
1055  * This function erases a physical eraseblock and perform torture testing if
1056  * needed. It also takes care about marking the physical eraseblock bad if
1057  * needed. Returns zero in case of success and a negative error code in case of
1058  * failure.
1059  */
1060 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1061 			int cancel)
1062 {
1063 	int err;
1064 	struct ubi_wl_entry *e = wl_wrk->e;
1065 	int pnum = e->pnum;
1066 
1067 	if (cancel) {
1068 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1069 		kfree(wl_wrk);
1070 		kmem_cache_free(wl_entries_slab, e);
1071 		return 0;
1072 	}
1073 
1074 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1075 
1076 	err = sync_erase(ubi, e, wl_wrk->torture);
1077 	if (!err) {
1078 		/* Fine, we've erased it successfully */
1079 		kfree(wl_wrk);
1080 
1081 		spin_lock(&ubi->wl_lock);
1082 		ubi->abs_ec += 1;
1083 		free_tree_add(ubi, e);
1084 		spin_unlock(&ubi->wl_lock);
1085 
1086 		/*
1087 		 * One more erase operation has happened, take care about protected
1088 		 * physical eraseblocks.
1089 		 */
1090 		check_protection_over(ubi);
1091 
1092 		/* And take care about wear-leveling */
1093 		err = ensure_wear_leveling(ubi);
1094 		return err;
1095 	}
1096 
1097 	kfree(wl_wrk);
1098 	kmem_cache_free(wl_entries_slab, e);
1099 
1100 	if (err != -EIO) {
1101 		/*
1102 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1103 		 * this physical eraseblock for erasure again would cause
1104 		 * errors again and again. Well, lets switch to RO mode.
1105 		 */
1106 		ubi_ro_mode(ubi);
1107 		return err;
1108 	}
1109 
1110 	/* It is %-EIO, the PEB went bad */
1111 
1112 	if (!ubi->bad_allowed) {
1113 		ubi_err("bad physical eraseblock %d detected", pnum);
1114 		ubi_ro_mode(ubi);
1115 		err = -EIO;
1116 	} else {
1117 		int need;
1118 
1119 		spin_lock(&ubi->volumes_lock);
1120 		need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1121 		if (need > 0) {
1122 			need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1123 			ubi->avail_pebs -= need;
1124 			ubi->rsvd_pebs += need;
1125 			ubi->beb_rsvd_pebs += need;
1126 			if (need > 0)
1127 				ubi_msg("reserve more %d PEBs", need);
1128 		}
1129 
1130 		if (ubi->beb_rsvd_pebs == 0) {
1131 			spin_unlock(&ubi->volumes_lock);
1132 			ubi_err("no reserved physical eraseblocks");
1133 			ubi_ro_mode(ubi);
1134 			return -EIO;
1135 		}
1136 
1137 		spin_unlock(&ubi->volumes_lock);
1138 		ubi_msg("mark PEB %d as bad", pnum);
1139 
1140 		err = ubi_io_mark_bad(ubi, pnum);
1141 		if (err) {
1142 			ubi_ro_mode(ubi);
1143 			return err;
1144 		}
1145 
1146 		spin_lock(&ubi->volumes_lock);
1147 		ubi->beb_rsvd_pebs -= 1;
1148 		ubi->bad_peb_count += 1;
1149 		ubi->good_peb_count -= 1;
1150 		ubi_calculate_reserved(ubi);
1151 		if (ubi->beb_rsvd_pebs == 0)
1152 			ubi_warn("last PEB from the reserved pool was used");
1153 		spin_unlock(&ubi->volumes_lock);
1154 	}
1155 
1156 	return err;
1157 }
1158 
1159 /**
1160  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
1161  * unit.
1162  * @ubi: UBI device description object
1163  * @pnum: physical eraseblock to return
1164  * @torture: if this physical eraseblock has to be tortured
1165  *
1166  * This function is called to return physical eraseblock @pnum to the pool of
1167  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1168  * occurred to this @pnum and it has to be tested. This function returns zero
1169  * in case of success and a negative error code in case of failure.
1170  */
1171 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1172 {
1173 	int err;
1174 	struct ubi_wl_entry *e;
1175 
1176 	dbg_wl("PEB %d", pnum);
1177 	ubi_assert(pnum >= 0);
1178 	ubi_assert(pnum < ubi->peb_count);
1179 
1180 	spin_lock(&ubi->wl_lock);
1181 
1182 	e = ubi->lookuptbl[pnum];
1183 	if (e == ubi->move_from) {
1184 		/*
1185 		 * User is putting the physical eraseblock which was selected to
1186 		 * be moved. It will be scheduled for erasure in the
1187 		 * wear-leveling worker.
1188 		 */
1189 		dbg_wl("PEB %d is being moved", pnum);
1190 		ubi_assert(!ubi->move_from_put);
1191 		ubi->move_from_put = 1;
1192 		spin_unlock(&ubi->wl_lock);
1193 		return 0;
1194 	} else if (e == ubi->move_to) {
1195 		/*
1196 		 * User is putting the physical eraseblock which was selected
1197 		 * as the target the data is moved to. It may happen if the EBA
1198 		 * unit already re-mapped the LEB but the WL unit did has not
1199 		 * put the PEB to the "used" tree.
1200 		 */
1201 		dbg_wl("PEB %d is the target of data moving", pnum);
1202 		ubi_assert(!ubi->move_to_put);
1203 		ubi->move_to_put = 1;
1204 		spin_unlock(&ubi->wl_lock);
1205 		return 0;
1206 	} else {
1207 		if (in_wl_tree(e, &ubi->used))
1208 			used_tree_del(ubi, e);
1209 		else if (in_wl_tree(e, &ubi->scrub))
1210 			scrub_tree_del(ubi, e);
1211 		else
1212 			prot_tree_del(ubi, e->pnum);
1213 	}
1214 	spin_unlock(&ubi->wl_lock);
1215 
1216 	err = schedule_erase(ubi, e, torture);
1217 	if (err) {
1218 		spin_lock(&ubi->wl_lock);
1219 		used_tree_add(ubi, e);
1220 		spin_unlock(&ubi->wl_lock);
1221 	}
1222 
1223 	return err;
1224 }
1225 
1226 /**
1227  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1228  * @ubi: UBI device description object
1229  * @pnum: the physical eraseblock to schedule
1230  *
1231  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1232  * needs scrubbing. This function schedules a physical eraseblock for
1233  * scrubbing which is done in background. This function returns zero in case of
1234  * success and a negative error code in case of failure.
1235  */
1236 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1237 {
1238 	struct ubi_wl_entry *e;
1239 
1240 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1241 
1242 retry:
1243 	spin_lock(&ubi->wl_lock);
1244 	e = ubi->lookuptbl[pnum];
1245 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1246 		spin_unlock(&ubi->wl_lock);
1247 		return 0;
1248 	}
1249 
1250 	if (e == ubi->move_to) {
1251 		/*
1252 		 * This physical eraseblock was used to move data to. The data
1253 		 * was moved but the PEB was not yet inserted to the proper
1254 		 * tree. We should just wait a little and let the WL worker
1255 		 * proceed.
1256 		 */
1257 		spin_unlock(&ubi->wl_lock);
1258 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1259 		yield();
1260 		goto retry;
1261 	}
1262 
1263 	if (in_wl_tree(e, &ubi->used))
1264 		used_tree_del(ubi, e);
1265 	else
1266 		prot_tree_del(ubi, pnum);
1267 
1268 	scrub_tree_add(ubi, e);
1269 	spin_unlock(&ubi->wl_lock);
1270 
1271 	/*
1272 	 * Technically scrubbing is the same as wear-leveling, so it is done
1273 	 * by the WL worker.
1274 	 */
1275 	return ensure_wear_leveling(ubi);
1276 }
1277 
1278 /**
1279  * ubi_wl_flush - flush all pending works.
1280  * @ubi: UBI device description object
1281  *
1282  * This function returns zero in case of success and a negative error code in
1283  * case of failure.
1284  */
1285 int ubi_wl_flush(struct ubi_device *ubi)
1286 {
1287 	int err, pending_count;
1288 
1289 	pending_count = ubi->works_count;
1290 
1291 	dbg_wl("flush (%d pending works)", pending_count);
1292 
1293 	/*
1294 	 * Erase while the pending works queue is not empty, but not more then
1295 	 * the number of currently pending works.
1296 	 */
1297 	while (pending_count-- > 0) {
1298 		err = do_work(ubi);
1299 		if (err)
1300 			return err;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * tree_destroy - destroy an RB-tree.
1308  * @root: the root of the tree to destroy
1309  */
1310 static void tree_destroy(struct rb_root *root)
1311 {
1312 	struct rb_node *rb;
1313 	struct ubi_wl_entry *e;
1314 
1315 	rb = root->rb_node;
1316 	while (rb) {
1317 		if (rb->rb_left)
1318 			rb = rb->rb_left;
1319 		else if (rb->rb_right)
1320 			rb = rb->rb_right;
1321 		else {
1322 			e = rb_entry(rb, struct ubi_wl_entry, rb);
1323 
1324 			rb = rb_parent(rb);
1325 			if (rb) {
1326 				if (rb->rb_left == &e->rb)
1327 					rb->rb_left = NULL;
1328 				else
1329 					rb->rb_right = NULL;
1330 			}
1331 
1332 			kmem_cache_free(wl_entries_slab, e);
1333 		}
1334 	}
1335 }
1336 
1337 /**
1338  * ubi_thread - UBI background thread.
1339  * @u: the UBI device description object pointer
1340  */
1341 static int ubi_thread(void *u)
1342 {
1343 	int failures = 0;
1344 	struct ubi_device *ubi = u;
1345 
1346 	ubi_msg("background thread \"%s\" started, PID %d",
1347 		ubi->bgt_name, current->pid);
1348 
1349 	for (;;) {
1350 		int err;
1351 
1352 		if (kthread_should_stop())
1353 			goto out;
1354 
1355 		if (try_to_freeze())
1356 			continue;
1357 
1358 		spin_lock(&ubi->wl_lock);
1359 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1360 			       !ubi->thread_enabled) {
1361 			set_current_state(TASK_INTERRUPTIBLE);
1362 			spin_unlock(&ubi->wl_lock);
1363 			schedule();
1364 			continue;
1365 		}
1366 		spin_unlock(&ubi->wl_lock);
1367 
1368 		err = do_work(ubi);
1369 		if (err) {
1370 			ubi_err("%s: work failed with error code %d",
1371 				ubi->bgt_name, err);
1372 			if (failures++ > WL_MAX_FAILURES) {
1373 				/*
1374 				 * Too many failures, disable the thread and
1375 				 * switch to read-only mode.
1376 				 */
1377 				ubi_msg("%s: %d consecutive failures",
1378 					ubi->bgt_name, WL_MAX_FAILURES);
1379 				ubi_ro_mode(ubi);
1380 				break;
1381 			}
1382 		} else
1383 			failures = 0;
1384 
1385 		cond_resched();
1386 	}
1387 
1388 out:
1389 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1390 	return 0;
1391 }
1392 
1393 /**
1394  * cancel_pending - cancel all pending works.
1395  * @ubi: UBI device description object
1396  */
1397 static void cancel_pending(struct ubi_device *ubi)
1398 {
1399 	while (!list_empty(&ubi->works)) {
1400 		struct ubi_work *wrk;
1401 
1402 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1403 		list_del(&wrk->list);
1404 		wrk->func(ubi, wrk, 1);
1405 		ubi->works_count -= 1;
1406 		ubi_assert(ubi->works_count >= 0);
1407 	}
1408 }
1409 
1410 /**
1411  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1412  * information.
1413  * @ubi: UBI device description object
1414  * @si: scanning information
1415  *
1416  * This function returns zero in case of success, and a negative error code in
1417  * case of failure.
1418  */
1419 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1420 {
1421 	int err;
1422 	struct rb_node *rb1, *rb2;
1423 	struct ubi_scan_volume *sv;
1424 	struct ubi_scan_leb *seb, *tmp;
1425 	struct ubi_wl_entry *e;
1426 
1427 
1428 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1429 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1430 	spin_lock_init(&ubi->wl_lock);
1431 	ubi->max_ec = si->max_ec;
1432 	INIT_LIST_HEAD(&ubi->works);
1433 
1434 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1435 
1436 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
1437 	if (IS_ERR(ubi->bgt_thread)) {
1438 		err = PTR_ERR(ubi->bgt_thread);
1439 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1440 			err);
1441 		return err;
1442 	}
1443 
1444 	if (ubi_devices_cnt == 0) {
1445 		wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab",
1446 						    sizeof(struct ubi_wl_entry),
1447 						    0, 0, NULL, NULL);
1448 		if (!wl_entries_slab)
1449 			return -ENOMEM;
1450 	}
1451 
1452 	err = -ENOMEM;
1453 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1454 	if (!ubi->lookuptbl)
1455 		goto out_free;
1456 
1457 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1458 		cond_resched();
1459 
1460 		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1461 		if (!e)
1462 			goto out_free;
1463 
1464 		e->pnum = seb->pnum;
1465 		e->ec = seb->ec;
1466 		ubi->lookuptbl[e->pnum] = e;
1467 		if (schedule_erase(ubi, e, 0)) {
1468 			kmem_cache_free(wl_entries_slab, e);
1469 			goto out_free;
1470 		}
1471 	}
1472 
1473 	list_for_each_entry(seb, &si->free, u.list) {
1474 		cond_resched();
1475 
1476 		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1477 		if (!e)
1478 			goto out_free;
1479 
1480 		e->pnum = seb->pnum;
1481 		e->ec = seb->ec;
1482 		ubi_assert(e->ec >= 0);
1483 		free_tree_add(ubi, e);
1484 		ubi->lookuptbl[e->pnum] = e;
1485 	}
1486 
1487 	list_for_each_entry(seb, &si->corr, u.list) {
1488 		cond_resched();
1489 
1490 		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1491 		if (!e)
1492 			goto out_free;
1493 
1494 		e->pnum = seb->pnum;
1495 		e->ec = seb->ec;
1496 		ubi->lookuptbl[e->pnum] = e;
1497 		if (schedule_erase(ubi, e, 0)) {
1498 			kmem_cache_free(wl_entries_slab, e);
1499 			goto out_free;
1500 		}
1501 	}
1502 
1503 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1504 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1505 			cond_resched();
1506 
1507 			e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1508 			if (!e)
1509 				goto out_free;
1510 
1511 			e->pnum = seb->pnum;
1512 			e->ec = seb->ec;
1513 			ubi->lookuptbl[e->pnum] = e;
1514 			if (!seb->scrub) {
1515 				dbg_wl("add PEB %d EC %d to the used tree",
1516 				       e->pnum, e->ec);
1517 				used_tree_add(ubi, e);
1518 			} else {
1519 				dbg_wl("add PEB %d EC %d to the scrub tree",
1520 				       e->pnum, e->ec);
1521 				scrub_tree_add(ubi, e);
1522 			}
1523 		}
1524 	}
1525 
1526 	if (WL_RESERVED_PEBS > ubi->avail_pebs) {
1527 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1528 			ubi->avail_pebs, WL_RESERVED_PEBS);
1529 		goto out_free;
1530 	}
1531 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1532 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1533 
1534 	/* Schedule wear-leveling if needed */
1535 	err = ensure_wear_leveling(ubi);
1536 	if (err)
1537 		goto out_free;
1538 
1539 	return 0;
1540 
1541 out_free:
1542 	cancel_pending(ubi);
1543 	tree_destroy(&ubi->used);
1544 	tree_destroy(&ubi->free);
1545 	tree_destroy(&ubi->scrub);
1546 	kfree(ubi->lookuptbl);
1547 	if (ubi_devices_cnt == 0)
1548 		kmem_cache_destroy(wl_entries_slab);
1549 	return err;
1550 }
1551 
1552 /**
1553  * protection_trees_destroy - destroy the protection RB-trees.
1554  * @ubi: UBI device description object
1555  */
1556 static void protection_trees_destroy(struct ubi_device *ubi)
1557 {
1558 	struct rb_node *rb;
1559 	struct ubi_wl_prot_entry *pe;
1560 
1561 	rb = ubi->prot.aec.rb_node;
1562 	while (rb) {
1563 		if (rb->rb_left)
1564 			rb = rb->rb_left;
1565 		else if (rb->rb_right)
1566 			rb = rb->rb_right;
1567 		else {
1568 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1569 
1570 			rb = rb_parent(rb);
1571 			if (rb) {
1572 				if (rb->rb_left == &pe->rb_aec)
1573 					rb->rb_left = NULL;
1574 				else
1575 					rb->rb_right = NULL;
1576 			}
1577 
1578 			kmem_cache_free(wl_entries_slab, pe->e);
1579 			kfree(pe);
1580 		}
1581 	}
1582 }
1583 
1584 /**
1585  * ubi_wl_close - close the wear-leveling unit.
1586  * @ubi: UBI device description object
1587  */
1588 void ubi_wl_close(struct ubi_device *ubi)
1589 {
1590 	dbg_wl("disable \"%s\"", ubi->bgt_name);
1591 	if (ubi->bgt_thread)
1592 		kthread_stop(ubi->bgt_thread);
1593 
1594 	dbg_wl("close the UBI wear-leveling unit");
1595 
1596 	cancel_pending(ubi);
1597 	protection_trees_destroy(ubi);
1598 	tree_destroy(&ubi->used);
1599 	tree_destroy(&ubi->free);
1600 	tree_destroy(&ubi->scrub);
1601 	kfree(ubi->lookuptbl);
1602 	if (ubi_devices_cnt == 1)
1603 		kmem_cache_destroy(wl_entries_slab);
1604 }
1605 
1606 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1607 
1608 /**
1609  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1610  * is correct.
1611  * @ubi: UBI device description object
1612  * @pnum: the physical eraseblock number to check
1613  * @ec: the erase counter to check
1614  *
1615  * This function returns zero if the erase counter of physical eraseblock @pnum
1616  * is equivalent to @ec, %1 if not, and a negative error code if an error
1617  * occurred.
1618  */
1619 static int paranoid_check_ec(const struct ubi_device *ubi, int pnum, int ec)
1620 {
1621 	int err;
1622 	long long read_ec;
1623 	struct ubi_ec_hdr *ec_hdr;
1624 
1625 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1626 	if (!ec_hdr)
1627 		return -ENOMEM;
1628 
1629 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1630 	if (err && err != UBI_IO_BITFLIPS) {
1631 		/* The header does not have to exist */
1632 		err = 0;
1633 		goto out_free;
1634 	}
1635 
1636 	read_ec = ubi64_to_cpu(ec_hdr->ec);
1637 	if (ec != read_ec) {
1638 		ubi_err("paranoid check failed for PEB %d", pnum);
1639 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1640 		ubi_dbg_dump_stack();
1641 		err = 1;
1642 	} else
1643 		err = 0;
1644 
1645 out_free:
1646 	kfree(ec_hdr);
1647 	return err;
1648 }
1649 
1650 /**
1651  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1652  * in a WL RB-tree.
1653  * @e: the wear-leveling entry to check
1654  * @root: the root of the tree
1655  *
1656  * This function returns zero if @e is in the @root RB-tree and %1 if it
1657  * is not.
1658  */
1659 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1660 				     struct rb_root *root)
1661 {
1662 	if (in_wl_tree(e, root))
1663 		return 0;
1664 
1665 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1666 		e->pnum, e->ec, root);
1667 	ubi_dbg_dump_stack();
1668 	return 1;
1669 }
1670 
1671 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1672