1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling unit. 23 * 24 * This unit is responsible for wear-leveling. It works in terms of physical 25 * eraseblocks and erase counters and knows nothing about logical eraseblocks, 26 * volumes, etc. From this unit's perspective all physical eraseblocks are of 27 * two types - used and free. Used physical eraseblocks are those that were 28 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are 29 * those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only 0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL unit by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL unit. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 44 * an "optimal" physical eraseblock. For example, when it is known that the 45 * physical eraseblock will be "put" soon because it contains short-term data, 46 * the WL unit may pick a free physical eraseblock with low erase counter, and 47 * so forth. 48 * 49 * If the WL unit fails to erase a physical eraseblock, it marks it as bad. 50 * 51 * This unit is also responsible for scrubbing. If a bit-flip is detected in a 52 * physical eraseblock, it has to be moved. Technically this is the same as 53 * moving it for wear-leveling reasons. 54 * 55 * As it was said, for the UBI unit all physical eraseblocks are either "free" 56 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used 57 * eraseblocks are kept in a set of different RB-trees: @wl->used, 58 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub. 59 * 60 * Note, in this implementation, we keep a small in-RAM object for each physical 61 * eraseblock. This is surely not a scalable solution. But it appears to be good 62 * enough for moderately large flashes and it is simple. In future, one may 63 * re-work this unit and make it more scalable. 64 * 65 * At the moment this unit does not utilize the sequence number, which was 66 * introduced relatively recently. But it would be wise to do this because the 67 * sequence number of a logical eraseblock characterizes how old is it. For 68 * example, when we move a PEB with low erase counter, and we need to pick the 69 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 70 * pick target PEB with an average EC if our PEB is not very "old". This is a 71 * room for future re-works of the WL unit. 72 * 73 * FIXME: looks too complex, should be simplified (later). 74 */ 75 76 #include <linux/slab.h> 77 #include <linux/crc32.h> 78 #include <linux/freezer.h> 79 #include <linux/kthread.h> 80 #include "ubi.h" 81 82 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 83 #define WL_RESERVED_PEBS 1 84 85 /* 86 * How many erase cycles are short term, unknown, and long term physical 87 * eraseblocks protected. 88 */ 89 #define ST_PROTECTION 16 90 #define U_PROTECTION 10 91 #define LT_PROTECTION 4 92 93 /* 94 * Maximum difference between two erase counters. If this threshold is 95 * exceeded, the WL unit starts moving data from used physical eraseblocks with 96 * low erase counter to free physical eraseblocks with high erase counter. 97 */ 98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 99 100 /* 101 * When a physical eraseblock is moved, the WL unit has to pick the target 102 * physical eraseblock to move to. The simplest way would be just to pick the 103 * one with the highest erase counter. But in certain workloads this could lead 104 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 105 * situation when the picked physical eraseblock is constantly erased after the 106 * data is written to it. So, we have a constant which limits the highest erase 107 * counter of the free physical eraseblock to pick. Namely, the WL unit does 108 * not pick eraseblocks with erase counter greater then the lowest erase 109 * counter plus %WL_FREE_MAX_DIFF. 110 */ 111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 112 113 /* 114 * Maximum number of consecutive background thread failures which is enough to 115 * switch to read-only mode. 116 */ 117 #define WL_MAX_FAILURES 32 118 119 /** 120 * struct ubi_wl_entry - wear-leveling entry. 121 * @rb: link in the corresponding RB-tree 122 * @ec: erase counter 123 * @pnum: physical eraseblock number 124 * 125 * Each physical eraseblock has a corresponding &struct wl_entry object which 126 * may be kept in different RB-trees. 127 */ 128 struct ubi_wl_entry { 129 struct rb_node rb; 130 int ec; 131 int pnum; 132 }; 133 134 /** 135 * struct ubi_wl_prot_entry - PEB protection entry. 136 * @rb_pnum: link in the @wl->prot.pnum RB-tree 137 * @rb_aec: link in the @wl->prot.aec RB-tree 138 * @abs_ec: the absolute erase counter value when the protection ends 139 * @e: the wear-leveling entry of the physical eraseblock under protection 140 * 141 * When the WL unit returns a physical eraseblock, the physical eraseblock is 142 * protected from being moved for some "time". For this reason, the physical 143 * eraseblock is not directly moved from the @wl->free tree to the @wl->used 144 * tree. There is one more tree in between where this physical eraseblock is 145 * temporarily stored (@wl->prot). 146 * 147 * All this protection stuff is needed because: 148 * o we don't want to move physical eraseblocks just after we have given them 149 * to the user; instead, we first want to let users fill them up with data; 150 * 151 * o there is a chance that the user will put the physical eraseblock very 152 * soon, so it makes sense not to move it for some time, but wait; this is 153 * especially important in case of "short term" physical eraseblocks. 154 * 155 * Physical eraseblocks stay protected only for limited time. But the "time" is 156 * measured in erase cycles in this case. This is implemented with help of the 157 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the 158 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to 159 * the @wl->used tree. 160 * 161 * Protected physical eraseblocks are searched by physical eraseblock number 162 * (when they are put) and by the absolute erase counter (to check if it is 163 * time to move them to the @wl->used tree). So there are actually 2 RB-trees 164 * storing the protected physical eraseblocks: @wl->prot.pnum and 165 * @wl->prot.aec. They are referred to as the "protection" trees. The 166 * first one is indexed by the physical eraseblock number. The second one is 167 * indexed by the absolute erase counter. Both trees store 168 * &struct ubi_wl_prot_entry objects. 169 * 170 * Each physical eraseblock has 2 main states: free and used. The former state 171 * corresponds to the @wl->free tree. The latter state is split up on several 172 * sub-states: 173 * o the WL movement is allowed (@wl->used tree); 174 * o the WL movement is temporarily prohibited (@wl->prot.pnum and 175 * @wl->prot.aec trees); 176 * o scrubbing is needed (@wl->scrub tree). 177 * 178 * Depending on the sub-state, wear-leveling entries of the used physical 179 * eraseblocks may be kept in one of those trees. 180 */ 181 struct ubi_wl_prot_entry { 182 struct rb_node rb_pnum; 183 struct rb_node rb_aec; 184 unsigned long long abs_ec; 185 struct ubi_wl_entry *e; 186 }; 187 188 /** 189 * struct ubi_work - UBI work description data structure. 190 * @list: a link in the list of pending works 191 * @func: worker function 192 * @priv: private data of the worker function 193 * 194 * @e: physical eraseblock to erase 195 * @torture: if the physical eraseblock has to be tortured 196 * 197 * The @func pointer points to the worker function. If the @cancel argument is 198 * not zero, the worker has to free the resources and exit immediately. The 199 * worker has to return zero in case of success and a negative error code in 200 * case of failure. 201 */ 202 struct ubi_work { 203 struct list_head list; 204 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 205 /* The below fields are only relevant to erasure works */ 206 struct ubi_wl_entry *e; 207 int torture; 208 }; 209 210 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 211 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 212 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 213 struct rb_root *root); 214 #else 215 #define paranoid_check_ec(ubi, pnum, ec) 0 216 #define paranoid_check_in_wl_tree(e, root) 217 #endif 218 219 /* Slab cache for wear-leveling entries */ 220 static struct kmem_cache *wl_entries_slab; 221 222 /** 223 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 224 * @e: the wear-leveling entry to add 225 * @root: the root of the tree 226 * 227 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 228 * the @ubi->used and @ubi->free RB-trees. 229 */ 230 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 231 { 232 struct rb_node **p, *parent = NULL; 233 234 p = &root->rb_node; 235 while (*p) { 236 struct ubi_wl_entry *e1; 237 238 parent = *p; 239 e1 = rb_entry(parent, struct ubi_wl_entry, rb); 240 241 if (e->ec < e1->ec) 242 p = &(*p)->rb_left; 243 else if (e->ec > e1->ec) 244 p = &(*p)->rb_right; 245 else { 246 ubi_assert(e->pnum != e1->pnum); 247 if (e->pnum < e1->pnum) 248 p = &(*p)->rb_left; 249 else 250 p = &(*p)->rb_right; 251 } 252 } 253 254 rb_link_node(&e->rb, parent, p); 255 rb_insert_color(&e->rb, root); 256 } 257 258 /** 259 * do_work - do one pending work. 260 * @ubi: UBI device description object 261 * 262 * This function returns zero in case of success and a negative error code in 263 * case of failure. 264 */ 265 static int do_work(struct ubi_device *ubi) 266 { 267 int err; 268 struct ubi_work *wrk; 269 270 spin_lock(&ubi->wl_lock); 271 272 if (list_empty(&ubi->works)) { 273 spin_unlock(&ubi->wl_lock); 274 return 0; 275 } 276 277 wrk = list_entry(ubi->works.next, struct ubi_work, list); 278 list_del(&wrk->list); 279 spin_unlock(&ubi->wl_lock); 280 281 /* 282 * Call the worker function. Do not touch the work structure 283 * after this call as it will have been freed or reused by that 284 * time by the worker function. 285 */ 286 err = wrk->func(ubi, wrk, 0); 287 if (err) 288 ubi_err("work failed with error code %d", err); 289 290 spin_lock(&ubi->wl_lock); 291 ubi->works_count -= 1; 292 ubi_assert(ubi->works_count >= 0); 293 spin_unlock(&ubi->wl_lock); 294 return err; 295 } 296 297 /** 298 * produce_free_peb - produce a free physical eraseblock. 299 * @ubi: UBI device description object 300 * 301 * This function tries to make a free PEB by means of synchronous execution of 302 * pending works. This may be needed if, for example the background thread is 303 * disabled. Returns zero in case of success and a negative error code in case 304 * of failure. 305 */ 306 static int produce_free_peb(struct ubi_device *ubi) 307 { 308 int err; 309 310 spin_lock(&ubi->wl_lock); 311 while (!ubi->free.rb_node) { 312 spin_unlock(&ubi->wl_lock); 313 314 dbg_wl("do one work synchronously"); 315 err = do_work(ubi); 316 if (err) 317 return err; 318 319 spin_lock(&ubi->wl_lock); 320 } 321 spin_unlock(&ubi->wl_lock); 322 323 return 0; 324 } 325 326 /** 327 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 328 * @e: the wear-leveling entry to check 329 * @root: the root of the tree 330 * 331 * This function returns non-zero if @e is in the @root RB-tree and zero if it 332 * is not. 333 */ 334 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 335 { 336 struct rb_node *p; 337 338 p = root->rb_node; 339 while (p) { 340 struct ubi_wl_entry *e1; 341 342 e1 = rb_entry(p, struct ubi_wl_entry, rb); 343 344 if (e->pnum == e1->pnum) { 345 ubi_assert(e == e1); 346 return 1; 347 } 348 349 if (e->ec < e1->ec) 350 p = p->rb_left; 351 else if (e->ec > e1->ec) 352 p = p->rb_right; 353 else { 354 ubi_assert(e->pnum != e1->pnum); 355 if (e->pnum < e1->pnum) 356 p = p->rb_left; 357 else 358 p = p->rb_right; 359 } 360 } 361 362 return 0; 363 } 364 365 /** 366 * prot_tree_add - add physical eraseblock to protection trees. 367 * @ubi: UBI device description object 368 * @e: the physical eraseblock to add 369 * @pe: protection entry object to use 370 * @abs_ec: absolute erase counter value when this physical eraseblock has 371 * to be removed from the protection trees. 372 * 373 * @wl->lock has to be locked. 374 */ 375 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e, 376 struct ubi_wl_prot_entry *pe, int abs_ec) 377 { 378 struct rb_node **p, *parent = NULL; 379 struct ubi_wl_prot_entry *pe1; 380 381 pe->e = e; 382 pe->abs_ec = ubi->abs_ec + abs_ec; 383 384 p = &ubi->prot.pnum.rb_node; 385 while (*p) { 386 parent = *p; 387 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum); 388 389 if (e->pnum < pe1->e->pnum) 390 p = &(*p)->rb_left; 391 else 392 p = &(*p)->rb_right; 393 } 394 rb_link_node(&pe->rb_pnum, parent, p); 395 rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum); 396 397 p = &ubi->prot.aec.rb_node; 398 parent = NULL; 399 while (*p) { 400 parent = *p; 401 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec); 402 403 if (pe->abs_ec < pe1->abs_ec) 404 p = &(*p)->rb_left; 405 else 406 p = &(*p)->rb_right; 407 } 408 rb_link_node(&pe->rb_aec, parent, p); 409 rb_insert_color(&pe->rb_aec, &ubi->prot.aec); 410 } 411 412 /** 413 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 414 * @root: the RB-tree where to look for 415 * @max: highest possible erase counter 416 * 417 * This function looks for a wear leveling entry with erase counter closest to 418 * @max and less then @max. 419 */ 420 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 421 { 422 struct rb_node *p; 423 struct ubi_wl_entry *e; 424 425 e = rb_entry(rb_first(root), struct ubi_wl_entry, rb); 426 max += e->ec; 427 428 p = root->rb_node; 429 while (p) { 430 struct ubi_wl_entry *e1; 431 432 e1 = rb_entry(p, struct ubi_wl_entry, rb); 433 if (e1->ec >= max) 434 p = p->rb_left; 435 else { 436 p = p->rb_right; 437 e = e1; 438 } 439 } 440 441 return e; 442 } 443 444 /** 445 * ubi_wl_get_peb - get a physical eraseblock. 446 * @ubi: UBI device description object 447 * @dtype: type of data which will be stored in this physical eraseblock 448 * 449 * This function returns a physical eraseblock in case of success and a 450 * negative error code in case of failure. Might sleep. 451 */ 452 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 453 { 454 int err, protect, medium_ec; 455 struct ubi_wl_entry *e, *first, *last; 456 struct ubi_wl_prot_entry *pe; 457 458 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 459 dtype == UBI_UNKNOWN); 460 461 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS); 462 if (!pe) 463 return -ENOMEM; 464 465 retry: 466 spin_lock(&ubi->wl_lock); 467 if (!ubi->free.rb_node) { 468 if (ubi->works_count == 0) { 469 ubi_assert(list_empty(&ubi->works)); 470 ubi_err("no free eraseblocks"); 471 spin_unlock(&ubi->wl_lock); 472 kfree(pe); 473 return -ENOSPC; 474 } 475 spin_unlock(&ubi->wl_lock); 476 477 err = produce_free_peb(ubi); 478 if (err < 0) { 479 kfree(pe); 480 return err; 481 } 482 goto retry; 483 } 484 485 switch (dtype) { 486 case UBI_LONGTERM: 487 /* 488 * For long term data we pick a physical eraseblock 489 * with high erase counter. But the highest erase 490 * counter we can pick is bounded by the the lowest 491 * erase counter plus %WL_FREE_MAX_DIFF. 492 */ 493 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 494 protect = LT_PROTECTION; 495 break; 496 case UBI_UNKNOWN: 497 /* 498 * For unknown data we pick a physical eraseblock with 499 * medium erase counter. But we by no means can pick a 500 * physical eraseblock with erase counter greater or 501 * equivalent than the lowest erase counter plus 502 * %WL_FREE_MAX_DIFF. 503 */ 504 first = rb_entry(rb_first(&ubi->free), 505 struct ubi_wl_entry, rb); 506 last = rb_entry(rb_last(&ubi->free), 507 struct ubi_wl_entry, rb); 508 509 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 510 e = rb_entry(ubi->free.rb_node, 511 struct ubi_wl_entry, rb); 512 else { 513 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 514 e = find_wl_entry(&ubi->free, medium_ec); 515 } 516 protect = U_PROTECTION; 517 break; 518 case UBI_SHORTTERM: 519 /* 520 * For short term data we pick a physical eraseblock 521 * with the lowest erase counter as we expect it will 522 * be erased soon. 523 */ 524 e = rb_entry(rb_first(&ubi->free), 525 struct ubi_wl_entry, rb); 526 protect = ST_PROTECTION; 527 break; 528 default: 529 protect = 0; 530 e = NULL; 531 BUG(); 532 } 533 534 /* 535 * Move the physical eraseblock to the protection trees where it will 536 * be protected from being moved for some time. 537 */ 538 paranoid_check_in_wl_tree(e, &ubi->free); 539 rb_erase(&e->rb, &ubi->free); 540 prot_tree_add(ubi, e, pe, protect); 541 542 dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect); 543 spin_unlock(&ubi->wl_lock); 544 545 return e->pnum; 546 } 547 548 /** 549 * prot_tree_del - remove a physical eraseblock from the protection trees 550 * @ubi: UBI device description object 551 * @pnum: the physical eraseblock to remove 552 */ 553 static void prot_tree_del(struct ubi_device *ubi, int pnum) 554 { 555 struct rb_node *p; 556 struct ubi_wl_prot_entry *pe = NULL; 557 558 p = ubi->prot.pnum.rb_node; 559 while (p) { 560 561 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum); 562 563 if (pnum == pe->e->pnum) 564 break; 565 566 if (pnum < pe->e->pnum) 567 p = p->rb_left; 568 else 569 p = p->rb_right; 570 } 571 572 ubi_assert(pe->e->pnum == pnum); 573 rb_erase(&pe->rb_aec, &ubi->prot.aec); 574 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 575 kfree(pe); 576 } 577 578 /** 579 * sync_erase - synchronously erase a physical eraseblock. 580 * @ubi: UBI device description object 581 * @e: the the physical eraseblock to erase 582 * @torture: if the physical eraseblock has to be tortured 583 * 584 * This function returns zero in case of success and a negative error code in 585 * case of failure. 586 */ 587 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) 588 { 589 int err; 590 struct ubi_ec_hdr *ec_hdr; 591 unsigned long long ec = e->ec; 592 593 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 594 595 err = paranoid_check_ec(ubi, e->pnum, e->ec); 596 if (err > 0) 597 return -EINVAL; 598 599 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 600 if (!ec_hdr) 601 return -ENOMEM; 602 603 err = ubi_io_sync_erase(ubi, e->pnum, torture); 604 if (err < 0) 605 goto out_free; 606 607 ec += err; 608 if (ec > UBI_MAX_ERASECOUNTER) { 609 /* 610 * Erase counter overflow. Upgrade UBI and use 64-bit 611 * erase counters internally. 612 */ 613 ubi_err("erase counter overflow at PEB %d, EC %llu", 614 e->pnum, ec); 615 err = -EINVAL; 616 goto out_free; 617 } 618 619 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 620 621 ec_hdr->ec = cpu_to_be64(ec); 622 623 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 624 if (err) 625 goto out_free; 626 627 e->ec = ec; 628 spin_lock(&ubi->wl_lock); 629 if (e->ec > ubi->max_ec) 630 ubi->max_ec = e->ec; 631 spin_unlock(&ubi->wl_lock); 632 633 out_free: 634 kfree(ec_hdr); 635 return err; 636 } 637 638 /** 639 * check_protection_over - check if it is time to stop protecting some 640 * physical eraseblocks. 641 * @ubi: UBI device description object 642 * 643 * This function is called after each erase operation, when the absolute erase 644 * counter is incremented, to check if some physical eraseblock have not to be 645 * protected any longer. These physical eraseblocks are moved from the 646 * protection trees to the used tree. 647 */ 648 static void check_protection_over(struct ubi_device *ubi) 649 { 650 struct ubi_wl_prot_entry *pe; 651 652 /* 653 * There may be several protected physical eraseblock to remove, 654 * process them all. 655 */ 656 while (1) { 657 spin_lock(&ubi->wl_lock); 658 if (!ubi->prot.aec.rb_node) { 659 spin_unlock(&ubi->wl_lock); 660 break; 661 } 662 663 pe = rb_entry(rb_first(&ubi->prot.aec), 664 struct ubi_wl_prot_entry, rb_aec); 665 666 if (pe->abs_ec > ubi->abs_ec) { 667 spin_unlock(&ubi->wl_lock); 668 break; 669 } 670 671 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu", 672 pe->e->pnum, ubi->abs_ec, pe->abs_ec); 673 rb_erase(&pe->rb_aec, &ubi->prot.aec); 674 rb_erase(&pe->rb_pnum, &ubi->prot.pnum); 675 wl_tree_add(pe->e, &ubi->used); 676 spin_unlock(&ubi->wl_lock); 677 678 kfree(pe); 679 cond_resched(); 680 } 681 } 682 683 /** 684 * schedule_ubi_work - schedule a work. 685 * @ubi: UBI device description object 686 * @wrk: the work to schedule 687 * 688 * This function enqueues a work defined by @wrk to the tail of the pending 689 * works list. 690 */ 691 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 692 { 693 spin_lock(&ubi->wl_lock); 694 list_add_tail(&wrk->list, &ubi->works); 695 ubi_assert(ubi->works_count >= 0); 696 ubi->works_count += 1; 697 if (ubi->thread_enabled) 698 wake_up_process(ubi->bgt_thread); 699 spin_unlock(&ubi->wl_lock); 700 } 701 702 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 703 int cancel); 704 705 /** 706 * schedule_erase - schedule an erase work. 707 * @ubi: UBI device description object 708 * @e: the WL entry of the physical eraseblock to erase 709 * @torture: if the physical eraseblock has to be tortured 710 * 711 * This function returns zero in case of success and a %-ENOMEM in case of 712 * failure. 713 */ 714 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 715 int torture) 716 { 717 struct ubi_work *wl_wrk; 718 719 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 720 e->pnum, e->ec, torture); 721 722 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 723 if (!wl_wrk) 724 return -ENOMEM; 725 726 wl_wrk->func = &erase_worker; 727 wl_wrk->e = e; 728 wl_wrk->torture = torture; 729 730 schedule_ubi_work(ubi, wl_wrk); 731 return 0; 732 } 733 734 /** 735 * wear_leveling_worker - wear-leveling worker function. 736 * @ubi: UBI device description object 737 * @wrk: the work object 738 * @cancel: non-zero if the worker has to free memory and exit 739 * 740 * This function copies a more worn out physical eraseblock to a less worn out 741 * one. Returns zero in case of success and a negative error code in case of 742 * failure. 743 */ 744 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 745 int cancel) 746 { 747 int err, put = 0; 748 struct ubi_wl_entry *e1, *e2; 749 struct ubi_vid_hdr *vid_hdr; 750 751 kfree(wrk); 752 753 if (cancel) 754 return 0; 755 756 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 757 if (!vid_hdr) 758 return -ENOMEM; 759 760 spin_lock(&ubi->wl_lock); 761 762 /* 763 * Only one WL worker at a time is supported at this implementation, so 764 * make sure a PEB is not being moved already. 765 */ 766 if (ubi->move_to || !ubi->free.rb_node || 767 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 768 /* 769 * Only one WL worker at a time is supported at this 770 * implementation, so if a LEB is already being moved, cancel. 771 * 772 * No free physical eraseblocks? Well, we cancel wear-leveling 773 * then. It will be triggered again when a free physical 774 * eraseblock appears. 775 * 776 * No used physical eraseblocks? They must be temporarily 777 * protected from being moved. They will be moved to the 778 * @ubi->used tree later and the wear-leveling will be 779 * triggered again. 780 */ 781 dbg_wl("cancel WL, a list is empty: free %d, used %d", 782 !ubi->free.rb_node, !ubi->used.rb_node); 783 ubi->wl_scheduled = 0; 784 spin_unlock(&ubi->wl_lock); 785 ubi_free_vid_hdr(ubi, vid_hdr); 786 return 0; 787 } 788 789 if (!ubi->scrub.rb_node) { 790 /* 791 * Now pick the least worn-out used physical eraseblock and a 792 * highly worn-out free physical eraseblock. If the erase 793 * counters differ much enough, start wear-leveling. 794 */ 795 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 796 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 797 798 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 799 dbg_wl("no WL needed: min used EC %d, max free EC %d", 800 e1->ec, e2->ec); 801 ubi->wl_scheduled = 0; 802 spin_unlock(&ubi->wl_lock); 803 ubi_free_vid_hdr(ubi, vid_hdr); 804 return 0; 805 } 806 paranoid_check_in_wl_tree(e1, &ubi->used); 807 rb_erase(&e1->rb, &ubi->used); 808 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 809 e1->pnum, e1->ec, e2->pnum, e2->ec); 810 } else { 811 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb); 812 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 813 paranoid_check_in_wl_tree(e1, &ubi->scrub); 814 rb_erase(&e1->rb, &ubi->scrub); 815 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 816 } 817 818 paranoid_check_in_wl_tree(e2, &ubi->free); 819 rb_erase(&e2->rb, &ubi->free); 820 ubi_assert(!ubi->move_from && !ubi->move_to); 821 ubi_assert(!ubi->move_to_put && !ubi->move_from_put); 822 ubi->move_from = e1; 823 ubi->move_to = e2; 824 spin_unlock(&ubi->wl_lock); 825 826 /* 827 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 828 * We so far do not know which logical eraseblock our physical 829 * eraseblock (@e1) belongs to. We have to read the volume identifier 830 * header first. 831 */ 832 833 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 834 if (err && err != UBI_IO_BITFLIPS) { 835 if (err == UBI_IO_PEB_FREE) { 836 /* 837 * We are trying to move PEB without a VID header. UBI 838 * always write VID headers shortly after the PEB was 839 * given, so we have a situation when it did not have 840 * chance to write it down because it was preempted. 841 * Just re-schedule the work, so that next time it will 842 * likely have the VID header in place. 843 */ 844 dbg_wl("PEB %d has no VID header", e1->pnum); 845 err = 0; 846 } else { 847 ubi_err("error %d while reading VID header from PEB %d", 848 err, e1->pnum); 849 if (err > 0) 850 err = -EIO; 851 } 852 goto error; 853 } 854 855 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 856 if (err) { 857 if (err == UBI_IO_BITFLIPS) 858 err = 0; 859 goto error; 860 } 861 862 ubi_free_vid_hdr(ubi, vid_hdr); 863 spin_lock(&ubi->wl_lock); 864 if (!ubi->move_to_put) 865 wl_tree_add(e2, &ubi->used); 866 else 867 put = 1; 868 ubi->move_from = ubi->move_to = NULL; 869 ubi->move_from_put = ubi->move_to_put = 0; 870 ubi->wl_scheduled = 0; 871 spin_unlock(&ubi->wl_lock); 872 873 if (put) { 874 /* 875 * Well, the target PEB was put meanwhile, schedule it for 876 * erasure. 877 */ 878 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum); 879 err = schedule_erase(ubi, e2, 0); 880 if (err) { 881 kmem_cache_free(wl_entries_slab, e2); 882 ubi_ro_mode(ubi); 883 } 884 } 885 886 err = schedule_erase(ubi, e1, 0); 887 if (err) { 888 kmem_cache_free(wl_entries_slab, e1); 889 ubi_ro_mode(ubi); 890 } 891 892 dbg_wl("done"); 893 return err; 894 895 /* 896 * Some error occurred. @e1 was not changed, so return it back. @e2 897 * might be changed, schedule it for erasure. 898 */ 899 error: 900 if (err) 901 dbg_wl("error %d occurred, cancel operation", err); 902 ubi_assert(err <= 0); 903 904 ubi_free_vid_hdr(ubi, vid_hdr); 905 spin_lock(&ubi->wl_lock); 906 ubi->wl_scheduled = 0; 907 if (ubi->move_from_put) 908 put = 1; 909 else 910 wl_tree_add(e1, &ubi->used); 911 ubi->move_from = ubi->move_to = NULL; 912 ubi->move_from_put = ubi->move_to_put = 0; 913 spin_unlock(&ubi->wl_lock); 914 915 if (put) { 916 /* 917 * Well, the target PEB was put meanwhile, schedule it for 918 * erasure. 919 */ 920 dbg_wl("PEB %d was put meanwhile, erase", e1->pnum); 921 err = schedule_erase(ubi, e1, 0); 922 if (err) { 923 kmem_cache_free(wl_entries_slab, e1); 924 ubi_ro_mode(ubi); 925 } 926 } 927 928 err = schedule_erase(ubi, e2, 0); 929 if (err) { 930 kmem_cache_free(wl_entries_slab, e2); 931 ubi_ro_mode(ubi); 932 } 933 934 yield(); 935 return err; 936 } 937 938 /** 939 * ensure_wear_leveling - schedule wear-leveling if it is needed. 940 * @ubi: UBI device description object 941 * 942 * This function checks if it is time to start wear-leveling and schedules it 943 * if yes. This function returns zero in case of success and a negative error 944 * code in case of failure. 945 */ 946 static int ensure_wear_leveling(struct ubi_device *ubi) 947 { 948 int err = 0; 949 struct ubi_wl_entry *e1; 950 struct ubi_wl_entry *e2; 951 struct ubi_work *wrk; 952 953 spin_lock(&ubi->wl_lock); 954 if (ubi->wl_scheduled) 955 /* Wear-leveling is already in the work queue */ 956 goto out_unlock; 957 958 /* 959 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 960 * the WL worker has to be scheduled anyway. 961 */ 962 if (!ubi->scrub.rb_node) { 963 if (!ubi->used.rb_node || !ubi->free.rb_node) 964 /* No physical eraseblocks - no deal */ 965 goto out_unlock; 966 967 /* 968 * We schedule wear-leveling only if the difference between the 969 * lowest erase counter of used physical eraseblocks and a high 970 * erase counter of free physical eraseblocks is greater then 971 * %UBI_WL_THRESHOLD. 972 */ 973 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb); 974 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 975 976 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 977 goto out_unlock; 978 dbg_wl("schedule wear-leveling"); 979 } else 980 dbg_wl("schedule scrubbing"); 981 982 ubi->wl_scheduled = 1; 983 spin_unlock(&ubi->wl_lock); 984 985 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 986 if (!wrk) { 987 err = -ENOMEM; 988 goto out_cancel; 989 } 990 991 wrk->func = &wear_leveling_worker; 992 schedule_ubi_work(ubi, wrk); 993 return err; 994 995 out_cancel: 996 spin_lock(&ubi->wl_lock); 997 ubi->wl_scheduled = 0; 998 out_unlock: 999 spin_unlock(&ubi->wl_lock); 1000 return err; 1001 } 1002 1003 /** 1004 * erase_worker - physical eraseblock erase worker function. 1005 * @ubi: UBI device description object 1006 * @wl_wrk: the work object 1007 * @cancel: non-zero if the worker has to free memory and exit 1008 * 1009 * This function erases a physical eraseblock and perform torture testing if 1010 * needed. It also takes care about marking the physical eraseblock bad if 1011 * needed. Returns zero in case of success and a negative error code in case of 1012 * failure. 1013 */ 1014 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1015 int cancel) 1016 { 1017 struct ubi_wl_entry *e = wl_wrk->e; 1018 int pnum = e->pnum, err, need; 1019 1020 if (cancel) { 1021 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1022 kfree(wl_wrk); 1023 kmem_cache_free(wl_entries_slab, e); 1024 return 0; 1025 } 1026 1027 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1028 1029 err = sync_erase(ubi, e, wl_wrk->torture); 1030 if (!err) { 1031 /* Fine, we've erased it successfully */ 1032 kfree(wl_wrk); 1033 1034 spin_lock(&ubi->wl_lock); 1035 ubi->abs_ec += 1; 1036 wl_tree_add(e, &ubi->free); 1037 spin_unlock(&ubi->wl_lock); 1038 1039 /* 1040 * One more erase operation has happened, take care about protected 1041 * physical eraseblocks. 1042 */ 1043 check_protection_over(ubi); 1044 1045 /* And take care about wear-leveling */ 1046 err = ensure_wear_leveling(ubi); 1047 return err; 1048 } 1049 1050 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1051 kfree(wl_wrk); 1052 kmem_cache_free(wl_entries_slab, e); 1053 1054 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1055 err == -EBUSY) { 1056 int err1; 1057 1058 /* Re-schedule the LEB for erasure */ 1059 err1 = schedule_erase(ubi, e, 0); 1060 if (err1) { 1061 err = err1; 1062 goto out_ro; 1063 } 1064 return err; 1065 } else if (err != -EIO) { 1066 /* 1067 * If this is not %-EIO, we have no idea what to do. Scheduling 1068 * this physical eraseblock for erasure again would cause 1069 * errors again and again. Well, lets switch to RO mode. 1070 */ 1071 goto out_ro; 1072 } 1073 1074 /* It is %-EIO, the PEB went bad */ 1075 1076 if (!ubi->bad_allowed) { 1077 ubi_err("bad physical eraseblock %d detected", pnum); 1078 goto out_ro; 1079 } 1080 1081 spin_lock(&ubi->volumes_lock); 1082 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1083 if (need > 0) { 1084 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1085 ubi->avail_pebs -= need; 1086 ubi->rsvd_pebs += need; 1087 ubi->beb_rsvd_pebs += need; 1088 if (need > 0) 1089 ubi_msg("reserve more %d PEBs", need); 1090 } 1091 1092 if (ubi->beb_rsvd_pebs == 0) { 1093 spin_unlock(&ubi->volumes_lock); 1094 ubi_err("no reserved physical eraseblocks"); 1095 goto out_ro; 1096 } 1097 1098 spin_unlock(&ubi->volumes_lock); 1099 ubi_msg("mark PEB %d as bad", pnum); 1100 1101 err = ubi_io_mark_bad(ubi, pnum); 1102 if (err) 1103 goto out_ro; 1104 1105 spin_lock(&ubi->volumes_lock); 1106 ubi->beb_rsvd_pebs -= 1; 1107 ubi->bad_peb_count += 1; 1108 ubi->good_peb_count -= 1; 1109 ubi_calculate_reserved(ubi); 1110 if (ubi->beb_rsvd_pebs == 0) 1111 ubi_warn("last PEB from the reserved pool was used"); 1112 spin_unlock(&ubi->volumes_lock); 1113 1114 return err; 1115 1116 out_ro: 1117 ubi_ro_mode(ubi); 1118 return err; 1119 } 1120 1121 /** 1122 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling 1123 * unit. 1124 * @ubi: UBI device description object 1125 * @pnum: physical eraseblock to return 1126 * @torture: if this physical eraseblock has to be tortured 1127 * 1128 * This function is called to return physical eraseblock @pnum to the pool of 1129 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1130 * occurred to this @pnum and it has to be tested. This function returns zero 1131 * in case of success and a negative error code in case of failure. 1132 */ 1133 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1134 { 1135 int err; 1136 struct ubi_wl_entry *e; 1137 1138 dbg_wl("PEB %d", pnum); 1139 ubi_assert(pnum >= 0); 1140 ubi_assert(pnum < ubi->peb_count); 1141 1142 spin_lock(&ubi->wl_lock); 1143 1144 e = ubi->lookuptbl[pnum]; 1145 if (e == ubi->move_from) { 1146 /* 1147 * User is putting the physical eraseblock which was selected to 1148 * be moved. It will be scheduled for erasure in the 1149 * wear-leveling worker. 1150 */ 1151 dbg_wl("PEB %d is being moved", pnum); 1152 ubi_assert(!ubi->move_from_put); 1153 ubi->move_from_put = 1; 1154 spin_unlock(&ubi->wl_lock); 1155 return 0; 1156 } else if (e == ubi->move_to) { 1157 /* 1158 * User is putting the physical eraseblock which was selected 1159 * as the target the data is moved to. It may happen if the EBA 1160 * unit already re-mapped the LEB but the WL unit did has not 1161 * put the PEB to the "used" tree. 1162 */ 1163 dbg_wl("PEB %d is the target of data moving", pnum); 1164 ubi_assert(!ubi->move_to_put); 1165 ubi->move_to_put = 1; 1166 spin_unlock(&ubi->wl_lock); 1167 return 0; 1168 } else { 1169 if (in_wl_tree(e, &ubi->used)) { 1170 paranoid_check_in_wl_tree(e, &ubi->used); 1171 rb_erase(&e->rb, &ubi->used); 1172 } else if (in_wl_tree(e, &ubi->scrub)) { 1173 paranoid_check_in_wl_tree(e, &ubi->scrub); 1174 rb_erase(&e->rb, &ubi->scrub); 1175 } else 1176 prot_tree_del(ubi, e->pnum); 1177 } 1178 spin_unlock(&ubi->wl_lock); 1179 1180 err = schedule_erase(ubi, e, torture); 1181 if (err) { 1182 spin_lock(&ubi->wl_lock); 1183 wl_tree_add(e, &ubi->used); 1184 spin_unlock(&ubi->wl_lock); 1185 } 1186 1187 return err; 1188 } 1189 1190 /** 1191 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1192 * @ubi: UBI device description object 1193 * @pnum: the physical eraseblock to schedule 1194 * 1195 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1196 * needs scrubbing. This function schedules a physical eraseblock for 1197 * scrubbing which is done in background. This function returns zero in case of 1198 * success and a negative error code in case of failure. 1199 */ 1200 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1201 { 1202 struct ubi_wl_entry *e; 1203 1204 ubi_msg("schedule PEB %d for scrubbing", pnum); 1205 1206 retry: 1207 spin_lock(&ubi->wl_lock); 1208 e = ubi->lookuptbl[pnum]; 1209 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { 1210 spin_unlock(&ubi->wl_lock); 1211 return 0; 1212 } 1213 1214 if (e == ubi->move_to) { 1215 /* 1216 * This physical eraseblock was used to move data to. The data 1217 * was moved but the PEB was not yet inserted to the proper 1218 * tree. We should just wait a little and let the WL worker 1219 * proceed. 1220 */ 1221 spin_unlock(&ubi->wl_lock); 1222 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1223 yield(); 1224 goto retry; 1225 } 1226 1227 if (in_wl_tree(e, &ubi->used)) { 1228 paranoid_check_in_wl_tree(e, &ubi->used); 1229 rb_erase(&e->rb, &ubi->used); 1230 } else 1231 prot_tree_del(ubi, pnum); 1232 1233 wl_tree_add(e, &ubi->scrub); 1234 spin_unlock(&ubi->wl_lock); 1235 1236 /* 1237 * Technically scrubbing is the same as wear-leveling, so it is done 1238 * by the WL worker. 1239 */ 1240 return ensure_wear_leveling(ubi); 1241 } 1242 1243 /** 1244 * ubi_wl_flush - flush all pending works. 1245 * @ubi: UBI device description object 1246 * 1247 * This function returns zero in case of success and a negative error code in 1248 * case of failure. 1249 */ 1250 int ubi_wl_flush(struct ubi_device *ubi) 1251 { 1252 int err, pending_count; 1253 1254 pending_count = ubi->works_count; 1255 1256 dbg_wl("flush (%d pending works)", pending_count); 1257 1258 /* 1259 * Erase while the pending works queue is not empty, but not more then 1260 * the number of currently pending works. 1261 */ 1262 while (pending_count-- > 0) { 1263 err = do_work(ubi); 1264 if (err) 1265 return err; 1266 } 1267 1268 return 0; 1269 } 1270 1271 /** 1272 * tree_destroy - destroy an RB-tree. 1273 * @root: the root of the tree to destroy 1274 */ 1275 static void tree_destroy(struct rb_root *root) 1276 { 1277 struct rb_node *rb; 1278 struct ubi_wl_entry *e; 1279 1280 rb = root->rb_node; 1281 while (rb) { 1282 if (rb->rb_left) 1283 rb = rb->rb_left; 1284 else if (rb->rb_right) 1285 rb = rb->rb_right; 1286 else { 1287 e = rb_entry(rb, struct ubi_wl_entry, rb); 1288 1289 rb = rb_parent(rb); 1290 if (rb) { 1291 if (rb->rb_left == &e->rb) 1292 rb->rb_left = NULL; 1293 else 1294 rb->rb_right = NULL; 1295 } 1296 1297 kmem_cache_free(wl_entries_slab, e); 1298 } 1299 } 1300 } 1301 1302 /** 1303 * ubi_thread - UBI background thread. 1304 * @u: the UBI device description object pointer 1305 */ 1306 static int ubi_thread(void *u) 1307 { 1308 int failures = 0; 1309 struct ubi_device *ubi = u; 1310 1311 ubi_msg("background thread \"%s\" started, PID %d", 1312 ubi->bgt_name, task_pid_nr(current)); 1313 1314 set_freezable(); 1315 for (;;) { 1316 int err; 1317 1318 if (kthread_should_stop()) 1319 goto out; 1320 1321 if (try_to_freeze()) 1322 continue; 1323 1324 spin_lock(&ubi->wl_lock); 1325 if (list_empty(&ubi->works) || ubi->ro_mode || 1326 !ubi->thread_enabled) { 1327 set_current_state(TASK_INTERRUPTIBLE); 1328 spin_unlock(&ubi->wl_lock); 1329 schedule(); 1330 continue; 1331 } 1332 spin_unlock(&ubi->wl_lock); 1333 1334 err = do_work(ubi); 1335 if (err) { 1336 ubi_err("%s: work failed with error code %d", 1337 ubi->bgt_name, err); 1338 if (failures++ > WL_MAX_FAILURES) { 1339 /* 1340 * Too many failures, disable the thread and 1341 * switch to read-only mode. 1342 */ 1343 ubi_msg("%s: %d consecutive failures", 1344 ubi->bgt_name, WL_MAX_FAILURES); 1345 ubi_ro_mode(ubi); 1346 break; 1347 } 1348 } else 1349 failures = 0; 1350 1351 cond_resched(); 1352 } 1353 1354 out: 1355 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1356 return 0; 1357 } 1358 1359 /** 1360 * cancel_pending - cancel all pending works. 1361 * @ubi: UBI device description object 1362 */ 1363 static void cancel_pending(struct ubi_device *ubi) 1364 { 1365 while (!list_empty(&ubi->works)) { 1366 struct ubi_work *wrk; 1367 1368 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1369 list_del(&wrk->list); 1370 wrk->func(ubi, wrk, 1); 1371 ubi->works_count -= 1; 1372 ubi_assert(ubi->works_count >= 0); 1373 } 1374 } 1375 1376 /** 1377 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning 1378 * information. 1379 * @ubi: UBI device description object 1380 * @si: scanning information 1381 * 1382 * This function returns zero in case of success, and a negative error code in 1383 * case of failure. 1384 */ 1385 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1386 { 1387 int err; 1388 struct rb_node *rb1, *rb2; 1389 struct ubi_scan_volume *sv; 1390 struct ubi_scan_leb *seb, *tmp; 1391 struct ubi_wl_entry *e; 1392 1393 1394 ubi->used = ubi->free = ubi->scrub = RB_ROOT; 1395 ubi->prot.pnum = ubi->prot.aec = RB_ROOT; 1396 spin_lock_init(&ubi->wl_lock); 1397 ubi->max_ec = si->max_ec; 1398 INIT_LIST_HEAD(&ubi->works); 1399 1400 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1401 1402 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); 1403 if (IS_ERR(ubi->bgt_thread)) { 1404 err = PTR_ERR(ubi->bgt_thread); 1405 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, 1406 err); 1407 return err; 1408 } 1409 1410 if (ubi_devices_cnt == 0) { 1411 wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab", 1412 sizeof(struct ubi_wl_entry), 1413 0, 0, NULL); 1414 if (!wl_entries_slab) 1415 return -ENOMEM; 1416 } 1417 1418 err = -ENOMEM; 1419 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1420 if (!ubi->lookuptbl) 1421 goto out_free; 1422 1423 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1424 cond_resched(); 1425 1426 e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); 1427 if (!e) 1428 goto out_free; 1429 1430 e->pnum = seb->pnum; 1431 e->ec = seb->ec; 1432 ubi->lookuptbl[e->pnum] = e; 1433 if (schedule_erase(ubi, e, 0)) { 1434 kmem_cache_free(wl_entries_slab, e); 1435 goto out_free; 1436 } 1437 } 1438 1439 list_for_each_entry(seb, &si->free, u.list) { 1440 cond_resched(); 1441 1442 e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); 1443 if (!e) 1444 goto out_free; 1445 1446 e->pnum = seb->pnum; 1447 e->ec = seb->ec; 1448 ubi_assert(e->ec >= 0); 1449 wl_tree_add(e, &ubi->free); 1450 ubi->lookuptbl[e->pnum] = e; 1451 } 1452 1453 list_for_each_entry(seb, &si->corr, u.list) { 1454 cond_resched(); 1455 1456 e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); 1457 if (!e) 1458 goto out_free; 1459 1460 e->pnum = seb->pnum; 1461 e->ec = seb->ec; 1462 ubi->lookuptbl[e->pnum] = e; 1463 if (schedule_erase(ubi, e, 0)) { 1464 kmem_cache_free(wl_entries_slab, e); 1465 goto out_free; 1466 } 1467 } 1468 1469 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1470 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1471 cond_resched(); 1472 1473 e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL); 1474 if (!e) 1475 goto out_free; 1476 1477 e->pnum = seb->pnum; 1478 e->ec = seb->ec; 1479 ubi->lookuptbl[e->pnum] = e; 1480 if (!seb->scrub) { 1481 dbg_wl("add PEB %d EC %d to the used tree", 1482 e->pnum, e->ec); 1483 wl_tree_add(e, &ubi->used); 1484 } else { 1485 dbg_wl("add PEB %d EC %d to the scrub tree", 1486 e->pnum, e->ec); 1487 wl_tree_add(e, &ubi->scrub); 1488 } 1489 } 1490 } 1491 1492 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1493 ubi_err("no enough physical eraseblocks (%d, need %d)", 1494 ubi->avail_pebs, WL_RESERVED_PEBS); 1495 goto out_free; 1496 } 1497 ubi->avail_pebs -= WL_RESERVED_PEBS; 1498 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1499 1500 /* Schedule wear-leveling if needed */ 1501 err = ensure_wear_leveling(ubi); 1502 if (err) 1503 goto out_free; 1504 1505 return 0; 1506 1507 out_free: 1508 cancel_pending(ubi); 1509 tree_destroy(&ubi->used); 1510 tree_destroy(&ubi->free); 1511 tree_destroy(&ubi->scrub); 1512 kfree(ubi->lookuptbl); 1513 if (ubi_devices_cnt == 0) 1514 kmem_cache_destroy(wl_entries_slab); 1515 return err; 1516 } 1517 1518 /** 1519 * protection_trees_destroy - destroy the protection RB-trees. 1520 * @ubi: UBI device description object 1521 */ 1522 static void protection_trees_destroy(struct ubi_device *ubi) 1523 { 1524 struct rb_node *rb; 1525 struct ubi_wl_prot_entry *pe; 1526 1527 rb = ubi->prot.aec.rb_node; 1528 while (rb) { 1529 if (rb->rb_left) 1530 rb = rb->rb_left; 1531 else if (rb->rb_right) 1532 rb = rb->rb_right; 1533 else { 1534 pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec); 1535 1536 rb = rb_parent(rb); 1537 if (rb) { 1538 if (rb->rb_left == &pe->rb_aec) 1539 rb->rb_left = NULL; 1540 else 1541 rb->rb_right = NULL; 1542 } 1543 1544 kmem_cache_free(wl_entries_slab, pe->e); 1545 kfree(pe); 1546 } 1547 } 1548 } 1549 1550 /** 1551 * ubi_wl_close - close the wear-leveling unit. 1552 * @ubi: UBI device description object 1553 */ 1554 void ubi_wl_close(struct ubi_device *ubi) 1555 { 1556 dbg_wl("disable \"%s\"", ubi->bgt_name); 1557 if (ubi->bgt_thread) 1558 kthread_stop(ubi->bgt_thread); 1559 1560 dbg_wl("close the UBI wear-leveling unit"); 1561 1562 cancel_pending(ubi); 1563 protection_trees_destroy(ubi); 1564 tree_destroy(&ubi->used); 1565 tree_destroy(&ubi->free); 1566 tree_destroy(&ubi->scrub); 1567 kfree(ubi->lookuptbl); 1568 if (ubi_devices_cnt == 1) 1569 kmem_cache_destroy(wl_entries_slab); 1570 } 1571 1572 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1573 1574 /** 1575 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock 1576 * is correct. 1577 * @ubi: UBI device description object 1578 * @pnum: the physical eraseblock number to check 1579 * @ec: the erase counter to check 1580 * 1581 * This function returns zero if the erase counter of physical eraseblock @pnum 1582 * is equivalent to @ec, %1 if not, and a negative error code if an error 1583 * occurred. 1584 */ 1585 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1586 { 1587 int err; 1588 long long read_ec; 1589 struct ubi_ec_hdr *ec_hdr; 1590 1591 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1592 if (!ec_hdr) 1593 return -ENOMEM; 1594 1595 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1596 if (err && err != UBI_IO_BITFLIPS) { 1597 /* The header does not have to exist */ 1598 err = 0; 1599 goto out_free; 1600 } 1601 1602 read_ec = be64_to_cpu(ec_hdr->ec); 1603 if (ec != read_ec) { 1604 ubi_err("paranoid check failed for PEB %d", pnum); 1605 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1606 ubi_dbg_dump_stack(); 1607 err = 1; 1608 } else 1609 err = 0; 1610 1611 out_free: 1612 kfree(ec_hdr); 1613 return err; 1614 } 1615 1616 /** 1617 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present 1618 * in a WL RB-tree. 1619 * @e: the wear-leveling entry to check 1620 * @root: the root of the tree 1621 * 1622 * This function returns zero if @e is in the @root RB-tree and %1 if it 1623 * is not. 1624 */ 1625 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 1626 struct rb_root *root) 1627 { 1628 if (in_wl_tree(e, root)) 1629 return 0; 1630 1631 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1632 e->pnum, e->ec, root); 1633 ubi_dbg_dump_stack(); 1634 return 1; 1635 } 1636 1637 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1638