xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 643d1f7f)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling unit.
23  *
24  * This unit is responsible for wear-leveling. It works in terms of physical
25  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26  * volumes, etc. From this unit's perspective all physical eraseblocks are of
27  * two types - used and free. Used physical eraseblocks are those that were
28  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29  * those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only 0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL unit by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL unit.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL unit may pick a free physical eraseblock with low erase counter, and
47  * so forth.
48  *
49  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50  *
51  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52  * physical eraseblock, it has to be moved. Technically this is the same as
53  * moving it for wear-leveling reasons.
54  *
55  * As it was said, for the UBI unit all physical eraseblocks are either "free"
56  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57  * eraseblocks are kept in a set of different RB-trees: @wl->used,
58  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59  *
60  * Note, in this implementation, we keep a small in-RAM object for each physical
61  * eraseblock. This is surely not a scalable solution. But it appears to be good
62  * enough for moderately large flashes and it is simple. In future, one may
63  * re-work this unit and make it more scalable.
64  *
65  * At the moment this unit does not utilize the sequence number, which was
66  * introduced relatively recently. But it would be wise to do this because the
67  * sequence number of a logical eraseblock characterizes how old is it. For
68  * example, when we move a PEB with low erase counter, and we need to pick the
69  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70  * pick target PEB with an average EC if our PEB is not very "old". This is a
71  * room for future re-works of the WL unit.
72  *
73  * FIXME: looks too complex, should be simplified (later).
74  */
75 
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/freezer.h>
79 #include <linux/kthread.h>
80 #include "ubi.h"
81 
82 /* Number of physical eraseblocks reserved for wear-leveling purposes */
83 #define WL_RESERVED_PEBS 1
84 
85 /*
86  * How many erase cycles are short term, unknown, and long term physical
87  * eraseblocks protected.
88  */
89 #define ST_PROTECTION 16
90 #define U_PROTECTION  10
91 #define LT_PROTECTION 4
92 
93 /*
94  * Maximum difference between two erase counters. If this threshold is
95  * exceeded, the WL unit starts moving data from used physical eraseblocks with
96  * low erase counter to free physical eraseblocks with high erase counter.
97  */
98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
99 
100 /*
101  * When a physical eraseblock is moved, the WL unit has to pick the target
102  * physical eraseblock to move to. The simplest way would be just to pick the
103  * one with the highest erase counter. But in certain workloads this could lead
104  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
105  * situation when the picked physical eraseblock is constantly erased after the
106  * data is written to it. So, we have a constant which limits the highest erase
107  * counter of the free physical eraseblock to pick. Namely, the WL unit does
108  * not pick eraseblocks with erase counter greater then the lowest erase
109  * counter plus %WL_FREE_MAX_DIFF.
110  */
111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
112 
113 /*
114  * Maximum number of consecutive background thread failures which is enough to
115  * switch to read-only mode.
116  */
117 #define WL_MAX_FAILURES 32
118 
119 /**
120  * struct ubi_wl_entry - wear-leveling entry.
121  * @rb: link in the corresponding RB-tree
122  * @ec: erase counter
123  * @pnum: physical eraseblock number
124  *
125  * Each physical eraseblock has a corresponding &struct wl_entry object which
126  * may be kept in different RB-trees.
127  */
128 struct ubi_wl_entry {
129 	struct rb_node rb;
130 	int ec;
131 	int pnum;
132 };
133 
134 /**
135  * struct ubi_wl_prot_entry - PEB protection entry.
136  * @rb_pnum: link in the @wl->prot.pnum RB-tree
137  * @rb_aec: link in the @wl->prot.aec RB-tree
138  * @abs_ec: the absolute erase counter value when the protection ends
139  * @e: the wear-leveling entry of the physical eraseblock under protection
140  *
141  * When the WL unit returns a physical eraseblock, the physical eraseblock is
142  * protected from being moved for some "time". For this reason, the physical
143  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
144  * tree. There is one more tree in between where this physical eraseblock is
145  * temporarily stored (@wl->prot).
146  *
147  * All this protection stuff is needed because:
148  *  o we don't want to move physical eraseblocks just after we have given them
149  *    to the user; instead, we first want to let users fill them up with data;
150  *
151  *  o there is a chance that the user will put the physical eraseblock very
152  *    soon, so it makes sense not to move it for some time, but wait; this is
153  *    especially important in case of "short term" physical eraseblocks.
154  *
155  * Physical eraseblocks stay protected only for limited time. But the "time" is
156  * measured in erase cycles in this case. This is implemented with help of the
157  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
158  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
159  * the @wl->used tree.
160  *
161  * Protected physical eraseblocks are searched by physical eraseblock number
162  * (when they are put) and by the absolute erase counter (to check if it is
163  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
164  * storing the protected physical eraseblocks: @wl->prot.pnum and
165  * @wl->prot.aec. They are referred to as the "protection" trees. The
166  * first one is indexed by the physical eraseblock number. The second one is
167  * indexed by the absolute erase counter. Both trees store
168  * &struct ubi_wl_prot_entry objects.
169  *
170  * Each physical eraseblock has 2 main states: free and used. The former state
171  * corresponds to the @wl->free tree. The latter state is split up on several
172  * sub-states:
173  * o the WL movement is allowed (@wl->used tree);
174  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
175  * @wl->prot.aec trees);
176  * o scrubbing is needed (@wl->scrub tree).
177  *
178  * Depending on the sub-state, wear-leveling entries of the used physical
179  * eraseblocks may be kept in one of those trees.
180  */
181 struct ubi_wl_prot_entry {
182 	struct rb_node rb_pnum;
183 	struct rb_node rb_aec;
184 	unsigned long long abs_ec;
185 	struct ubi_wl_entry *e;
186 };
187 
188 /**
189  * struct ubi_work - UBI work description data structure.
190  * @list: a link in the list of pending works
191  * @func: worker function
192  * @priv: private data of the worker function
193  *
194  * @e: physical eraseblock to erase
195  * @torture: if the physical eraseblock has to be tortured
196  *
197  * The @func pointer points to the worker function. If the @cancel argument is
198  * not zero, the worker has to free the resources and exit immediately. The
199  * worker has to return zero in case of success and a negative error code in
200  * case of failure.
201  */
202 struct ubi_work {
203 	struct list_head list;
204 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
205 	/* The below fields are only relevant to erasure works */
206 	struct ubi_wl_entry *e;
207 	int torture;
208 };
209 
210 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
211 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
212 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
213 				     struct rb_root *root);
214 #else
215 #define paranoid_check_ec(ubi, pnum, ec) 0
216 #define paranoid_check_in_wl_tree(e, root)
217 #endif
218 
219 /* Slab cache for wear-leveling entries */
220 static struct kmem_cache *wl_entries_slab;
221 
222 /**
223  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
224  * @e: the wear-leveling entry to add
225  * @root: the root of the tree
226  *
227  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
228  * the @ubi->used and @ubi->free RB-trees.
229  */
230 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
231 {
232 	struct rb_node **p, *parent = NULL;
233 
234 	p = &root->rb_node;
235 	while (*p) {
236 		struct ubi_wl_entry *e1;
237 
238 		parent = *p;
239 		e1 = rb_entry(parent, struct ubi_wl_entry, rb);
240 
241 		if (e->ec < e1->ec)
242 			p = &(*p)->rb_left;
243 		else if (e->ec > e1->ec)
244 			p = &(*p)->rb_right;
245 		else {
246 			ubi_assert(e->pnum != e1->pnum);
247 			if (e->pnum < e1->pnum)
248 				p = &(*p)->rb_left;
249 			else
250 				p = &(*p)->rb_right;
251 		}
252 	}
253 
254 	rb_link_node(&e->rb, parent, p);
255 	rb_insert_color(&e->rb, root);
256 }
257 
258 /**
259  * do_work - do one pending work.
260  * @ubi: UBI device description object
261  *
262  * This function returns zero in case of success and a negative error code in
263  * case of failure.
264  */
265 static int do_work(struct ubi_device *ubi)
266 {
267 	int err;
268 	struct ubi_work *wrk;
269 
270 	spin_lock(&ubi->wl_lock);
271 
272 	if (list_empty(&ubi->works)) {
273 		spin_unlock(&ubi->wl_lock);
274 		return 0;
275 	}
276 
277 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
278 	list_del(&wrk->list);
279 	spin_unlock(&ubi->wl_lock);
280 
281 	/*
282 	 * Call the worker function. Do not touch the work structure
283 	 * after this call as it will have been freed or reused by that
284 	 * time by the worker function.
285 	 */
286 	err = wrk->func(ubi, wrk, 0);
287 	if (err)
288 		ubi_err("work failed with error code %d", err);
289 
290 	spin_lock(&ubi->wl_lock);
291 	ubi->works_count -= 1;
292 	ubi_assert(ubi->works_count >= 0);
293 	spin_unlock(&ubi->wl_lock);
294 	return err;
295 }
296 
297 /**
298  * produce_free_peb - produce a free physical eraseblock.
299  * @ubi: UBI device description object
300  *
301  * This function tries to make a free PEB by means of synchronous execution of
302  * pending works. This may be needed if, for example the background thread is
303  * disabled. Returns zero in case of success and a negative error code in case
304  * of failure.
305  */
306 static int produce_free_peb(struct ubi_device *ubi)
307 {
308 	int err;
309 
310 	spin_lock(&ubi->wl_lock);
311 	while (!ubi->free.rb_node) {
312 		spin_unlock(&ubi->wl_lock);
313 
314 		dbg_wl("do one work synchronously");
315 		err = do_work(ubi);
316 		if (err)
317 			return err;
318 
319 		spin_lock(&ubi->wl_lock);
320 	}
321 	spin_unlock(&ubi->wl_lock);
322 
323 	return 0;
324 }
325 
326 /**
327  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
328  * @e: the wear-leveling entry to check
329  * @root: the root of the tree
330  *
331  * This function returns non-zero if @e is in the @root RB-tree and zero if it
332  * is not.
333  */
334 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
335 {
336 	struct rb_node *p;
337 
338 	p = root->rb_node;
339 	while (p) {
340 		struct ubi_wl_entry *e1;
341 
342 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
343 
344 		if (e->pnum == e1->pnum) {
345 			ubi_assert(e == e1);
346 			return 1;
347 		}
348 
349 		if (e->ec < e1->ec)
350 			p = p->rb_left;
351 		else if (e->ec > e1->ec)
352 			p = p->rb_right;
353 		else {
354 			ubi_assert(e->pnum != e1->pnum);
355 			if (e->pnum < e1->pnum)
356 				p = p->rb_left;
357 			else
358 				p = p->rb_right;
359 		}
360 	}
361 
362 	return 0;
363 }
364 
365 /**
366  * prot_tree_add - add physical eraseblock to protection trees.
367  * @ubi: UBI device description object
368  * @e: the physical eraseblock to add
369  * @pe: protection entry object to use
370  * @abs_ec: absolute erase counter value when this physical eraseblock has
371  * to be removed from the protection trees.
372  *
373  * @wl->lock has to be locked.
374  */
375 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
376 			  struct ubi_wl_prot_entry *pe, int abs_ec)
377 {
378 	struct rb_node **p, *parent = NULL;
379 	struct ubi_wl_prot_entry *pe1;
380 
381 	pe->e = e;
382 	pe->abs_ec = ubi->abs_ec + abs_ec;
383 
384 	p = &ubi->prot.pnum.rb_node;
385 	while (*p) {
386 		parent = *p;
387 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
388 
389 		if (e->pnum < pe1->e->pnum)
390 			p = &(*p)->rb_left;
391 		else
392 			p = &(*p)->rb_right;
393 	}
394 	rb_link_node(&pe->rb_pnum, parent, p);
395 	rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
396 
397 	p = &ubi->prot.aec.rb_node;
398 	parent = NULL;
399 	while (*p) {
400 		parent = *p;
401 		pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
402 
403 		if (pe->abs_ec < pe1->abs_ec)
404 			p = &(*p)->rb_left;
405 		else
406 			p = &(*p)->rb_right;
407 	}
408 	rb_link_node(&pe->rb_aec, parent, p);
409 	rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
410 }
411 
412 /**
413  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
414  * @root: the RB-tree where to look for
415  * @max: highest possible erase counter
416  *
417  * This function looks for a wear leveling entry with erase counter closest to
418  * @max and less then @max.
419  */
420 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
421 {
422 	struct rb_node *p;
423 	struct ubi_wl_entry *e;
424 
425 	e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
426 	max += e->ec;
427 
428 	p = root->rb_node;
429 	while (p) {
430 		struct ubi_wl_entry *e1;
431 
432 		e1 = rb_entry(p, struct ubi_wl_entry, rb);
433 		if (e1->ec >= max)
434 			p = p->rb_left;
435 		else {
436 			p = p->rb_right;
437 			e = e1;
438 		}
439 	}
440 
441 	return e;
442 }
443 
444 /**
445  * ubi_wl_get_peb - get a physical eraseblock.
446  * @ubi: UBI device description object
447  * @dtype: type of data which will be stored in this physical eraseblock
448  *
449  * This function returns a physical eraseblock in case of success and a
450  * negative error code in case of failure. Might sleep.
451  */
452 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
453 {
454 	int err, protect, medium_ec;
455 	struct ubi_wl_entry *e, *first, *last;
456 	struct ubi_wl_prot_entry *pe;
457 
458 	ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
459 		   dtype == UBI_UNKNOWN);
460 
461 	pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
462 	if (!pe)
463 		return -ENOMEM;
464 
465 retry:
466 	spin_lock(&ubi->wl_lock);
467 	if (!ubi->free.rb_node) {
468 		if (ubi->works_count == 0) {
469 			ubi_assert(list_empty(&ubi->works));
470 			ubi_err("no free eraseblocks");
471 			spin_unlock(&ubi->wl_lock);
472 			kfree(pe);
473 			return -ENOSPC;
474 		}
475 		spin_unlock(&ubi->wl_lock);
476 
477 		err = produce_free_peb(ubi);
478 		if (err < 0) {
479 			kfree(pe);
480 			return err;
481 		}
482 		goto retry;
483 	}
484 
485 	switch (dtype) {
486 		case UBI_LONGTERM:
487 			/*
488 			 * For long term data we pick a physical eraseblock
489 			 * with high erase counter. But the highest erase
490 			 * counter we can pick is bounded by the the lowest
491 			 * erase counter plus %WL_FREE_MAX_DIFF.
492 			 */
493 			e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
494 			protect = LT_PROTECTION;
495 			break;
496 		case UBI_UNKNOWN:
497 			/*
498 			 * For unknown data we pick a physical eraseblock with
499 			 * medium erase counter. But we by no means can pick a
500 			 * physical eraseblock with erase counter greater or
501 			 * equivalent than the lowest erase counter plus
502 			 * %WL_FREE_MAX_DIFF.
503 			 */
504 			first = rb_entry(rb_first(&ubi->free),
505 					 struct ubi_wl_entry, rb);
506 			last = rb_entry(rb_last(&ubi->free),
507 					struct ubi_wl_entry, rb);
508 
509 			if (last->ec - first->ec < WL_FREE_MAX_DIFF)
510 				e = rb_entry(ubi->free.rb_node,
511 						struct ubi_wl_entry, rb);
512 			else {
513 				medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
514 				e = find_wl_entry(&ubi->free, medium_ec);
515 			}
516 			protect = U_PROTECTION;
517 			break;
518 		case UBI_SHORTTERM:
519 			/*
520 			 * For short term data we pick a physical eraseblock
521 			 * with the lowest erase counter as we expect it will
522 			 * be erased soon.
523 			 */
524 			e = rb_entry(rb_first(&ubi->free),
525 				     struct ubi_wl_entry, rb);
526 			protect = ST_PROTECTION;
527 			break;
528 		default:
529 			protect = 0;
530 			e = NULL;
531 			BUG();
532 	}
533 
534 	/*
535 	 * Move the physical eraseblock to the protection trees where it will
536 	 * be protected from being moved for some time.
537 	 */
538 	paranoid_check_in_wl_tree(e, &ubi->free);
539 	rb_erase(&e->rb, &ubi->free);
540 	prot_tree_add(ubi, e, pe, protect);
541 
542 	dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
543 	spin_unlock(&ubi->wl_lock);
544 
545 	return e->pnum;
546 }
547 
548 /**
549  * prot_tree_del - remove a physical eraseblock from the protection trees
550  * @ubi: UBI device description object
551  * @pnum: the physical eraseblock to remove
552  */
553 static void prot_tree_del(struct ubi_device *ubi, int pnum)
554 {
555 	struct rb_node *p;
556 	struct ubi_wl_prot_entry *pe = NULL;
557 
558 	p = ubi->prot.pnum.rb_node;
559 	while (p) {
560 
561 		pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
562 
563 		if (pnum == pe->e->pnum)
564 			break;
565 
566 		if (pnum < pe->e->pnum)
567 			p = p->rb_left;
568 		else
569 			p = p->rb_right;
570 	}
571 
572 	ubi_assert(pe->e->pnum == pnum);
573 	rb_erase(&pe->rb_aec, &ubi->prot.aec);
574 	rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
575 	kfree(pe);
576 }
577 
578 /**
579  * sync_erase - synchronously erase a physical eraseblock.
580  * @ubi: UBI device description object
581  * @e: the the physical eraseblock to erase
582  * @torture: if the physical eraseblock has to be tortured
583  *
584  * This function returns zero in case of success and a negative error code in
585  * case of failure.
586  */
587 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
588 {
589 	int err;
590 	struct ubi_ec_hdr *ec_hdr;
591 	unsigned long long ec = e->ec;
592 
593 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
594 
595 	err = paranoid_check_ec(ubi, e->pnum, e->ec);
596 	if (err > 0)
597 		return -EINVAL;
598 
599 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
600 	if (!ec_hdr)
601 		return -ENOMEM;
602 
603 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
604 	if (err < 0)
605 		goto out_free;
606 
607 	ec += err;
608 	if (ec > UBI_MAX_ERASECOUNTER) {
609 		/*
610 		 * Erase counter overflow. Upgrade UBI and use 64-bit
611 		 * erase counters internally.
612 		 */
613 		ubi_err("erase counter overflow at PEB %d, EC %llu",
614 			e->pnum, ec);
615 		err = -EINVAL;
616 		goto out_free;
617 	}
618 
619 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
620 
621 	ec_hdr->ec = cpu_to_be64(ec);
622 
623 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
624 	if (err)
625 		goto out_free;
626 
627 	e->ec = ec;
628 	spin_lock(&ubi->wl_lock);
629 	if (e->ec > ubi->max_ec)
630 		ubi->max_ec = e->ec;
631 	spin_unlock(&ubi->wl_lock);
632 
633 out_free:
634 	kfree(ec_hdr);
635 	return err;
636 }
637 
638 /**
639  * check_protection_over - check if it is time to stop protecting some
640  * physical eraseblocks.
641  * @ubi: UBI device description object
642  *
643  * This function is called after each erase operation, when the absolute erase
644  * counter is incremented, to check if some physical eraseblock  have not to be
645  * protected any longer. These physical eraseblocks are moved from the
646  * protection trees to the used tree.
647  */
648 static void check_protection_over(struct ubi_device *ubi)
649 {
650 	struct ubi_wl_prot_entry *pe;
651 
652 	/*
653 	 * There may be several protected physical eraseblock to remove,
654 	 * process them all.
655 	 */
656 	while (1) {
657 		spin_lock(&ubi->wl_lock);
658 		if (!ubi->prot.aec.rb_node) {
659 			spin_unlock(&ubi->wl_lock);
660 			break;
661 		}
662 
663 		pe = rb_entry(rb_first(&ubi->prot.aec),
664 			      struct ubi_wl_prot_entry, rb_aec);
665 
666 		if (pe->abs_ec > ubi->abs_ec) {
667 			spin_unlock(&ubi->wl_lock);
668 			break;
669 		}
670 
671 		dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
672 		       pe->e->pnum, ubi->abs_ec, pe->abs_ec);
673 		rb_erase(&pe->rb_aec, &ubi->prot.aec);
674 		rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
675 		wl_tree_add(pe->e, &ubi->used);
676 		spin_unlock(&ubi->wl_lock);
677 
678 		kfree(pe);
679 		cond_resched();
680 	}
681 }
682 
683 /**
684  * schedule_ubi_work - schedule a work.
685  * @ubi: UBI device description object
686  * @wrk: the work to schedule
687  *
688  * This function enqueues a work defined by @wrk to the tail of the pending
689  * works list.
690  */
691 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
692 {
693 	spin_lock(&ubi->wl_lock);
694 	list_add_tail(&wrk->list, &ubi->works);
695 	ubi_assert(ubi->works_count >= 0);
696 	ubi->works_count += 1;
697 	if (ubi->thread_enabled)
698 		wake_up_process(ubi->bgt_thread);
699 	spin_unlock(&ubi->wl_lock);
700 }
701 
702 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
703 			int cancel);
704 
705 /**
706  * schedule_erase - schedule an erase work.
707  * @ubi: UBI device description object
708  * @e: the WL entry of the physical eraseblock to erase
709  * @torture: if the physical eraseblock has to be tortured
710  *
711  * This function returns zero in case of success and a %-ENOMEM in case of
712  * failure.
713  */
714 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
715 			  int torture)
716 {
717 	struct ubi_work *wl_wrk;
718 
719 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
720 	       e->pnum, e->ec, torture);
721 
722 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
723 	if (!wl_wrk)
724 		return -ENOMEM;
725 
726 	wl_wrk->func = &erase_worker;
727 	wl_wrk->e = e;
728 	wl_wrk->torture = torture;
729 
730 	schedule_ubi_work(ubi, wl_wrk);
731 	return 0;
732 }
733 
734 /**
735  * wear_leveling_worker - wear-leveling worker function.
736  * @ubi: UBI device description object
737  * @wrk: the work object
738  * @cancel: non-zero if the worker has to free memory and exit
739  *
740  * This function copies a more worn out physical eraseblock to a less worn out
741  * one. Returns zero in case of success and a negative error code in case of
742  * failure.
743  */
744 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
745 				int cancel)
746 {
747 	int err, put = 0;
748 	struct ubi_wl_entry *e1, *e2;
749 	struct ubi_vid_hdr *vid_hdr;
750 
751 	kfree(wrk);
752 
753 	if (cancel)
754 		return 0;
755 
756 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
757 	if (!vid_hdr)
758 		return -ENOMEM;
759 
760 	spin_lock(&ubi->wl_lock);
761 
762 	/*
763 	 * Only one WL worker at a time is supported at this implementation, so
764 	 * make sure a PEB is not being moved already.
765 	 */
766 	if (ubi->move_to || !ubi->free.rb_node ||
767 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
768 		/*
769 		 * Only one WL worker at a time is supported at this
770 		 * implementation, so if a LEB is already being moved, cancel.
771 		 *
772 		 * No free physical eraseblocks? Well, we cancel wear-leveling
773 		 * then. It will be triggered again when a free physical
774 		 * eraseblock appears.
775 		 *
776 		 * No used physical eraseblocks? They must be temporarily
777 		 * protected from being moved. They will be moved to the
778 		 * @ubi->used tree later and the wear-leveling will be
779 		 * triggered again.
780 		 */
781 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
782 		       !ubi->free.rb_node, !ubi->used.rb_node);
783 		ubi->wl_scheduled = 0;
784 		spin_unlock(&ubi->wl_lock);
785 		ubi_free_vid_hdr(ubi, vid_hdr);
786 		return 0;
787 	}
788 
789 	if (!ubi->scrub.rb_node) {
790 		/*
791 		 * Now pick the least worn-out used physical eraseblock and a
792 		 * highly worn-out free physical eraseblock. If the erase
793 		 * counters differ much enough, start wear-leveling.
794 		 */
795 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
796 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
797 
798 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
799 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
800 			       e1->ec, e2->ec);
801 			ubi->wl_scheduled = 0;
802 			spin_unlock(&ubi->wl_lock);
803 			ubi_free_vid_hdr(ubi, vid_hdr);
804 			return 0;
805 		}
806 		paranoid_check_in_wl_tree(e1, &ubi->used);
807 		rb_erase(&e1->rb, &ubi->used);
808 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
809 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
810 	} else {
811 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
812 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
813 		paranoid_check_in_wl_tree(e1, &ubi->scrub);
814 	rb_erase(&e1->rb, &ubi->scrub);
815 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
816 	}
817 
818 	paranoid_check_in_wl_tree(e2, &ubi->free);
819 	rb_erase(&e2->rb, &ubi->free);
820 	ubi_assert(!ubi->move_from && !ubi->move_to);
821 	ubi_assert(!ubi->move_to_put && !ubi->move_from_put);
822 	ubi->move_from = e1;
823 	ubi->move_to = e2;
824 	spin_unlock(&ubi->wl_lock);
825 
826 	/*
827 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
828 	 * We so far do not know which logical eraseblock our physical
829 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
830 	 * header first.
831 	 */
832 
833 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
834 	if (err && err != UBI_IO_BITFLIPS) {
835 		if (err == UBI_IO_PEB_FREE) {
836 			/*
837 			 * We are trying to move PEB without a VID header. UBI
838 			 * always write VID headers shortly after the PEB was
839 			 * given, so we have a situation when it did not have
840 			 * chance to write it down because it was preempted.
841 			 * Just re-schedule the work, so that next time it will
842 			 * likely have the VID header in place.
843 			 */
844 			dbg_wl("PEB %d has no VID header", e1->pnum);
845 			err = 0;
846 		} else {
847 			ubi_err("error %d while reading VID header from PEB %d",
848 				err, e1->pnum);
849 			if (err > 0)
850 				err = -EIO;
851 		}
852 		goto error;
853 	}
854 
855 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
856 	if (err) {
857 		if (err == UBI_IO_BITFLIPS)
858 			err = 0;
859 		goto error;
860 	}
861 
862 	ubi_free_vid_hdr(ubi, vid_hdr);
863 	spin_lock(&ubi->wl_lock);
864 	if (!ubi->move_to_put)
865 		wl_tree_add(e2, &ubi->used);
866 	else
867 		put = 1;
868 	ubi->move_from = ubi->move_to = NULL;
869 	ubi->move_from_put = ubi->move_to_put = 0;
870 	ubi->wl_scheduled = 0;
871 	spin_unlock(&ubi->wl_lock);
872 
873 	if (put) {
874 		/*
875 		 * Well, the target PEB was put meanwhile, schedule it for
876 		 * erasure.
877 		 */
878 		dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
879 		err = schedule_erase(ubi, e2, 0);
880 		if (err) {
881 			kmem_cache_free(wl_entries_slab, e2);
882 			ubi_ro_mode(ubi);
883 		}
884 	}
885 
886 	err = schedule_erase(ubi, e1, 0);
887 	if (err) {
888 		kmem_cache_free(wl_entries_slab, e1);
889 		ubi_ro_mode(ubi);
890 	}
891 
892 	dbg_wl("done");
893 	return err;
894 
895 	/*
896 	 * Some error occurred. @e1 was not changed, so return it back. @e2
897 	 * might be changed, schedule it for erasure.
898 	 */
899 error:
900 	if (err)
901 		dbg_wl("error %d occurred, cancel operation", err);
902 	ubi_assert(err <= 0);
903 
904 	ubi_free_vid_hdr(ubi, vid_hdr);
905 	spin_lock(&ubi->wl_lock);
906 	ubi->wl_scheduled = 0;
907 	if (ubi->move_from_put)
908 		put = 1;
909 	else
910 		wl_tree_add(e1, &ubi->used);
911 	ubi->move_from = ubi->move_to = NULL;
912 	ubi->move_from_put = ubi->move_to_put = 0;
913 	spin_unlock(&ubi->wl_lock);
914 
915 	if (put) {
916 		/*
917 		 * Well, the target PEB was put meanwhile, schedule it for
918 		 * erasure.
919 		 */
920 		dbg_wl("PEB %d was put meanwhile, erase", e1->pnum);
921 		err = schedule_erase(ubi, e1, 0);
922 		if (err) {
923 			kmem_cache_free(wl_entries_slab, e1);
924 			ubi_ro_mode(ubi);
925 		}
926 	}
927 
928 	err = schedule_erase(ubi, e2, 0);
929 	if (err) {
930 		kmem_cache_free(wl_entries_slab, e2);
931 		ubi_ro_mode(ubi);
932 	}
933 
934 	yield();
935 	return err;
936 }
937 
938 /**
939  * ensure_wear_leveling - schedule wear-leveling if it is needed.
940  * @ubi: UBI device description object
941  *
942  * This function checks if it is time to start wear-leveling and schedules it
943  * if yes. This function returns zero in case of success and a negative error
944  * code in case of failure.
945  */
946 static int ensure_wear_leveling(struct ubi_device *ubi)
947 {
948 	int err = 0;
949 	struct ubi_wl_entry *e1;
950 	struct ubi_wl_entry *e2;
951 	struct ubi_work *wrk;
952 
953 	spin_lock(&ubi->wl_lock);
954 	if (ubi->wl_scheduled)
955 		/* Wear-leveling is already in the work queue */
956 		goto out_unlock;
957 
958 	/*
959 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
960 	 * the WL worker has to be scheduled anyway.
961 	 */
962 	if (!ubi->scrub.rb_node) {
963 		if (!ubi->used.rb_node || !ubi->free.rb_node)
964 			/* No physical eraseblocks - no deal */
965 			goto out_unlock;
966 
967 		/*
968 		 * We schedule wear-leveling only if the difference between the
969 		 * lowest erase counter of used physical eraseblocks and a high
970 		 * erase counter of free physical eraseblocks is greater then
971 		 * %UBI_WL_THRESHOLD.
972 		 */
973 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
974 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
975 
976 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
977 			goto out_unlock;
978 		dbg_wl("schedule wear-leveling");
979 	} else
980 		dbg_wl("schedule scrubbing");
981 
982 	ubi->wl_scheduled = 1;
983 	spin_unlock(&ubi->wl_lock);
984 
985 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
986 	if (!wrk) {
987 		err = -ENOMEM;
988 		goto out_cancel;
989 	}
990 
991 	wrk->func = &wear_leveling_worker;
992 	schedule_ubi_work(ubi, wrk);
993 	return err;
994 
995 out_cancel:
996 	spin_lock(&ubi->wl_lock);
997 	ubi->wl_scheduled = 0;
998 out_unlock:
999 	spin_unlock(&ubi->wl_lock);
1000 	return err;
1001 }
1002 
1003 /**
1004  * erase_worker - physical eraseblock erase worker function.
1005  * @ubi: UBI device description object
1006  * @wl_wrk: the work object
1007  * @cancel: non-zero if the worker has to free memory and exit
1008  *
1009  * This function erases a physical eraseblock and perform torture testing if
1010  * needed. It also takes care about marking the physical eraseblock bad if
1011  * needed. Returns zero in case of success and a negative error code in case of
1012  * failure.
1013  */
1014 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1015 			int cancel)
1016 {
1017 	struct ubi_wl_entry *e = wl_wrk->e;
1018 	int pnum = e->pnum, err, need;
1019 
1020 	if (cancel) {
1021 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1022 		kfree(wl_wrk);
1023 		kmem_cache_free(wl_entries_slab, e);
1024 		return 0;
1025 	}
1026 
1027 	dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1028 
1029 	err = sync_erase(ubi, e, wl_wrk->torture);
1030 	if (!err) {
1031 		/* Fine, we've erased it successfully */
1032 		kfree(wl_wrk);
1033 
1034 		spin_lock(&ubi->wl_lock);
1035 		ubi->abs_ec += 1;
1036 		wl_tree_add(e, &ubi->free);
1037 		spin_unlock(&ubi->wl_lock);
1038 
1039 		/*
1040 		 * One more erase operation has happened, take care about protected
1041 		 * physical eraseblocks.
1042 		 */
1043 		check_protection_over(ubi);
1044 
1045 		/* And take care about wear-leveling */
1046 		err = ensure_wear_leveling(ubi);
1047 		return err;
1048 	}
1049 
1050 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1051 	kfree(wl_wrk);
1052 	kmem_cache_free(wl_entries_slab, e);
1053 
1054 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1055 	    err == -EBUSY) {
1056 		int err1;
1057 
1058 		/* Re-schedule the LEB for erasure */
1059 		err1 = schedule_erase(ubi, e, 0);
1060 		if (err1) {
1061 			err = err1;
1062 			goto out_ro;
1063 		}
1064 		return err;
1065 	} else if (err != -EIO) {
1066 		/*
1067 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1068 		 * this physical eraseblock for erasure again would cause
1069 		 * errors again and again. Well, lets switch to RO mode.
1070 		 */
1071 		goto out_ro;
1072 	}
1073 
1074 	/* It is %-EIO, the PEB went bad */
1075 
1076 	if (!ubi->bad_allowed) {
1077 		ubi_err("bad physical eraseblock %d detected", pnum);
1078 		goto out_ro;
1079 	}
1080 
1081 	spin_lock(&ubi->volumes_lock);
1082 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1083 	if (need > 0) {
1084 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1085 		ubi->avail_pebs -= need;
1086 		ubi->rsvd_pebs += need;
1087 		ubi->beb_rsvd_pebs += need;
1088 		if (need > 0)
1089 			ubi_msg("reserve more %d PEBs", need);
1090 	}
1091 
1092 	if (ubi->beb_rsvd_pebs == 0) {
1093 		spin_unlock(&ubi->volumes_lock);
1094 		ubi_err("no reserved physical eraseblocks");
1095 		goto out_ro;
1096 	}
1097 
1098 	spin_unlock(&ubi->volumes_lock);
1099 	ubi_msg("mark PEB %d as bad", pnum);
1100 
1101 	err = ubi_io_mark_bad(ubi, pnum);
1102 	if (err)
1103 		goto out_ro;
1104 
1105 	spin_lock(&ubi->volumes_lock);
1106 	ubi->beb_rsvd_pebs -= 1;
1107 	ubi->bad_peb_count += 1;
1108 	ubi->good_peb_count -= 1;
1109 	ubi_calculate_reserved(ubi);
1110 	if (ubi->beb_rsvd_pebs == 0)
1111 		ubi_warn("last PEB from the reserved pool was used");
1112 	spin_unlock(&ubi->volumes_lock);
1113 
1114 	return err;
1115 
1116 out_ro:
1117 	ubi_ro_mode(ubi);
1118 	return err;
1119 }
1120 
1121 /**
1122  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
1123  * unit.
1124  * @ubi: UBI device description object
1125  * @pnum: physical eraseblock to return
1126  * @torture: if this physical eraseblock has to be tortured
1127  *
1128  * This function is called to return physical eraseblock @pnum to the pool of
1129  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1130  * occurred to this @pnum and it has to be tested. This function returns zero
1131  * in case of success and a negative error code in case of failure.
1132  */
1133 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1134 {
1135 	int err;
1136 	struct ubi_wl_entry *e;
1137 
1138 	dbg_wl("PEB %d", pnum);
1139 	ubi_assert(pnum >= 0);
1140 	ubi_assert(pnum < ubi->peb_count);
1141 
1142 	spin_lock(&ubi->wl_lock);
1143 
1144 	e = ubi->lookuptbl[pnum];
1145 	if (e == ubi->move_from) {
1146 		/*
1147 		 * User is putting the physical eraseblock which was selected to
1148 		 * be moved. It will be scheduled for erasure in the
1149 		 * wear-leveling worker.
1150 		 */
1151 		dbg_wl("PEB %d is being moved", pnum);
1152 		ubi_assert(!ubi->move_from_put);
1153 		ubi->move_from_put = 1;
1154 		spin_unlock(&ubi->wl_lock);
1155 		return 0;
1156 	} else if (e == ubi->move_to) {
1157 		/*
1158 		 * User is putting the physical eraseblock which was selected
1159 		 * as the target the data is moved to. It may happen if the EBA
1160 		 * unit already re-mapped the LEB but the WL unit did has not
1161 		 * put the PEB to the "used" tree.
1162 		 */
1163 		dbg_wl("PEB %d is the target of data moving", pnum);
1164 		ubi_assert(!ubi->move_to_put);
1165 		ubi->move_to_put = 1;
1166 		spin_unlock(&ubi->wl_lock);
1167 		return 0;
1168 	} else {
1169 		if (in_wl_tree(e, &ubi->used)) {
1170 			paranoid_check_in_wl_tree(e, &ubi->used);
1171 			rb_erase(&e->rb, &ubi->used);
1172 		} else if (in_wl_tree(e, &ubi->scrub)) {
1173 			paranoid_check_in_wl_tree(e, &ubi->scrub);
1174 			rb_erase(&e->rb, &ubi->scrub);
1175 		} else
1176 			prot_tree_del(ubi, e->pnum);
1177 	}
1178 	spin_unlock(&ubi->wl_lock);
1179 
1180 	err = schedule_erase(ubi, e, torture);
1181 	if (err) {
1182 		spin_lock(&ubi->wl_lock);
1183 		wl_tree_add(e, &ubi->used);
1184 		spin_unlock(&ubi->wl_lock);
1185 	}
1186 
1187 	return err;
1188 }
1189 
1190 /**
1191  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1192  * @ubi: UBI device description object
1193  * @pnum: the physical eraseblock to schedule
1194  *
1195  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1196  * needs scrubbing. This function schedules a physical eraseblock for
1197  * scrubbing which is done in background. This function returns zero in case of
1198  * success and a negative error code in case of failure.
1199  */
1200 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1201 {
1202 	struct ubi_wl_entry *e;
1203 
1204 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1205 
1206 retry:
1207 	spin_lock(&ubi->wl_lock);
1208 	e = ubi->lookuptbl[pnum];
1209 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1210 		spin_unlock(&ubi->wl_lock);
1211 		return 0;
1212 	}
1213 
1214 	if (e == ubi->move_to) {
1215 		/*
1216 		 * This physical eraseblock was used to move data to. The data
1217 		 * was moved but the PEB was not yet inserted to the proper
1218 		 * tree. We should just wait a little and let the WL worker
1219 		 * proceed.
1220 		 */
1221 		spin_unlock(&ubi->wl_lock);
1222 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1223 		yield();
1224 		goto retry;
1225 	}
1226 
1227 	if (in_wl_tree(e, &ubi->used)) {
1228 		paranoid_check_in_wl_tree(e, &ubi->used);
1229 		rb_erase(&e->rb, &ubi->used);
1230 	} else
1231 		prot_tree_del(ubi, pnum);
1232 
1233 	wl_tree_add(e, &ubi->scrub);
1234 	spin_unlock(&ubi->wl_lock);
1235 
1236 	/*
1237 	 * Technically scrubbing is the same as wear-leveling, so it is done
1238 	 * by the WL worker.
1239 	 */
1240 	return ensure_wear_leveling(ubi);
1241 }
1242 
1243 /**
1244  * ubi_wl_flush - flush all pending works.
1245  * @ubi: UBI device description object
1246  *
1247  * This function returns zero in case of success and a negative error code in
1248  * case of failure.
1249  */
1250 int ubi_wl_flush(struct ubi_device *ubi)
1251 {
1252 	int err, pending_count;
1253 
1254 	pending_count = ubi->works_count;
1255 
1256 	dbg_wl("flush (%d pending works)", pending_count);
1257 
1258 	/*
1259 	 * Erase while the pending works queue is not empty, but not more then
1260 	 * the number of currently pending works.
1261 	 */
1262 	while (pending_count-- > 0) {
1263 		err = do_work(ubi);
1264 		if (err)
1265 			return err;
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 /**
1272  * tree_destroy - destroy an RB-tree.
1273  * @root: the root of the tree to destroy
1274  */
1275 static void tree_destroy(struct rb_root *root)
1276 {
1277 	struct rb_node *rb;
1278 	struct ubi_wl_entry *e;
1279 
1280 	rb = root->rb_node;
1281 	while (rb) {
1282 		if (rb->rb_left)
1283 			rb = rb->rb_left;
1284 		else if (rb->rb_right)
1285 			rb = rb->rb_right;
1286 		else {
1287 			e = rb_entry(rb, struct ubi_wl_entry, rb);
1288 
1289 			rb = rb_parent(rb);
1290 			if (rb) {
1291 				if (rb->rb_left == &e->rb)
1292 					rb->rb_left = NULL;
1293 				else
1294 					rb->rb_right = NULL;
1295 			}
1296 
1297 			kmem_cache_free(wl_entries_slab, e);
1298 		}
1299 	}
1300 }
1301 
1302 /**
1303  * ubi_thread - UBI background thread.
1304  * @u: the UBI device description object pointer
1305  */
1306 static int ubi_thread(void *u)
1307 {
1308 	int failures = 0;
1309 	struct ubi_device *ubi = u;
1310 
1311 	ubi_msg("background thread \"%s\" started, PID %d",
1312 		ubi->bgt_name, task_pid_nr(current));
1313 
1314 	set_freezable();
1315 	for (;;) {
1316 		int err;
1317 
1318 		if (kthread_should_stop())
1319 			goto out;
1320 
1321 		if (try_to_freeze())
1322 			continue;
1323 
1324 		spin_lock(&ubi->wl_lock);
1325 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1326 			       !ubi->thread_enabled) {
1327 			set_current_state(TASK_INTERRUPTIBLE);
1328 			spin_unlock(&ubi->wl_lock);
1329 			schedule();
1330 			continue;
1331 		}
1332 		spin_unlock(&ubi->wl_lock);
1333 
1334 		err = do_work(ubi);
1335 		if (err) {
1336 			ubi_err("%s: work failed with error code %d",
1337 				ubi->bgt_name, err);
1338 			if (failures++ > WL_MAX_FAILURES) {
1339 				/*
1340 				 * Too many failures, disable the thread and
1341 				 * switch to read-only mode.
1342 				 */
1343 				ubi_msg("%s: %d consecutive failures",
1344 					ubi->bgt_name, WL_MAX_FAILURES);
1345 				ubi_ro_mode(ubi);
1346 				break;
1347 			}
1348 		} else
1349 			failures = 0;
1350 
1351 		cond_resched();
1352 	}
1353 
1354 out:
1355 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1356 	return 0;
1357 }
1358 
1359 /**
1360  * cancel_pending - cancel all pending works.
1361  * @ubi: UBI device description object
1362  */
1363 static void cancel_pending(struct ubi_device *ubi)
1364 {
1365 	while (!list_empty(&ubi->works)) {
1366 		struct ubi_work *wrk;
1367 
1368 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1369 		list_del(&wrk->list);
1370 		wrk->func(ubi, wrk, 1);
1371 		ubi->works_count -= 1;
1372 		ubi_assert(ubi->works_count >= 0);
1373 	}
1374 }
1375 
1376 /**
1377  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1378  * information.
1379  * @ubi: UBI device description object
1380  * @si: scanning information
1381  *
1382  * This function returns zero in case of success, and a negative error code in
1383  * case of failure.
1384  */
1385 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1386 {
1387 	int err;
1388 	struct rb_node *rb1, *rb2;
1389 	struct ubi_scan_volume *sv;
1390 	struct ubi_scan_leb *seb, *tmp;
1391 	struct ubi_wl_entry *e;
1392 
1393 
1394 	ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1395 	ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1396 	spin_lock_init(&ubi->wl_lock);
1397 	ubi->max_ec = si->max_ec;
1398 	INIT_LIST_HEAD(&ubi->works);
1399 
1400 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1401 
1402 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
1403 	if (IS_ERR(ubi->bgt_thread)) {
1404 		err = PTR_ERR(ubi->bgt_thread);
1405 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1406 			err);
1407 		return err;
1408 	}
1409 
1410 	if (ubi_devices_cnt == 0) {
1411 		wl_entries_slab = kmem_cache_create("ubi_wl_entry_slab",
1412 						    sizeof(struct ubi_wl_entry),
1413 						    0, 0, NULL);
1414 		if (!wl_entries_slab)
1415 			return -ENOMEM;
1416 	}
1417 
1418 	err = -ENOMEM;
1419 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1420 	if (!ubi->lookuptbl)
1421 		goto out_free;
1422 
1423 	list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1424 		cond_resched();
1425 
1426 		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1427 		if (!e)
1428 			goto out_free;
1429 
1430 		e->pnum = seb->pnum;
1431 		e->ec = seb->ec;
1432 		ubi->lookuptbl[e->pnum] = e;
1433 		if (schedule_erase(ubi, e, 0)) {
1434 			kmem_cache_free(wl_entries_slab, e);
1435 			goto out_free;
1436 		}
1437 	}
1438 
1439 	list_for_each_entry(seb, &si->free, u.list) {
1440 		cond_resched();
1441 
1442 		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1443 		if (!e)
1444 			goto out_free;
1445 
1446 		e->pnum = seb->pnum;
1447 		e->ec = seb->ec;
1448 		ubi_assert(e->ec >= 0);
1449 		wl_tree_add(e, &ubi->free);
1450 		ubi->lookuptbl[e->pnum] = e;
1451 	}
1452 
1453 	list_for_each_entry(seb, &si->corr, u.list) {
1454 		cond_resched();
1455 
1456 		e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1457 		if (!e)
1458 			goto out_free;
1459 
1460 		e->pnum = seb->pnum;
1461 		e->ec = seb->ec;
1462 		ubi->lookuptbl[e->pnum] = e;
1463 		if (schedule_erase(ubi, e, 0)) {
1464 			kmem_cache_free(wl_entries_slab, e);
1465 			goto out_free;
1466 		}
1467 	}
1468 
1469 	ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1470 		ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1471 			cond_resched();
1472 
1473 			e = kmem_cache_alloc(wl_entries_slab, GFP_KERNEL);
1474 			if (!e)
1475 				goto out_free;
1476 
1477 			e->pnum = seb->pnum;
1478 			e->ec = seb->ec;
1479 			ubi->lookuptbl[e->pnum] = e;
1480 			if (!seb->scrub) {
1481 				dbg_wl("add PEB %d EC %d to the used tree",
1482 				       e->pnum, e->ec);
1483 				wl_tree_add(e, &ubi->used);
1484 			} else {
1485 				dbg_wl("add PEB %d EC %d to the scrub tree",
1486 				       e->pnum, e->ec);
1487 				wl_tree_add(e, &ubi->scrub);
1488 			}
1489 		}
1490 	}
1491 
1492 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1493 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1494 			ubi->avail_pebs, WL_RESERVED_PEBS);
1495 		goto out_free;
1496 	}
1497 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1498 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1499 
1500 	/* Schedule wear-leveling if needed */
1501 	err = ensure_wear_leveling(ubi);
1502 	if (err)
1503 		goto out_free;
1504 
1505 	return 0;
1506 
1507 out_free:
1508 	cancel_pending(ubi);
1509 	tree_destroy(&ubi->used);
1510 	tree_destroy(&ubi->free);
1511 	tree_destroy(&ubi->scrub);
1512 	kfree(ubi->lookuptbl);
1513 	if (ubi_devices_cnt == 0)
1514 		kmem_cache_destroy(wl_entries_slab);
1515 	return err;
1516 }
1517 
1518 /**
1519  * protection_trees_destroy - destroy the protection RB-trees.
1520  * @ubi: UBI device description object
1521  */
1522 static void protection_trees_destroy(struct ubi_device *ubi)
1523 {
1524 	struct rb_node *rb;
1525 	struct ubi_wl_prot_entry *pe;
1526 
1527 	rb = ubi->prot.aec.rb_node;
1528 	while (rb) {
1529 		if (rb->rb_left)
1530 			rb = rb->rb_left;
1531 		else if (rb->rb_right)
1532 			rb = rb->rb_right;
1533 		else {
1534 			pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1535 
1536 			rb = rb_parent(rb);
1537 			if (rb) {
1538 				if (rb->rb_left == &pe->rb_aec)
1539 					rb->rb_left = NULL;
1540 				else
1541 					rb->rb_right = NULL;
1542 			}
1543 
1544 			kmem_cache_free(wl_entries_slab, pe->e);
1545 			kfree(pe);
1546 		}
1547 	}
1548 }
1549 
1550 /**
1551  * ubi_wl_close - close the wear-leveling unit.
1552  * @ubi: UBI device description object
1553  */
1554 void ubi_wl_close(struct ubi_device *ubi)
1555 {
1556 	dbg_wl("disable \"%s\"", ubi->bgt_name);
1557 	if (ubi->bgt_thread)
1558 		kthread_stop(ubi->bgt_thread);
1559 
1560 	dbg_wl("close the UBI wear-leveling unit");
1561 
1562 	cancel_pending(ubi);
1563 	protection_trees_destroy(ubi);
1564 	tree_destroy(&ubi->used);
1565 	tree_destroy(&ubi->free);
1566 	tree_destroy(&ubi->scrub);
1567 	kfree(ubi->lookuptbl);
1568 	if (ubi_devices_cnt == 1)
1569 		kmem_cache_destroy(wl_entries_slab);
1570 }
1571 
1572 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1573 
1574 /**
1575  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1576  * is correct.
1577  * @ubi: UBI device description object
1578  * @pnum: the physical eraseblock number to check
1579  * @ec: the erase counter to check
1580  *
1581  * This function returns zero if the erase counter of physical eraseblock @pnum
1582  * is equivalent to @ec, %1 if not, and a negative error code if an error
1583  * occurred.
1584  */
1585 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1586 {
1587 	int err;
1588 	long long read_ec;
1589 	struct ubi_ec_hdr *ec_hdr;
1590 
1591 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1592 	if (!ec_hdr)
1593 		return -ENOMEM;
1594 
1595 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1596 	if (err && err != UBI_IO_BITFLIPS) {
1597 		/* The header does not have to exist */
1598 		err = 0;
1599 		goto out_free;
1600 	}
1601 
1602 	read_ec = be64_to_cpu(ec_hdr->ec);
1603 	if (ec != read_ec) {
1604 		ubi_err("paranoid check failed for PEB %d", pnum);
1605 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1606 		ubi_dbg_dump_stack();
1607 		err = 1;
1608 	} else
1609 		err = 0;
1610 
1611 out_free:
1612 	kfree(ec_hdr);
1613 	return err;
1614 }
1615 
1616 /**
1617  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1618  * in a WL RB-tree.
1619  * @e: the wear-leveling entry to check
1620  * @root: the root of the tree
1621  *
1622  * This function returns zero if @e is in the @root RB-tree and %1 if it
1623  * is not.
1624  */
1625 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1626 				     struct rb_root *root)
1627 {
1628 	if (in_wl_tree(e, root))
1629 		return 0;
1630 
1631 	ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1632 		e->pnum, e->ec, root);
1633 	ubi_dbg_dump_stack();
1634 	return 1;
1635 }
1636 
1637 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1638