xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 5bd8e16d)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109 
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117 
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130 
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136 
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 				 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 			    struct ubi_wl_entry *e);
142 
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 	ubi_update_fastmap(ubi);
152 }
153 
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161 	int i;
162 
163 	if (!ubi->fm)
164 		return 0;
165 
166 	for (i = 0; i < ubi->fm->used_blocks; i++)
167 		if (ubi->fm->e[i]->pnum == pnum)
168 			return 1;
169 
170 	return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175 	return 0;
176 }
177 #endif
178 
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189 	struct rb_node **p, *parent = NULL;
190 
191 	p = &root->rb_node;
192 	while (*p) {
193 		struct ubi_wl_entry *e1;
194 
195 		parent = *p;
196 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 
198 		if (e->ec < e1->ec)
199 			p = &(*p)->rb_left;
200 		else if (e->ec > e1->ec)
201 			p = &(*p)->rb_right;
202 		else {
203 			ubi_assert(e->pnum != e1->pnum);
204 			if (e->pnum < e1->pnum)
205 				p = &(*p)->rb_left;
206 			else
207 				p = &(*p)->rb_right;
208 		}
209 	}
210 
211 	rb_link_node(&e->u.rb, parent, p);
212 	rb_insert_color(&e->u.rb, root);
213 }
214 
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224 	int err;
225 	struct ubi_work *wrk;
226 
227 	cond_resched();
228 
229 	/*
230 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 	 * it in read mode, so many of them may be doing works at a time. But
232 	 * the queue flush code has to be sure the whole queue of works is
233 	 * done, and it takes the mutex in write mode.
234 	 */
235 	down_read(&ubi->work_sem);
236 	spin_lock(&ubi->wl_lock);
237 	if (list_empty(&ubi->works)) {
238 		spin_unlock(&ubi->wl_lock);
239 		up_read(&ubi->work_sem);
240 		return 0;
241 	}
242 
243 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 	list_del(&wrk->list);
245 	ubi->works_count -= 1;
246 	ubi_assert(ubi->works_count >= 0);
247 	spin_unlock(&ubi->wl_lock);
248 
249 	/*
250 	 * Call the worker function. Do not touch the work structure
251 	 * after this call as it will have been freed or reused by that
252 	 * time by the worker function.
253 	 */
254 	err = wrk->func(ubi, wrk, 0);
255 	if (err)
256 		ubi_err("work failed with error code %d", err);
257 	up_read(&ubi->work_sem);
258 
259 	return err;
260 }
261 
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273 	int err;
274 
275 	while (!ubi->free.rb_node) {
276 		spin_unlock(&ubi->wl_lock);
277 
278 		dbg_wl("do one work synchronously");
279 		err = do_work(ubi);
280 
281 		spin_lock(&ubi->wl_lock);
282 		if (err)
283 			return err;
284 	}
285 
286 	return 0;
287 }
288 
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299 	struct rb_node *p;
300 
301 	p = root->rb_node;
302 	while (p) {
303 		struct ubi_wl_entry *e1;
304 
305 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306 
307 		if (e->pnum == e1->pnum) {
308 			ubi_assert(e == e1);
309 			return 1;
310 		}
311 
312 		if (e->ec < e1->ec)
313 			p = p->rb_left;
314 		else if (e->ec > e1->ec)
315 			p = p->rb_right;
316 		else {
317 			ubi_assert(e->pnum != e1->pnum);
318 			if (e->pnum < e1->pnum)
319 				p = p->rb_left;
320 			else
321 				p = p->rb_right;
322 		}
323 	}
324 
325 	return 0;
326 }
327 
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340 	int pq_tail = ubi->pq_head - 1;
341 
342 	if (pq_tail < 0)
343 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348 
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 					  struct rb_root *root, int diff)
360 {
361 	struct rb_node *p;
362 	struct ubi_wl_entry *e, *prev_e = NULL;
363 	int max;
364 
365 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366 	max = e->ec + diff;
367 
368 	p = root->rb_node;
369 	while (p) {
370 		struct ubi_wl_entry *e1;
371 
372 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373 		if (e1->ec >= max)
374 			p = p->rb_left;
375 		else {
376 			p = p->rb_right;
377 			prev_e = e;
378 			e = e1;
379 		}
380 	}
381 
382 	/* If no fastmap has been written and this WL entry can be used
383 	 * as anchor PEB, hold it back and return the second best WL entry
384 	 * such that fastmap can use the anchor PEB later. */
385 	if (prev_e && !ubi->fm_disabled &&
386 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
387 		return prev_e;
388 
389 	return e;
390 }
391 
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 					       struct rb_root *root)
403 {
404 	struct ubi_wl_entry *e, *first, *last;
405 
406 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408 
409 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411 
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 		/* If no fastmap has been written and this WL entry can be used
414 		 * as anchor PEB, hold it back and return the second best
415 		 * WL entry such that fastmap can use the anchor PEB later. */
416 		if (e && !ubi->fm_disabled && !ubi->fm &&
417 		    e->pnum < UBI_FM_MAX_START)
418 			e = rb_entry(rb_next(root->rb_node),
419 				     struct ubi_wl_entry, u.rb);
420 #endif
421 	} else
422 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423 
424 	return e;
425 }
426 
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434 	struct rb_node *p;
435 	struct ubi_wl_entry *e, *victim = NULL;
436 	int max_ec = UBI_MAX_ERASECOUNTER;
437 
438 	ubi_rb_for_each_entry(p, e, root, u.rb) {
439 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440 			victim = e;
441 			max_ec = e->ec;
442 		}
443 	}
444 
445 	return victim;
446 }
447 
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450 	struct rb_node *p;
451 	struct ubi_wl_entry *e;
452 
453 	ubi_rb_for_each_entry(p, e, root, u.rb)
454 		if (e->pnum < UBI_FM_MAX_START)
455 			return 1;
456 
457 	return 0;
458 }
459 
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471 	struct ubi_wl_entry *e = NULL;
472 
473 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474 		goto out;
475 
476 	if (anchor)
477 		e = find_anchor_wl_entry(&ubi->free);
478 	else
479 		e = find_mean_wl_entry(ubi, &ubi->free);
480 
481 	if (!e)
482 		goto out;
483 
484 	self_check_in_wl_tree(ubi, e, &ubi->free);
485 
486 	/* remove it from the free list,
487 	 * the wl subsystem does no longer know this erase block */
488 	rb_erase(&e->u.rb, &ubi->free);
489 	ubi->free_count--;
490 out:
491 	return e;
492 }
493 #endif
494 
495 /**
496  * __wl_get_peb - get a physical eraseblock.
497  * @ubi: UBI device description object
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure.
501  */
502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504 	int err;
505 	struct ubi_wl_entry *e;
506 
507 retry:
508 	if (!ubi->free.rb_node) {
509 		if (ubi->works_count == 0) {
510 			ubi_err("no free eraseblocks");
511 			ubi_assert(list_empty(&ubi->works));
512 			return -ENOSPC;
513 		}
514 
515 		err = produce_free_peb(ubi);
516 		if (err < 0)
517 			return err;
518 		goto retry;
519 	}
520 
521 	e = find_mean_wl_entry(ubi, &ubi->free);
522 	if (!e) {
523 		ubi_err("no free eraseblocks");
524 		return -ENOSPC;
525 	}
526 
527 	self_check_in_wl_tree(ubi, e, &ubi->free);
528 
529 	/*
530 	 * Move the physical eraseblock to the protection queue where it will
531 	 * be protected from being moved for some time.
532 	 */
533 	rb_erase(&e->u.rb, &ubi->free);
534 	ubi->free_count--;
535 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537 	/* We have to enqueue e only if fastmap is disabled,
538 	 * is fastmap enabled prot_queue_add() will be called by
539 	 * ubi_wl_get_peb() after removing e from the pool. */
540 	prot_queue_add(ubi, e);
541 #endif
542 	return e->pnum;
543 }
544 
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547  * return_unused_pool_pebs - returns unused PEB to the free tree.
548  * @ubi: UBI device description object
549  * @pool: fastmap pool description object
550  */
551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552 				    struct ubi_fm_pool *pool)
553 {
554 	int i;
555 	struct ubi_wl_entry *e;
556 
557 	for (i = pool->used; i < pool->size; i++) {
558 		e = ubi->lookuptbl[pool->pebs[i]];
559 		wl_tree_add(e, &ubi->free);
560 		ubi->free_count++;
561 	}
562 }
563 
564 /**
565  * refill_wl_pool - refills all the fastmap pool used by the
566  * WL sub-system.
567  * @ubi: UBI device description object
568  */
569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571 	struct ubi_wl_entry *e;
572 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573 
574 	return_unused_pool_pebs(ubi, pool);
575 
576 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577 		if (!ubi->free.rb_node ||
578 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579 			break;
580 
581 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582 		self_check_in_wl_tree(ubi, e, &ubi->free);
583 		rb_erase(&e->u.rb, &ubi->free);
584 		ubi->free_count--;
585 
586 		pool->pebs[pool->size] = e->pnum;
587 	}
588 	pool->used = 0;
589 }
590 
591 /**
592  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593  * @ubi: UBI device description object
594  */
595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597 	struct ubi_fm_pool *pool = &ubi->fm_pool;
598 
599 	return_unused_pool_pebs(ubi, pool);
600 
601 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602 		if (!ubi->free.rb_node ||
603 		   (ubi->free_count - ubi->beb_rsvd_pebs < 1))
604 			break;
605 
606 		pool->pebs[pool->size] = __wl_get_peb(ubi);
607 		if (pool->pebs[pool->size] < 0)
608 			break;
609 	}
610 	pool->used = 0;
611 }
612 
613 /**
614  * ubi_refill_pools - refills all fastmap PEB pools.
615  * @ubi: UBI device description object
616  */
617 void ubi_refill_pools(struct ubi_device *ubi)
618 {
619 	spin_lock(&ubi->wl_lock);
620 	refill_wl_pool(ubi);
621 	refill_wl_user_pool(ubi);
622 	spin_unlock(&ubi->wl_lock);
623 }
624 
625 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
626  * the fastmap pool.
627  */
628 int ubi_wl_get_peb(struct ubi_device *ubi)
629 {
630 	int ret;
631 	struct ubi_fm_pool *pool = &ubi->fm_pool;
632 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
633 
634 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
635 	    wl_pool->used == wl_pool->size)
636 		ubi_update_fastmap(ubi);
637 
638 	/* we got not a single free PEB */
639 	if (!pool->size)
640 		ret = -ENOSPC;
641 	else {
642 		spin_lock(&ubi->wl_lock);
643 		ret = pool->pebs[pool->used++];
644 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
645 		spin_unlock(&ubi->wl_lock);
646 	}
647 
648 	return ret;
649 }
650 
651 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
652  *
653  * @ubi: UBI device description object
654  */
655 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
656 {
657 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
658 	int pnum;
659 
660 	if (pool->used == pool->size || !pool->size) {
661 		/* We cannot update the fastmap here because this
662 		 * function is called in atomic context.
663 		 * Let's fail here and refill/update it as soon as possible. */
664 		schedule_work(&ubi->fm_work);
665 		return NULL;
666 	} else {
667 		pnum = pool->pebs[pool->used++];
668 		return ubi->lookuptbl[pnum];
669 	}
670 }
671 #else
672 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
673 {
674 	struct ubi_wl_entry *e;
675 
676 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
677 	self_check_in_wl_tree(ubi, e, &ubi->free);
678 	rb_erase(&e->u.rb, &ubi->free);
679 
680 	return e;
681 }
682 
683 int ubi_wl_get_peb(struct ubi_device *ubi)
684 {
685 	int peb, err;
686 
687 	spin_lock(&ubi->wl_lock);
688 	peb = __wl_get_peb(ubi);
689 	spin_unlock(&ubi->wl_lock);
690 
691 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
692 				    ubi->peb_size - ubi->vid_hdr_aloffset);
693 	if (err) {
694 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
695 		return err;
696 	}
697 
698 	return peb;
699 }
700 #endif
701 
702 /**
703  * prot_queue_del - remove a physical eraseblock from the protection queue.
704  * @ubi: UBI device description object
705  * @pnum: the physical eraseblock to remove
706  *
707  * This function deletes PEB @pnum from the protection queue and returns zero
708  * in case of success and %-ENODEV if the PEB was not found.
709  */
710 static int prot_queue_del(struct ubi_device *ubi, int pnum)
711 {
712 	struct ubi_wl_entry *e;
713 
714 	e = ubi->lookuptbl[pnum];
715 	if (!e)
716 		return -ENODEV;
717 
718 	if (self_check_in_pq(ubi, e))
719 		return -ENODEV;
720 
721 	list_del(&e->u.list);
722 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
723 	return 0;
724 }
725 
726 /**
727  * sync_erase - synchronously erase a physical eraseblock.
728  * @ubi: UBI device description object
729  * @e: the the physical eraseblock to erase
730  * @torture: if the physical eraseblock has to be tortured
731  *
732  * This function returns zero in case of success and a negative error code in
733  * case of failure.
734  */
735 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
736 		      int torture)
737 {
738 	int err;
739 	struct ubi_ec_hdr *ec_hdr;
740 	unsigned long long ec = e->ec;
741 
742 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
743 
744 	err = self_check_ec(ubi, e->pnum, e->ec);
745 	if (err)
746 		return -EINVAL;
747 
748 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
749 	if (!ec_hdr)
750 		return -ENOMEM;
751 
752 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
753 	if (err < 0)
754 		goto out_free;
755 
756 	ec += err;
757 	if (ec > UBI_MAX_ERASECOUNTER) {
758 		/*
759 		 * Erase counter overflow. Upgrade UBI and use 64-bit
760 		 * erase counters internally.
761 		 */
762 		ubi_err("erase counter overflow at PEB %d, EC %llu",
763 			e->pnum, ec);
764 		err = -EINVAL;
765 		goto out_free;
766 	}
767 
768 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
769 
770 	ec_hdr->ec = cpu_to_be64(ec);
771 
772 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
773 	if (err)
774 		goto out_free;
775 
776 	e->ec = ec;
777 	spin_lock(&ubi->wl_lock);
778 	if (e->ec > ubi->max_ec)
779 		ubi->max_ec = e->ec;
780 	spin_unlock(&ubi->wl_lock);
781 
782 out_free:
783 	kfree(ec_hdr);
784 	return err;
785 }
786 
787 /**
788  * serve_prot_queue - check if it is time to stop protecting PEBs.
789  * @ubi: UBI device description object
790  *
791  * This function is called after each erase operation and removes PEBs from the
792  * tail of the protection queue. These PEBs have been protected for long enough
793  * and should be moved to the used tree.
794  */
795 static void serve_prot_queue(struct ubi_device *ubi)
796 {
797 	struct ubi_wl_entry *e, *tmp;
798 	int count;
799 
800 	/*
801 	 * There may be several protected physical eraseblock to remove,
802 	 * process them all.
803 	 */
804 repeat:
805 	count = 0;
806 	spin_lock(&ubi->wl_lock);
807 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
808 		dbg_wl("PEB %d EC %d protection over, move to used tree",
809 			e->pnum, e->ec);
810 
811 		list_del(&e->u.list);
812 		wl_tree_add(e, &ubi->used);
813 		if (count++ > 32) {
814 			/*
815 			 * Let's be nice and avoid holding the spinlock for
816 			 * too long.
817 			 */
818 			spin_unlock(&ubi->wl_lock);
819 			cond_resched();
820 			goto repeat;
821 		}
822 	}
823 
824 	ubi->pq_head += 1;
825 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
826 		ubi->pq_head = 0;
827 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
828 	spin_unlock(&ubi->wl_lock);
829 }
830 
831 /**
832  * __schedule_ubi_work - schedule a work.
833  * @ubi: UBI device description object
834  * @wrk: the work to schedule
835  *
836  * This function adds a work defined by @wrk to the tail of the pending works
837  * list. Can only be used of ubi->work_sem is already held in read mode!
838  */
839 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
840 {
841 	spin_lock(&ubi->wl_lock);
842 	list_add_tail(&wrk->list, &ubi->works);
843 	ubi_assert(ubi->works_count >= 0);
844 	ubi->works_count += 1;
845 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
846 		wake_up_process(ubi->bgt_thread);
847 	spin_unlock(&ubi->wl_lock);
848 }
849 
850 /**
851  * schedule_ubi_work - schedule a work.
852  * @ubi: UBI device description object
853  * @wrk: the work to schedule
854  *
855  * This function adds a work defined by @wrk to the tail of the pending works
856  * list.
857  */
858 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
859 {
860 	down_read(&ubi->work_sem);
861 	__schedule_ubi_work(ubi, wrk);
862 	up_read(&ubi->work_sem);
863 }
864 
865 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
866 			int cancel);
867 
868 #ifdef CONFIG_MTD_UBI_FASTMAP
869 /**
870  * ubi_is_erase_work - checks whether a work is erase work.
871  * @wrk: The work object to be checked
872  */
873 int ubi_is_erase_work(struct ubi_work *wrk)
874 {
875 	return wrk->func == erase_worker;
876 }
877 #endif
878 
879 /**
880  * schedule_erase - schedule an erase work.
881  * @ubi: UBI device description object
882  * @e: the WL entry of the physical eraseblock to erase
883  * @vol_id: the volume ID that last used this PEB
884  * @lnum: the last used logical eraseblock number for the PEB
885  * @torture: if the physical eraseblock has to be tortured
886  *
887  * This function returns zero in case of success and a %-ENOMEM in case of
888  * failure.
889  */
890 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
891 			  int vol_id, int lnum, int torture)
892 {
893 	struct ubi_work *wl_wrk;
894 
895 	ubi_assert(e);
896 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
897 
898 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
899 	       e->pnum, e->ec, torture);
900 
901 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
902 	if (!wl_wrk)
903 		return -ENOMEM;
904 
905 	wl_wrk->func = &erase_worker;
906 	wl_wrk->e = e;
907 	wl_wrk->vol_id = vol_id;
908 	wl_wrk->lnum = lnum;
909 	wl_wrk->torture = torture;
910 
911 	schedule_ubi_work(ubi, wl_wrk);
912 	return 0;
913 }
914 
915 /**
916  * do_sync_erase - run the erase worker synchronously.
917  * @ubi: UBI device description object
918  * @e: the WL entry of the physical eraseblock to erase
919  * @vol_id: the volume ID that last used this PEB
920  * @lnum: the last used logical eraseblock number for the PEB
921  * @torture: if the physical eraseblock has to be tortured
922  *
923  */
924 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
925 			 int vol_id, int lnum, int torture)
926 {
927 	struct ubi_work *wl_wrk;
928 
929 	dbg_wl("sync erase of PEB %i", e->pnum);
930 
931 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
932 	if (!wl_wrk)
933 		return -ENOMEM;
934 
935 	wl_wrk->e = e;
936 	wl_wrk->vol_id = vol_id;
937 	wl_wrk->lnum = lnum;
938 	wl_wrk->torture = torture;
939 
940 	return erase_worker(ubi, wl_wrk, 0);
941 }
942 
943 #ifdef CONFIG_MTD_UBI_FASTMAP
944 /**
945  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
946  * sub-system.
947  * see: ubi_wl_put_peb()
948  *
949  * @ubi: UBI device description object
950  * @fm_e: physical eraseblock to return
951  * @lnum: the last used logical eraseblock number for the PEB
952  * @torture: if this physical eraseblock has to be tortured
953  */
954 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
955 		      int lnum, int torture)
956 {
957 	struct ubi_wl_entry *e;
958 	int vol_id, pnum = fm_e->pnum;
959 
960 	dbg_wl("PEB %d", pnum);
961 
962 	ubi_assert(pnum >= 0);
963 	ubi_assert(pnum < ubi->peb_count);
964 
965 	spin_lock(&ubi->wl_lock);
966 	e = ubi->lookuptbl[pnum];
967 
968 	/* This can happen if we recovered from a fastmap the very
969 	 * first time and writing now a new one. In this case the wl system
970 	 * has never seen any PEB used by the original fastmap.
971 	 */
972 	if (!e) {
973 		e = fm_e;
974 		ubi_assert(e->ec >= 0);
975 		ubi->lookuptbl[pnum] = e;
976 	} else {
977 		e->ec = fm_e->ec;
978 		kfree(fm_e);
979 	}
980 
981 	spin_unlock(&ubi->wl_lock);
982 
983 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
984 	return schedule_erase(ubi, e, vol_id, lnum, torture);
985 }
986 #endif
987 
988 /**
989  * wear_leveling_worker - wear-leveling worker function.
990  * @ubi: UBI device description object
991  * @wrk: the work object
992  * @cancel: non-zero if the worker has to free memory and exit
993  *
994  * This function copies a more worn out physical eraseblock to a less worn out
995  * one. Returns zero in case of success and a negative error code in case of
996  * failure.
997  */
998 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
999 				int cancel)
1000 {
1001 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1002 	int vol_id = -1, uninitialized_var(lnum);
1003 #ifdef CONFIG_MTD_UBI_FASTMAP
1004 	int anchor = wrk->anchor;
1005 #endif
1006 	struct ubi_wl_entry *e1, *e2;
1007 	struct ubi_vid_hdr *vid_hdr;
1008 
1009 	kfree(wrk);
1010 	if (cancel)
1011 		return 0;
1012 
1013 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1014 	if (!vid_hdr)
1015 		return -ENOMEM;
1016 
1017 	mutex_lock(&ubi->move_mutex);
1018 	spin_lock(&ubi->wl_lock);
1019 	ubi_assert(!ubi->move_from && !ubi->move_to);
1020 	ubi_assert(!ubi->move_to_put);
1021 
1022 	if (!ubi->free.rb_node ||
1023 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1024 		/*
1025 		 * No free physical eraseblocks? Well, they must be waiting in
1026 		 * the queue to be erased. Cancel movement - it will be
1027 		 * triggered again when a free physical eraseblock appears.
1028 		 *
1029 		 * No used physical eraseblocks? They must be temporarily
1030 		 * protected from being moved. They will be moved to the
1031 		 * @ubi->used tree later and the wear-leveling will be
1032 		 * triggered again.
1033 		 */
1034 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1035 		       !ubi->free.rb_node, !ubi->used.rb_node);
1036 		goto out_cancel;
1037 	}
1038 
1039 #ifdef CONFIG_MTD_UBI_FASTMAP
1040 	/* Check whether we need to produce an anchor PEB */
1041 	if (!anchor)
1042 		anchor = !anchor_pebs_avalible(&ubi->free);
1043 
1044 	if (anchor) {
1045 		e1 = find_anchor_wl_entry(&ubi->used);
1046 		if (!e1)
1047 			goto out_cancel;
1048 		e2 = get_peb_for_wl(ubi);
1049 		if (!e2)
1050 			goto out_cancel;
1051 
1052 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1053 		rb_erase(&e1->u.rb, &ubi->used);
1054 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1055 	} else if (!ubi->scrub.rb_node) {
1056 #else
1057 	if (!ubi->scrub.rb_node) {
1058 #endif
1059 		/*
1060 		 * Now pick the least worn-out used physical eraseblock and a
1061 		 * highly worn-out free physical eraseblock. If the erase
1062 		 * counters differ much enough, start wear-leveling.
1063 		 */
1064 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1065 		e2 = get_peb_for_wl(ubi);
1066 		if (!e2)
1067 			goto out_cancel;
1068 
1069 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1070 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1071 			       e1->ec, e2->ec);
1072 
1073 			/* Give the unused PEB back */
1074 			wl_tree_add(e2, &ubi->free);
1075 			goto out_cancel;
1076 		}
1077 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1078 		rb_erase(&e1->u.rb, &ubi->used);
1079 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1080 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1081 	} else {
1082 		/* Perform scrubbing */
1083 		scrubbing = 1;
1084 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1085 		e2 = get_peb_for_wl(ubi);
1086 		if (!e2)
1087 			goto out_cancel;
1088 
1089 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1090 		rb_erase(&e1->u.rb, &ubi->scrub);
1091 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1092 	}
1093 
1094 	ubi->move_from = e1;
1095 	ubi->move_to = e2;
1096 	spin_unlock(&ubi->wl_lock);
1097 
1098 	/*
1099 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1100 	 * We so far do not know which logical eraseblock our physical
1101 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1102 	 * header first.
1103 	 *
1104 	 * Note, we are protected from this PEB being unmapped and erased. The
1105 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1106 	 * which is being moved was unmapped.
1107 	 */
1108 
1109 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1110 	if (err && err != UBI_IO_BITFLIPS) {
1111 		if (err == UBI_IO_FF) {
1112 			/*
1113 			 * We are trying to move PEB without a VID header. UBI
1114 			 * always write VID headers shortly after the PEB was
1115 			 * given, so we have a situation when it has not yet
1116 			 * had a chance to write it, because it was preempted.
1117 			 * So add this PEB to the protection queue so far,
1118 			 * because presumably more data will be written there
1119 			 * (including the missing VID header), and then we'll
1120 			 * move it.
1121 			 */
1122 			dbg_wl("PEB %d has no VID header", e1->pnum);
1123 			protect = 1;
1124 			goto out_not_moved;
1125 		} else if (err == UBI_IO_FF_BITFLIPS) {
1126 			/*
1127 			 * The same situation as %UBI_IO_FF, but bit-flips were
1128 			 * detected. It is better to schedule this PEB for
1129 			 * scrubbing.
1130 			 */
1131 			dbg_wl("PEB %d has no VID header but has bit-flips",
1132 			       e1->pnum);
1133 			scrubbing = 1;
1134 			goto out_not_moved;
1135 		}
1136 
1137 		ubi_err("error %d while reading VID header from PEB %d",
1138 			err, e1->pnum);
1139 		goto out_error;
1140 	}
1141 
1142 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1143 	lnum = be32_to_cpu(vid_hdr->lnum);
1144 
1145 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1146 	if (err) {
1147 		if (err == MOVE_CANCEL_RACE) {
1148 			/*
1149 			 * The LEB has not been moved because the volume is
1150 			 * being deleted or the PEB has been put meanwhile. We
1151 			 * should prevent this PEB from being selected for
1152 			 * wear-leveling movement again, so put it to the
1153 			 * protection queue.
1154 			 */
1155 			protect = 1;
1156 			goto out_not_moved;
1157 		}
1158 		if (err == MOVE_RETRY) {
1159 			scrubbing = 1;
1160 			goto out_not_moved;
1161 		}
1162 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1163 		    err == MOVE_TARGET_RD_ERR) {
1164 			/*
1165 			 * Target PEB had bit-flips or write error - torture it.
1166 			 */
1167 			torture = 1;
1168 			goto out_not_moved;
1169 		}
1170 
1171 		if (err == MOVE_SOURCE_RD_ERR) {
1172 			/*
1173 			 * An error happened while reading the source PEB. Do
1174 			 * not switch to R/O mode in this case, and give the
1175 			 * upper layers a possibility to recover from this,
1176 			 * e.g. by unmapping corresponding LEB. Instead, just
1177 			 * put this PEB to the @ubi->erroneous list to prevent
1178 			 * UBI from trying to move it over and over again.
1179 			 */
1180 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1181 				ubi_err("too many erroneous eraseblocks (%d)",
1182 					ubi->erroneous_peb_count);
1183 				goto out_error;
1184 			}
1185 			erroneous = 1;
1186 			goto out_not_moved;
1187 		}
1188 
1189 		if (err < 0)
1190 			goto out_error;
1191 
1192 		ubi_assert(0);
1193 	}
1194 
1195 	/* The PEB has been successfully moved */
1196 	if (scrubbing)
1197 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1198 			e1->pnum, vol_id, lnum, e2->pnum);
1199 	ubi_free_vid_hdr(ubi, vid_hdr);
1200 
1201 	spin_lock(&ubi->wl_lock);
1202 	if (!ubi->move_to_put) {
1203 		wl_tree_add(e2, &ubi->used);
1204 		e2 = NULL;
1205 	}
1206 	ubi->move_from = ubi->move_to = NULL;
1207 	ubi->move_to_put = ubi->wl_scheduled = 0;
1208 	spin_unlock(&ubi->wl_lock);
1209 
1210 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1211 	if (err) {
1212 		kmem_cache_free(ubi_wl_entry_slab, e1);
1213 		if (e2)
1214 			kmem_cache_free(ubi_wl_entry_slab, e2);
1215 		goto out_ro;
1216 	}
1217 
1218 	if (e2) {
1219 		/*
1220 		 * Well, the target PEB was put meanwhile, schedule it for
1221 		 * erasure.
1222 		 */
1223 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1224 		       e2->pnum, vol_id, lnum);
1225 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1226 		if (err) {
1227 			kmem_cache_free(ubi_wl_entry_slab, e2);
1228 			goto out_ro;
1229 		}
1230 	}
1231 
1232 	dbg_wl("done");
1233 	mutex_unlock(&ubi->move_mutex);
1234 	return 0;
1235 
1236 	/*
1237 	 * For some reasons the LEB was not moved, might be an error, might be
1238 	 * something else. @e1 was not changed, so return it back. @e2 might
1239 	 * have been changed, schedule it for erasure.
1240 	 */
1241 out_not_moved:
1242 	if (vol_id != -1)
1243 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1244 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1245 	else
1246 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1247 		       e1->pnum, e2->pnum, err);
1248 	spin_lock(&ubi->wl_lock);
1249 	if (protect)
1250 		prot_queue_add(ubi, e1);
1251 	else if (erroneous) {
1252 		wl_tree_add(e1, &ubi->erroneous);
1253 		ubi->erroneous_peb_count += 1;
1254 	} else if (scrubbing)
1255 		wl_tree_add(e1, &ubi->scrub);
1256 	else
1257 		wl_tree_add(e1, &ubi->used);
1258 	ubi_assert(!ubi->move_to_put);
1259 	ubi->move_from = ubi->move_to = NULL;
1260 	ubi->wl_scheduled = 0;
1261 	spin_unlock(&ubi->wl_lock);
1262 
1263 	ubi_free_vid_hdr(ubi, vid_hdr);
1264 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1265 	if (err) {
1266 		kmem_cache_free(ubi_wl_entry_slab, e2);
1267 		goto out_ro;
1268 	}
1269 	mutex_unlock(&ubi->move_mutex);
1270 	return 0;
1271 
1272 out_error:
1273 	if (vol_id != -1)
1274 		ubi_err("error %d while moving PEB %d to PEB %d",
1275 			err, e1->pnum, e2->pnum);
1276 	else
1277 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1278 			err, e1->pnum, vol_id, lnum, e2->pnum);
1279 	spin_lock(&ubi->wl_lock);
1280 	ubi->move_from = ubi->move_to = NULL;
1281 	ubi->move_to_put = ubi->wl_scheduled = 0;
1282 	spin_unlock(&ubi->wl_lock);
1283 
1284 	ubi_free_vid_hdr(ubi, vid_hdr);
1285 	kmem_cache_free(ubi_wl_entry_slab, e1);
1286 	kmem_cache_free(ubi_wl_entry_slab, e2);
1287 
1288 out_ro:
1289 	ubi_ro_mode(ubi);
1290 	mutex_unlock(&ubi->move_mutex);
1291 	ubi_assert(err != 0);
1292 	return err < 0 ? err : -EIO;
1293 
1294 out_cancel:
1295 	ubi->wl_scheduled = 0;
1296 	spin_unlock(&ubi->wl_lock);
1297 	mutex_unlock(&ubi->move_mutex);
1298 	ubi_free_vid_hdr(ubi, vid_hdr);
1299 	return 0;
1300 }
1301 
1302 /**
1303  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1304  * @ubi: UBI device description object
1305  * @nested: set to non-zero if this function is called from UBI worker
1306  *
1307  * This function checks if it is time to start wear-leveling and schedules it
1308  * if yes. This function returns zero in case of success and a negative error
1309  * code in case of failure.
1310  */
1311 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1312 {
1313 	int err = 0;
1314 	struct ubi_wl_entry *e1;
1315 	struct ubi_wl_entry *e2;
1316 	struct ubi_work *wrk;
1317 
1318 	spin_lock(&ubi->wl_lock);
1319 	if (ubi->wl_scheduled)
1320 		/* Wear-leveling is already in the work queue */
1321 		goto out_unlock;
1322 
1323 	/*
1324 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1325 	 * the WL worker has to be scheduled anyway.
1326 	 */
1327 	if (!ubi->scrub.rb_node) {
1328 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1329 			/* No physical eraseblocks - no deal */
1330 			goto out_unlock;
1331 
1332 		/*
1333 		 * We schedule wear-leveling only if the difference between the
1334 		 * lowest erase counter of used physical eraseblocks and a high
1335 		 * erase counter of free physical eraseblocks is greater than
1336 		 * %UBI_WL_THRESHOLD.
1337 		 */
1338 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1339 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1340 
1341 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1342 			goto out_unlock;
1343 		dbg_wl("schedule wear-leveling");
1344 	} else
1345 		dbg_wl("schedule scrubbing");
1346 
1347 	ubi->wl_scheduled = 1;
1348 	spin_unlock(&ubi->wl_lock);
1349 
1350 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1351 	if (!wrk) {
1352 		err = -ENOMEM;
1353 		goto out_cancel;
1354 	}
1355 
1356 	wrk->anchor = 0;
1357 	wrk->func = &wear_leveling_worker;
1358 	if (nested)
1359 		__schedule_ubi_work(ubi, wrk);
1360 	else
1361 		schedule_ubi_work(ubi, wrk);
1362 	return err;
1363 
1364 out_cancel:
1365 	spin_lock(&ubi->wl_lock);
1366 	ubi->wl_scheduled = 0;
1367 out_unlock:
1368 	spin_unlock(&ubi->wl_lock);
1369 	return err;
1370 }
1371 
1372 #ifdef CONFIG_MTD_UBI_FASTMAP
1373 /**
1374  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1375  * @ubi: UBI device description object
1376  */
1377 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1378 {
1379 	struct ubi_work *wrk;
1380 
1381 	spin_lock(&ubi->wl_lock);
1382 	if (ubi->wl_scheduled) {
1383 		spin_unlock(&ubi->wl_lock);
1384 		return 0;
1385 	}
1386 	ubi->wl_scheduled = 1;
1387 	spin_unlock(&ubi->wl_lock);
1388 
1389 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1390 	if (!wrk) {
1391 		spin_lock(&ubi->wl_lock);
1392 		ubi->wl_scheduled = 0;
1393 		spin_unlock(&ubi->wl_lock);
1394 		return -ENOMEM;
1395 	}
1396 
1397 	wrk->anchor = 1;
1398 	wrk->func = &wear_leveling_worker;
1399 	schedule_ubi_work(ubi, wrk);
1400 	return 0;
1401 }
1402 #endif
1403 
1404 /**
1405  * erase_worker - physical eraseblock erase worker function.
1406  * @ubi: UBI device description object
1407  * @wl_wrk: the work object
1408  * @cancel: non-zero if the worker has to free memory and exit
1409  *
1410  * This function erases a physical eraseblock and perform torture testing if
1411  * needed. It also takes care about marking the physical eraseblock bad if
1412  * needed. Returns zero in case of success and a negative error code in case of
1413  * failure.
1414  */
1415 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1416 			int cancel)
1417 {
1418 	struct ubi_wl_entry *e = wl_wrk->e;
1419 	int pnum = e->pnum;
1420 	int vol_id = wl_wrk->vol_id;
1421 	int lnum = wl_wrk->lnum;
1422 	int err, available_consumed = 0;
1423 
1424 	if (cancel) {
1425 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1426 		kfree(wl_wrk);
1427 		kmem_cache_free(ubi_wl_entry_slab, e);
1428 		return 0;
1429 	}
1430 
1431 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1432 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1433 
1434 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1435 
1436 	err = sync_erase(ubi, e, wl_wrk->torture);
1437 	if (!err) {
1438 		/* Fine, we've erased it successfully */
1439 		kfree(wl_wrk);
1440 
1441 		spin_lock(&ubi->wl_lock);
1442 		wl_tree_add(e, &ubi->free);
1443 		ubi->free_count++;
1444 		spin_unlock(&ubi->wl_lock);
1445 
1446 		/*
1447 		 * One more erase operation has happened, take care about
1448 		 * protected physical eraseblocks.
1449 		 */
1450 		serve_prot_queue(ubi);
1451 
1452 		/* And take care about wear-leveling */
1453 		err = ensure_wear_leveling(ubi, 1);
1454 		return err;
1455 	}
1456 
1457 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1458 	kfree(wl_wrk);
1459 
1460 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1461 	    err == -EBUSY) {
1462 		int err1;
1463 
1464 		/* Re-schedule the LEB for erasure */
1465 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1466 		if (err1) {
1467 			err = err1;
1468 			goto out_ro;
1469 		}
1470 		return err;
1471 	}
1472 
1473 	kmem_cache_free(ubi_wl_entry_slab, e);
1474 	if (err != -EIO)
1475 		/*
1476 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1477 		 * this physical eraseblock for erasure again would cause
1478 		 * errors again and again. Well, lets switch to R/O mode.
1479 		 */
1480 		goto out_ro;
1481 
1482 	/* It is %-EIO, the PEB went bad */
1483 
1484 	if (!ubi->bad_allowed) {
1485 		ubi_err("bad physical eraseblock %d detected", pnum);
1486 		goto out_ro;
1487 	}
1488 
1489 	spin_lock(&ubi->volumes_lock);
1490 	if (ubi->beb_rsvd_pebs == 0) {
1491 		if (ubi->avail_pebs == 0) {
1492 			spin_unlock(&ubi->volumes_lock);
1493 			ubi_err("no reserved/available physical eraseblocks");
1494 			goto out_ro;
1495 		}
1496 		ubi->avail_pebs -= 1;
1497 		available_consumed = 1;
1498 	}
1499 	spin_unlock(&ubi->volumes_lock);
1500 
1501 	ubi_msg("mark PEB %d as bad", pnum);
1502 	err = ubi_io_mark_bad(ubi, pnum);
1503 	if (err)
1504 		goto out_ro;
1505 
1506 	spin_lock(&ubi->volumes_lock);
1507 	if (ubi->beb_rsvd_pebs > 0) {
1508 		if (available_consumed) {
1509 			/*
1510 			 * The amount of reserved PEBs increased since we last
1511 			 * checked.
1512 			 */
1513 			ubi->avail_pebs += 1;
1514 			available_consumed = 0;
1515 		}
1516 		ubi->beb_rsvd_pebs -= 1;
1517 	}
1518 	ubi->bad_peb_count += 1;
1519 	ubi->good_peb_count -= 1;
1520 	ubi_calculate_reserved(ubi);
1521 	if (available_consumed)
1522 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1523 	else if (ubi->beb_rsvd_pebs)
1524 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1525 	else
1526 		ubi_warn("last PEB from the reserve was used");
1527 	spin_unlock(&ubi->volumes_lock);
1528 
1529 	return err;
1530 
1531 out_ro:
1532 	if (available_consumed) {
1533 		spin_lock(&ubi->volumes_lock);
1534 		ubi->avail_pebs += 1;
1535 		spin_unlock(&ubi->volumes_lock);
1536 	}
1537 	ubi_ro_mode(ubi);
1538 	return err;
1539 }
1540 
1541 /**
1542  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1543  * @ubi: UBI device description object
1544  * @vol_id: the volume ID that last used this PEB
1545  * @lnum: the last used logical eraseblock number for the PEB
1546  * @pnum: physical eraseblock to return
1547  * @torture: if this physical eraseblock has to be tortured
1548  *
1549  * This function is called to return physical eraseblock @pnum to the pool of
1550  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1551  * occurred to this @pnum and it has to be tested. This function returns zero
1552  * in case of success, and a negative error code in case of failure.
1553  */
1554 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1555 		   int pnum, int torture)
1556 {
1557 	int err;
1558 	struct ubi_wl_entry *e;
1559 
1560 	dbg_wl("PEB %d", pnum);
1561 	ubi_assert(pnum >= 0);
1562 	ubi_assert(pnum < ubi->peb_count);
1563 
1564 retry:
1565 	spin_lock(&ubi->wl_lock);
1566 	e = ubi->lookuptbl[pnum];
1567 	if (e == ubi->move_from) {
1568 		/*
1569 		 * User is putting the physical eraseblock which was selected to
1570 		 * be moved. It will be scheduled for erasure in the
1571 		 * wear-leveling worker.
1572 		 */
1573 		dbg_wl("PEB %d is being moved, wait", pnum);
1574 		spin_unlock(&ubi->wl_lock);
1575 
1576 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1577 		mutex_lock(&ubi->move_mutex);
1578 		mutex_unlock(&ubi->move_mutex);
1579 		goto retry;
1580 	} else if (e == ubi->move_to) {
1581 		/*
1582 		 * User is putting the physical eraseblock which was selected
1583 		 * as the target the data is moved to. It may happen if the EBA
1584 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1585 		 * but the WL sub-system has not put the PEB to the "used" tree
1586 		 * yet, but it is about to do this. So we just set a flag which
1587 		 * will tell the WL worker that the PEB is not needed anymore
1588 		 * and should be scheduled for erasure.
1589 		 */
1590 		dbg_wl("PEB %d is the target of data moving", pnum);
1591 		ubi_assert(!ubi->move_to_put);
1592 		ubi->move_to_put = 1;
1593 		spin_unlock(&ubi->wl_lock);
1594 		return 0;
1595 	} else {
1596 		if (in_wl_tree(e, &ubi->used)) {
1597 			self_check_in_wl_tree(ubi, e, &ubi->used);
1598 			rb_erase(&e->u.rb, &ubi->used);
1599 		} else if (in_wl_tree(e, &ubi->scrub)) {
1600 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1601 			rb_erase(&e->u.rb, &ubi->scrub);
1602 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1603 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1604 			rb_erase(&e->u.rb, &ubi->erroneous);
1605 			ubi->erroneous_peb_count -= 1;
1606 			ubi_assert(ubi->erroneous_peb_count >= 0);
1607 			/* Erroneous PEBs should be tortured */
1608 			torture = 1;
1609 		} else {
1610 			err = prot_queue_del(ubi, e->pnum);
1611 			if (err) {
1612 				ubi_err("PEB %d not found", pnum);
1613 				ubi_ro_mode(ubi);
1614 				spin_unlock(&ubi->wl_lock);
1615 				return err;
1616 			}
1617 		}
1618 	}
1619 	spin_unlock(&ubi->wl_lock);
1620 
1621 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1622 	if (err) {
1623 		spin_lock(&ubi->wl_lock);
1624 		wl_tree_add(e, &ubi->used);
1625 		spin_unlock(&ubi->wl_lock);
1626 	}
1627 
1628 	return err;
1629 }
1630 
1631 /**
1632  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1633  * @ubi: UBI device description object
1634  * @pnum: the physical eraseblock to schedule
1635  *
1636  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1637  * needs scrubbing. This function schedules a physical eraseblock for
1638  * scrubbing which is done in background. This function returns zero in case of
1639  * success and a negative error code in case of failure.
1640  */
1641 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1642 {
1643 	struct ubi_wl_entry *e;
1644 
1645 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1646 
1647 retry:
1648 	spin_lock(&ubi->wl_lock);
1649 	e = ubi->lookuptbl[pnum];
1650 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1651 				   in_wl_tree(e, &ubi->erroneous)) {
1652 		spin_unlock(&ubi->wl_lock);
1653 		return 0;
1654 	}
1655 
1656 	if (e == ubi->move_to) {
1657 		/*
1658 		 * This physical eraseblock was used to move data to. The data
1659 		 * was moved but the PEB was not yet inserted to the proper
1660 		 * tree. We should just wait a little and let the WL worker
1661 		 * proceed.
1662 		 */
1663 		spin_unlock(&ubi->wl_lock);
1664 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1665 		yield();
1666 		goto retry;
1667 	}
1668 
1669 	if (in_wl_tree(e, &ubi->used)) {
1670 		self_check_in_wl_tree(ubi, e, &ubi->used);
1671 		rb_erase(&e->u.rb, &ubi->used);
1672 	} else {
1673 		int err;
1674 
1675 		err = prot_queue_del(ubi, e->pnum);
1676 		if (err) {
1677 			ubi_err("PEB %d not found", pnum);
1678 			ubi_ro_mode(ubi);
1679 			spin_unlock(&ubi->wl_lock);
1680 			return err;
1681 		}
1682 	}
1683 
1684 	wl_tree_add(e, &ubi->scrub);
1685 	spin_unlock(&ubi->wl_lock);
1686 
1687 	/*
1688 	 * Technically scrubbing is the same as wear-leveling, so it is done
1689 	 * by the WL worker.
1690 	 */
1691 	return ensure_wear_leveling(ubi, 0);
1692 }
1693 
1694 /**
1695  * ubi_wl_flush - flush all pending works.
1696  * @ubi: UBI device description object
1697  * @vol_id: the volume id to flush for
1698  * @lnum: the logical eraseblock number to flush for
1699  *
1700  * This function executes all pending works for a particular volume id /
1701  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1702  * acts as a wildcard for all of the corresponding volume numbers or logical
1703  * eraseblock numbers. It returns zero in case of success and a negative error
1704  * code in case of failure.
1705  */
1706 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1707 {
1708 	int err = 0;
1709 	int found = 1;
1710 
1711 	/*
1712 	 * Erase while the pending works queue is not empty, but not more than
1713 	 * the number of currently pending works.
1714 	 */
1715 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1716 	       vol_id, lnum, ubi->works_count);
1717 
1718 	while (found) {
1719 		struct ubi_work *wrk;
1720 		found = 0;
1721 
1722 		down_read(&ubi->work_sem);
1723 		spin_lock(&ubi->wl_lock);
1724 		list_for_each_entry(wrk, &ubi->works, list) {
1725 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1726 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1727 				list_del(&wrk->list);
1728 				ubi->works_count -= 1;
1729 				ubi_assert(ubi->works_count >= 0);
1730 				spin_unlock(&ubi->wl_lock);
1731 
1732 				err = wrk->func(ubi, wrk, 0);
1733 				if (err) {
1734 					up_read(&ubi->work_sem);
1735 					return err;
1736 				}
1737 
1738 				spin_lock(&ubi->wl_lock);
1739 				found = 1;
1740 				break;
1741 			}
1742 		}
1743 		spin_unlock(&ubi->wl_lock);
1744 		up_read(&ubi->work_sem);
1745 	}
1746 
1747 	/*
1748 	 * Make sure all the works which have been done in parallel are
1749 	 * finished.
1750 	 */
1751 	down_write(&ubi->work_sem);
1752 	up_write(&ubi->work_sem);
1753 
1754 	return err;
1755 }
1756 
1757 /**
1758  * tree_destroy - destroy an RB-tree.
1759  * @root: the root of the tree to destroy
1760  */
1761 static void tree_destroy(struct rb_root *root)
1762 {
1763 	struct rb_node *rb;
1764 	struct ubi_wl_entry *e;
1765 
1766 	rb = root->rb_node;
1767 	while (rb) {
1768 		if (rb->rb_left)
1769 			rb = rb->rb_left;
1770 		else if (rb->rb_right)
1771 			rb = rb->rb_right;
1772 		else {
1773 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1774 
1775 			rb = rb_parent(rb);
1776 			if (rb) {
1777 				if (rb->rb_left == &e->u.rb)
1778 					rb->rb_left = NULL;
1779 				else
1780 					rb->rb_right = NULL;
1781 			}
1782 
1783 			kmem_cache_free(ubi_wl_entry_slab, e);
1784 		}
1785 	}
1786 }
1787 
1788 /**
1789  * ubi_thread - UBI background thread.
1790  * @u: the UBI device description object pointer
1791  */
1792 int ubi_thread(void *u)
1793 {
1794 	int failures = 0;
1795 	struct ubi_device *ubi = u;
1796 
1797 	ubi_msg("background thread \"%s\" started, PID %d",
1798 		ubi->bgt_name, task_pid_nr(current));
1799 
1800 	set_freezable();
1801 	for (;;) {
1802 		int err;
1803 
1804 		if (kthread_should_stop())
1805 			break;
1806 
1807 		if (try_to_freeze())
1808 			continue;
1809 
1810 		spin_lock(&ubi->wl_lock);
1811 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1812 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1813 			set_current_state(TASK_INTERRUPTIBLE);
1814 			spin_unlock(&ubi->wl_lock);
1815 			schedule();
1816 			continue;
1817 		}
1818 		spin_unlock(&ubi->wl_lock);
1819 
1820 		err = do_work(ubi);
1821 		if (err) {
1822 			ubi_err("%s: work failed with error code %d",
1823 				ubi->bgt_name, err);
1824 			if (failures++ > WL_MAX_FAILURES) {
1825 				/*
1826 				 * Too many failures, disable the thread and
1827 				 * switch to read-only mode.
1828 				 */
1829 				ubi_msg("%s: %d consecutive failures",
1830 					ubi->bgt_name, WL_MAX_FAILURES);
1831 				ubi_ro_mode(ubi);
1832 				ubi->thread_enabled = 0;
1833 				continue;
1834 			}
1835 		} else
1836 			failures = 0;
1837 
1838 		cond_resched();
1839 	}
1840 
1841 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1842 	return 0;
1843 }
1844 
1845 /**
1846  * cancel_pending - cancel all pending works.
1847  * @ubi: UBI device description object
1848  */
1849 static void cancel_pending(struct ubi_device *ubi)
1850 {
1851 	while (!list_empty(&ubi->works)) {
1852 		struct ubi_work *wrk;
1853 
1854 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1855 		list_del(&wrk->list);
1856 		wrk->func(ubi, wrk, 1);
1857 		ubi->works_count -= 1;
1858 		ubi_assert(ubi->works_count >= 0);
1859 	}
1860 }
1861 
1862 /**
1863  * ubi_wl_init - initialize the WL sub-system using attaching information.
1864  * @ubi: UBI device description object
1865  * @ai: attaching information
1866  *
1867  * This function returns zero in case of success, and a negative error code in
1868  * case of failure.
1869  */
1870 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1871 {
1872 	int err, i, reserved_pebs, found_pebs = 0;
1873 	struct rb_node *rb1, *rb2;
1874 	struct ubi_ainf_volume *av;
1875 	struct ubi_ainf_peb *aeb, *tmp;
1876 	struct ubi_wl_entry *e;
1877 
1878 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1879 	spin_lock_init(&ubi->wl_lock);
1880 	mutex_init(&ubi->move_mutex);
1881 	init_rwsem(&ubi->work_sem);
1882 	ubi->max_ec = ai->max_ec;
1883 	INIT_LIST_HEAD(&ubi->works);
1884 #ifdef CONFIG_MTD_UBI_FASTMAP
1885 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1886 #endif
1887 
1888 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1889 
1890 	err = -ENOMEM;
1891 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1892 	if (!ubi->lookuptbl)
1893 		return err;
1894 
1895 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1896 		INIT_LIST_HEAD(&ubi->pq[i]);
1897 	ubi->pq_head = 0;
1898 
1899 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1900 		cond_resched();
1901 
1902 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1903 		if (!e)
1904 			goto out_free;
1905 
1906 		e->pnum = aeb->pnum;
1907 		e->ec = aeb->ec;
1908 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1909 		ubi->lookuptbl[e->pnum] = e;
1910 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1911 			kmem_cache_free(ubi_wl_entry_slab, e);
1912 			goto out_free;
1913 		}
1914 
1915 		found_pebs++;
1916 	}
1917 
1918 	ubi->free_count = 0;
1919 	list_for_each_entry(aeb, &ai->free, u.list) {
1920 		cond_resched();
1921 
1922 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1923 		if (!e)
1924 			goto out_free;
1925 
1926 		e->pnum = aeb->pnum;
1927 		e->ec = aeb->ec;
1928 		ubi_assert(e->ec >= 0);
1929 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1930 
1931 		wl_tree_add(e, &ubi->free);
1932 		ubi->free_count++;
1933 
1934 		ubi->lookuptbl[e->pnum] = e;
1935 
1936 		found_pebs++;
1937 	}
1938 
1939 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1940 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1941 			cond_resched();
1942 
1943 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1944 			if (!e)
1945 				goto out_free;
1946 
1947 			e->pnum = aeb->pnum;
1948 			e->ec = aeb->ec;
1949 			ubi->lookuptbl[e->pnum] = e;
1950 
1951 			if (!aeb->scrub) {
1952 				dbg_wl("add PEB %d EC %d to the used tree",
1953 				       e->pnum, e->ec);
1954 				wl_tree_add(e, &ubi->used);
1955 			} else {
1956 				dbg_wl("add PEB %d EC %d to the scrub tree",
1957 				       e->pnum, e->ec);
1958 				wl_tree_add(e, &ubi->scrub);
1959 			}
1960 
1961 			found_pebs++;
1962 		}
1963 	}
1964 
1965 	dbg_wl("found %i PEBs", found_pebs);
1966 
1967 	if (ubi->fm)
1968 		ubi_assert(ubi->good_peb_count == \
1969 			   found_pebs + ubi->fm->used_blocks);
1970 	else
1971 		ubi_assert(ubi->good_peb_count == found_pebs);
1972 
1973 	reserved_pebs = WL_RESERVED_PEBS;
1974 #ifdef CONFIG_MTD_UBI_FASTMAP
1975 	/* Reserve enough LEBs to store two fastmaps. */
1976 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1977 #endif
1978 
1979 	if (ubi->avail_pebs < reserved_pebs) {
1980 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1981 			ubi->avail_pebs, reserved_pebs);
1982 		if (ubi->corr_peb_count)
1983 			ubi_err("%d PEBs are corrupted and not used",
1984 				ubi->corr_peb_count);
1985 		goto out_free;
1986 	}
1987 	ubi->avail_pebs -= reserved_pebs;
1988 	ubi->rsvd_pebs += reserved_pebs;
1989 
1990 	/* Schedule wear-leveling if needed */
1991 	err = ensure_wear_leveling(ubi, 0);
1992 	if (err)
1993 		goto out_free;
1994 
1995 	return 0;
1996 
1997 out_free:
1998 	cancel_pending(ubi);
1999 	tree_destroy(&ubi->used);
2000 	tree_destroy(&ubi->free);
2001 	tree_destroy(&ubi->scrub);
2002 	kfree(ubi->lookuptbl);
2003 	return err;
2004 }
2005 
2006 /**
2007  * protection_queue_destroy - destroy the protection queue.
2008  * @ubi: UBI device description object
2009  */
2010 static void protection_queue_destroy(struct ubi_device *ubi)
2011 {
2012 	int i;
2013 	struct ubi_wl_entry *e, *tmp;
2014 
2015 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2016 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2017 			list_del(&e->u.list);
2018 			kmem_cache_free(ubi_wl_entry_slab, e);
2019 		}
2020 	}
2021 }
2022 
2023 /**
2024  * ubi_wl_close - close the wear-leveling sub-system.
2025  * @ubi: UBI device description object
2026  */
2027 void ubi_wl_close(struct ubi_device *ubi)
2028 {
2029 	dbg_wl("close the WL sub-system");
2030 	cancel_pending(ubi);
2031 	protection_queue_destroy(ubi);
2032 	tree_destroy(&ubi->used);
2033 	tree_destroy(&ubi->erroneous);
2034 	tree_destroy(&ubi->free);
2035 	tree_destroy(&ubi->scrub);
2036 	kfree(ubi->lookuptbl);
2037 }
2038 
2039 /**
2040  * self_check_ec - make sure that the erase counter of a PEB is correct.
2041  * @ubi: UBI device description object
2042  * @pnum: the physical eraseblock number to check
2043  * @ec: the erase counter to check
2044  *
2045  * This function returns zero if the erase counter of physical eraseblock @pnum
2046  * is equivalent to @ec, and a negative error code if not or if an error
2047  * occurred.
2048  */
2049 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2050 {
2051 	int err;
2052 	long long read_ec;
2053 	struct ubi_ec_hdr *ec_hdr;
2054 
2055 	if (!ubi_dbg_chk_gen(ubi))
2056 		return 0;
2057 
2058 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2059 	if (!ec_hdr)
2060 		return -ENOMEM;
2061 
2062 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2063 	if (err && err != UBI_IO_BITFLIPS) {
2064 		/* The header does not have to exist */
2065 		err = 0;
2066 		goto out_free;
2067 	}
2068 
2069 	read_ec = be64_to_cpu(ec_hdr->ec);
2070 	if (ec != read_ec && read_ec - ec > 1) {
2071 		ubi_err("self-check failed for PEB %d", pnum);
2072 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2073 		dump_stack();
2074 		err = 1;
2075 	} else
2076 		err = 0;
2077 
2078 out_free:
2079 	kfree(ec_hdr);
2080 	return err;
2081 }
2082 
2083 /**
2084  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2085  * @ubi: UBI device description object
2086  * @e: the wear-leveling entry to check
2087  * @root: the root of the tree
2088  *
2089  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2090  * is not.
2091  */
2092 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2093 				 struct ubi_wl_entry *e, struct rb_root *root)
2094 {
2095 	if (!ubi_dbg_chk_gen(ubi))
2096 		return 0;
2097 
2098 	if (in_wl_tree(e, root))
2099 		return 0;
2100 
2101 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2102 		e->pnum, e->ec, root);
2103 	dump_stack();
2104 	return -EINVAL;
2105 }
2106 
2107 /**
2108  * self_check_in_pq - check if wear-leveling entry is in the protection
2109  *                        queue.
2110  * @ubi: UBI device description object
2111  * @e: the wear-leveling entry to check
2112  *
2113  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2114  */
2115 static int self_check_in_pq(const struct ubi_device *ubi,
2116 			    struct ubi_wl_entry *e)
2117 {
2118 	struct ubi_wl_entry *p;
2119 	int i;
2120 
2121 	if (!ubi_dbg_chk_gen(ubi))
2122 		return 0;
2123 
2124 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2125 		list_for_each_entry(p, &ubi->pq[i], u.list)
2126 			if (p == e)
2127 				return 0;
2128 
2129 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2130 		e->pnum, e->ec);
2131 	dump_stack();
2132 	return -EINVAL;
2133 }
2134