1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 107 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 108 #define WL_RESERVED_PEBS 1 109 110 /* 111 * Maximum difference between two erase counters. If this threshold is 112 * exceeded, the WL sub-system starts moving data from used physical 113 * eraseblocks with low erase counter to free physical eraseblocks with high 114 * erase counter. 115 */ 116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 117 118 /* 119 * When a physical eraseblock is moved, the WL sub-system has to pick the target 120 * physical eraseblock to move to. The simplest way would be just to pick the 121 * one with the highest erase counter. But in certain workloads this could lead 122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 123 * situation when the picked physical eraseblock is constantly erased after the 124 * data is written to it. So, we have a constant which limits the highest erase 125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 126 * does not pick eraseblocks with erase counter greater than the lowest erase 127 * counter plus %WL_FREE_MAX_DIFF. 128 */ 129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 130 131 /* 132 * Maximum number of consecutive background thread failures which is enough to 133 * switch to read-only mode. 134 */ 135 #define WL_MAX_FAILURES 32 136 137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 138 static int self_check_in_wl_tree(const struct ubi_device *ubi, 139 struct ubi_wl_entry *e, struct rb_root *root); 140 static int self_check_in_pq(const struct ubi_device *ubi, 141 struct ubi_wl_entry *e); 142 143 #ifdef CONFIG_MTD_UBI_FASTMAP 144 /** 145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue 146 * @wrk: the work description object 147 */ 148 static void update_fastmap_work_fn(struct work_struct *wrk) 149 { 150 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); 151 ubi_update_fastmap(ubi); 152 } 153 154 /** 155 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. 156 * @ubi: UBI device description object 157 * @pnum: the to be checked PEB 158 */ 159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 160 { 161 int i; 162 163 if (!ubi->fm) 164 return 0; 165 166 for (i = 0; i < ubi->fm->used_blocks; i++) 167 if (ubi->fm->e[i]->pnum == pnum) 168 return 1; 169 170 return 0; 171 } 172 #else 173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 174 { 175 return 0; 176 } 177 #endif 178 179 /** 180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 181 * @e: the wear-leveling entry to add 182 * @root: the root of the tree 183 * 184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 185 * the @ubi->used and @ubi->free RB-trees. 186 */ 187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 188 { 189 struct rb_node **p, *parent = NULL; 190 191 p = &root->rb_node; 192 while (*p) { 193 struct ubi_wl_entry *e1; 194 195 parent = *p; 196 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 197 198 if (e->ec < e1->ec) 199 p = &(*p)->rb_left; 200 else if (e->ec > e1->ec) 201 p = &(*p)->rb_right; 202 else { 203 ubi_assert(e->pnum != e1->pnum); 204 if (e->pnum < e1->pnum) 205 p = &(*p)->rb_left; 206 else 207 p = &(*p)->rb_right; 208 } 209 } 210 211 rb_link_node(&e->u.rb, parent, p); 212 rb_insert_color(&e->u.rb, root); 213 } 214 215 /** 216 * do_work - do one pending work. 217 * @ubi: UBI device description object 218 * 219 * This function returns zero in case of success and a negative error code in 220 * case of failure. 221 */ 222 static int do_work(struct ubi_device *ubi) 223 { 224 int err; 225 struct ubi_work *wrk; 226 227 cond_resched(); 228 229 /* 230 * @ubi->work_sem is used to synchronize with the workers. Workers take 231 * it in read mode, so many of them may be doing works at a time. But 232 * the queue flush code has to be sure the whole queue of works is 233 * done, and it takes the mutex in write mode. 234 */ 235 down_read(&ubi->work_sem); 236 spin_lock(&ubi->wl_lock); 237 if (list_empty(&ubi->works)) { 238 spin_unlock(&ubi->wl_lock); 239 up_read(&ubi->work_sem); 240 return 0; 241 } 242 243 wrk = list_entry(ubi->works.next, struct ubi_work, list); 244 list_del(&wrk->list); 245 ubi->works_count -= 1; 246 ubi_assert(ubi->works_count >= 0); 247 spin_unlock(&ubi->wl_lock); 248 249 /* 250 * Call the worker function. Do not touch the work structure 251 * after this call as it will have been freed or reused by that 252 * time by the worker function. 253 */ 254 err = wrk->func(ubi, wrk, 0); 255 if (err) 256 ubi_err("work failed with error code %d", err); 257 up_read(&ubi->work_sem); 258 259 return err; 260 } 261 262 /** 263 * produce_free_peb - produce a free physical eraseblock. 264 * @ubi: UBI device description object 265 * 266 * This function tries to make a free PEB by means of synchronous execution of 267 * pending works. This may be needed if, for example the background thread is 268 * disabled. Returns zero in case of success and a negative error code in case 269 * of failure. 270 */ 271 static int produce_free_peb(struct ubi_device *ubi) 272 { 273 int err; 274 275 while (!ubi->free.rb_node) { 276 spin_unlock(&ubi->wl_lock); 277 278 dbg_wl("do one work synchronously"); 279 err = do_work(ubi); 280 281 spin_lock(&ubi->wl_lock); 282 if (err) 283 return err; 284 } 285 286 return 0; 287 } 288 289 /** 290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 291 * @e: the wear-leveling entry to check 292 * @root: the root of the tree 293 * 294 * This function returns non-zero if @e is in the @root RB-tree and zero if it 295 * is not. 296 */ 297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 298 { 299 struct rb_node *p; 300 301 p = root->rb_node; 302 while (p) { 303 struct ubi_wl_entry *e1; 304 305 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 306 307 if (e->pnum == e1->pnum) { 308 ubi_assert(e == e1); 309 return 1; 310 } 311 312 if (e->ec < e1->ec) 313 p = p->rb_left; 314 else if (e->ec > e1->ec) 315 p = p->rb_right; 316 else { 317 ubi_assert(e->pnum != e1->pnum); 318 if (e->pnum < e1->pnum) 319 p = p->rb_left; 320 else 321 p = p->rb_right; 322 } 323 } 324 325 return 0; 326 } 327 328 /** 329 * prot_queue_add - add physical eraseblock to the protection queue. 330 * @ubi: UBI device description object 331 * @e: the physical eraseblock to add 332 * 333 * This function adds @e to the tail of the protection queue @ubi->pq, where 334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 336 * be locked. 337 */ 338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 339 { 340 int pq_tail = ubi->pq_head - 1; 341 342 if (pq_tail < 0) 343 pq_tail = UBI_PROT_QUEUE_LEN - 1; 344 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 345 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 346 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 347 } 348 349 /** 350 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 351 * @ubi: UBI device description object 352 * @root: the RB-tree where to look for 353 * @diff: maximum possible difference from the smallest erase counter 354 * 355 * This function looks for a wear leveling entry with erase counter closest to 356 * min + @diff, where min is the smallest erase counter. 357 */ 358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 359 struct rb_root *root, int diff) 360 { 361 struct rb_node *p; 362 struct ubi_wl_entry *e, *prev_e = NULL; 363 int max; 364 365 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 366 max = e->ec + diff; 367 368 p = root->rb_node; 369 while (p) { 370 struct ubi_wl_entry *e1; 371 372 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 373 if (e1->ec >= max) 374 p = p->rb_left; 375 else { 376 p = p->rb_right; 377 prev_e = e; 378 e = e1; 379 } 380 } 381 382 /* If no fastmap has been written and this WL entry can be used 383 * as anchor PEB, hold it back and return the second best WL entry 384 * such that fastmap can use the anchor PEB later. */ 385 if (prev_e && !ubi->fm_disabled && 386 !ubi->fm && e->pnum < UBI_FM_MAX_START) 387 return prev_e; 388 389 return e; 390 } 391 392 /** 393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 394 * @ubi: UBI device description object 395 * @root: the RB-tree where to look for 396 * 397 * This function looks for a wear leveling entry with medium erase counter, 398 * but not greater or equivalent than the lowest erase counter plus 399 * %WL_FREE_MAX_DIFF/2. 400 */ 401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 402 struct rb_root *root) 403 { 404 struct ubi_wl_entry *e, *first, *last; 405 406 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 407 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 408 409 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 410 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 411 412 #ifdef CONFIG_MTD_UBI_FASTMAP 413 /* If no fastmap has been written and this WL entry can be used 414 * as anchor PEB, hold it back and return the second best 415 * WL entry such that fastmap can use the anchor PEB later. */ 416 if (e && !ubi->fm_disabled && !ubi->fm && 417 e->pnum < UBI_FM_MAX_START) 418 e = rb_entry(rb_next(root->rb_node), 419 struct ubi_wl_entry, u.rb); 420 #endif 421 } else 422 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 423 424 return e; 425 } 426 427 #ifdef CONFIG_MTD_UBI_FASTMAP 428 /** 429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. 430 * @root: the RB-tree where to look for 431 */ 432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) 433 { 434 struct rb_node *p; 435 struct ubi_wl_entry *e, *victim = NULL; 436 int max_ec = UBI_MAX_ERASECOUNTER; 437 438 ubi_rb_for_each_entry(p, e, root, u.rb) { 439 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { 440 victim = e; 441 max_ec = e->ec; 442 } 443 } 444 445 return victim; 446 } 447 448 static int anchor_pebs_avalible(struct rb_root *root) 449 { 450 struct rb_node *p; 451 struct ubi_wl_entry *e; 452 453 ubi_rb_for_each_entry(p, e, root, u.rb) 454 if (e->pnum < UBI_FM_MAX_START) 455 return 1; 456 457 return 0; 458 } 459 460 /** 461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. 462 * @ubi: UBI device description object 463 * @anchor: This PEB will be used as anchor PEB by fastmap 464 * 465 * The function returns a physical erase block with a given maximal number 466 * and removes it from the wl subsystem. 467 * Must be called with wl_lock held! 468 */ 469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) 470 { 471 struct ubi_wl_entry *e = NULL; 472 473 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 474 goto out; 475 476 if (anchor) 477 e = find_anchor_wl_entry(&ubi->free); 478 else 479 e = find_mean_wl_entry(ubi, &ubi->free); 480 481 if (!e) 482 goto out; 483 484 self_check_in_wl_tree(ubi, e, &ubi->free); 485 486 /* remove it from the free list, 487 * the wl subsystem does no longer know this erase block */ 488 rb_erase(&e->u.rb, &ubi->free); 489 ubi->free_count--; 490 out: 491 return e; 492 } 493 #endif 494 495 /** 496 * __wl_get_peb - get a physical eraseblock. 497 * @ubi: UBI device description object 498 * 499 * This function returns a physical eraseblock in case of success and a 500 * negative error code in case of failure. 501 */ 502 static int __wl_get_peb(struct ubi_device *ubi) 503 { 504 int err; 505 struct ubi_wl_entry *e; 506 507 retry: 508 if (!ubi->free.rb_node) { 509 if (ubi->works_count == 0) { 510 ubi_err("no free eraseblocks"); 511 ubi_assert(list_empty(&ubi->works)); 512 return -ENOSPC; 513 } 514 515 err = produce_free_peb(ubi); 516 if (err < 0) 517 return err; 518 goto retry; 519 } 520 521 e = find_mean_wl_entry(ubi, &ubi->free); 522 if (!e) { 523 ubi_err("no free eraseblocks"); 524 return -ENOSPC; 525 } 526 527 self_check_in_wl_tree(ubi, e, &ubi->free); 528 529 /* 530 * Move the physical eraseblock to the protection queue where it will 531 * be protected from being moved for some time. 532 */ 533 rb_erase(&e->u.rb, &ubi->free); 534 ubi->free_count--; 535 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 536 #ifndef CONFIG_MTD_UBI_FASTMAP 537 /* We have to enqueue e only if fastmap is disabled, 538 * is fastmap enabled prot_queue_add() will be called by 539 * ubi_wl_get_peb() after removing e from the pool. */ 540 prot_queue_add(ubi, e); 541 #endif 542 return e->pnum; 543 } 544 545 #ifdef CONFIG_MTD_UBI_FASTMAP 546 /** 547 * return_unused_pool_pebs - returns unused PEB to the free tree. 548 * @ubi: UBI device description object 549 * @pool: fastmap pool description object 550 */ 551 static void return_unused_pool_pebs(struct ubi_device *ubi, 552 struct ubi_fm_pool *pool) 553 { 554 int i; 555 struct ubi_wl_entry *e; 556 557 for (i = pool->used; i < pool->size; i++) { 558 e = ubi->lookuptbl[pool->pebs[i]]; 559 wl_tree_add(e, &ubi->free); 560 ubi->free_count++; 561 } 562 } 563 564 /** 565 * refill_wl_pool - refills all the fastmap pool used by the 566 * WL sub-system. 567 * @ubi: UBI device description object 568 */ 569 static void refill_wl_pool(struct ubi_device *ubi) 570 { 571 struct ubi_wl_entry *e; 572 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 573 574 return_unused_pool_pebs(ubi, pool); 575 576 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 577 if (!ubi->free.rb_node || 578 (ubi->free_count - ubi->beb_rsvd_pebs < 5)) 579 break; 580 581 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 582 self_check_in_wl_tree(ubi, e, &ubi->free); 583 rb_erase(&e->u.rb, &ubi->free); 584 ubi->free_count--; 585 586 pool->pebs[pool->size] = e->pnum; 587 } 588 pool->used = 0; 589 } 590 591 /** 592 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. 593 * @ubi: UBI device description object 594 */ 595 static void refill_wl_user_pool(struct ubi_device *ubi) 596 { 597 struct ubi_fm_pool *pool = &ubi->fm_pool; 598 599 return_unused_pool_pebs(ubi, pool); 600 601 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 602 if (!ubi->free.rb_node || 603 (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 604 break; 605 606 pool->pebs[pool->size] = __wl_get_peb(ubi); 607 if (pool->pebs[pool->size] < 0) 608 break; 609 } 610 pool->used = 0; 611 } 612 613 /** 614 * ubi_refill_pools - refills all fastmap PEB pools. 615 * @ubi: UBI device description object 616 */ 617 void ubi_refill_pools(struct ubi_device *ubi) 618 { 619 spin_lock(&ubi->wl_lock); 620 refill_wl_pool(ubi); 621 refill_wl_user_pool(ubi); 622 spin_unlock(&ubi->wl_lock); 623 } 624 625 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of 626 * the fastmap pool. 627 */ 628 int ubi_wl_get_peb(struct ubi_device *ubi) 629 { 630 int ret; 631 struct ubi_fm_pool *pool = &ubi->fm_pool; 632 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; 633 634 if (!pool->size || !wl_pool->size || pool->used == pool->size || 635 wl_pool->used == wl_pool->size) 636 ubi_update_fastmap(ubi); 637 638 /* we got not a single free PEB */ 639 if (!pool->size) 640 ret = -ENOSPC; 641 else { 642 spin_lock(&ubi->wl_lock); 643 ret = pool->pebs[pool->used++]; 644 prot_queue_add(ubi, ubi->lookuptbl[ret]); 645 spin_unlock(&ubi->wl_lock); 646 } 647 648 return ret; 649 } 650 651 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. 652 * 653 * @ubi: UBI device description object 654 */ 655 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 656 { 657 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 658 int pnum; 659 660 if (pool->used == pool->size || !pool->size) { 661 /* We cannot update the fastmap here because this 662 * function is called in atomic context. 663 * Let's fail here and refill/update it as soon as possible. */ 664 schedule_work(&ubi->fm_work); 665 return NULL; 666 } else { 667 pnum = pool->pebs[pool->used++]; 668 return ubi->lookuptbl[pnum]; 669 } 670 } 671 #else 672 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 673 { 674 struct ubi_wl_entry *e; 675 676 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 677 self_check_in_wl_tree(ubi, e, &ubi->free); 678 rb_erase(&e->u.rb, &ubi->free); 679 680 return e; 681 } 682 683 int ubi_wl_get_peb(struct ubi_device *ubi) 684 { 685 int peb, err; 686 687 spin_lock(&ubi->wl_lock); 688 peb = __wl_get_peb(ubi); 689 spin_unlock(&ubi->wl_lock); 690 691 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, 692 ubi->peb_size - ubi->vid_hdr_aloffset); 693 if (err) { 694 ubi_err("new PEB %d does not contain all 0xFF bytes", peb); 695 return err; 696 } 697 698 return peb; 699 } 700 #endif 701 702 /** 703 * prot_queue_del - remove a physical eraseblock from the protection queue. 704 * @ubi: UBI device description object 705 * @pnum: the physical eraseblock to remove 706 * 707 * This function deletes PEB @pnum from the protection queue and returns zero 708 * in case of success and %-ENODEV if the PEB was not found. 709 */ 710 static int prot_queue_del(struct ubi_device *ubi, int pnum) 711 { 712 struct ubi_wl_entry *e; 713 714 e = ubi->lookuptbl[pnum]; 715 if (!e) 716 return -ENODEV; 717 718 if (self_check_in_pq(ubi, e)) 719 return -ENODEV; 720 721 list_del(&e->u.list); 722 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 723 return 0; 724 } 725 726 /** 727 * sync_erase - synchronously erase a physical eraseblock. 728 * @ubi: UBI device description object 729 * @e: the the physical eraseblock to erase 730 * @torture: if the physical eraseblock has to be tortured 731 * 732 * This function returns zero in case of success and a negative error code in 733 * case of failure. 734 */ 735 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 736 int torture) 737 { 738 int err; 739 struct ubi_ec_hdr *ec_hdr; 740 unsigned long long ec = e->ec; 741 742 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 743 744 err = self_check_ec(ubi, e->pnum, e->ec); 745 if (err) 746 return -EINVAL; 747 748 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 749 if (!ec_hdr) 750 return -ENOMEM; 751 752 err = ubi_io_sync_erase(ubi, e->pnum, torture); 753 if (err < 0) 754 goto out_free; 755 756 ec += err; 757 if (ec > UBI_MAX_ERASECOUNTER) { 758 /* 759 * Erase counter overflow. Upgrade UBI and use 64-bit 760 * erase counters internally. 761 */ 762 ubi_err("erase counter overflow at PEB %d, EC %llu", 763 e->pnum, ec); 764 err = -EINVAL; 765 goto out_free; 766 } 767 768 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 769 770 ec_hdr->ec = cpu_to_be64(ec); 771 772 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 773 if (err) 774 goto out_free; 775 776 e->ec = ec; 777 spin_lock(&ubi->wl_lock); 778 if (e->ec > ubi->max_ec) 779 ubi->max_ec = e->ec; 780 spin_unlock(&ubi->wl_lock); 781 782 out_free: 783 kfree(ec_hdr); 784 return err; 785 } 786 787 /** 788 * serve_prot_queue - check if it is time to stop protecting PEBs. 789 * @ubi: UBI device description object 790 * 791 * This function is called after each erase operation and removes PEBs from the 792 * tail of the protection queue. These PEBs have been protected for long enough 793 * and should be moved to the used tree. 794 */ 795 static void serve_prot_queue(struct ubi_device *ubi) 796 { 797 struct ubi_wl_entry *e, *tmp; 798 int count; 799 800 /* 801 * There may be several protected physical eraseblock to remove, 802 * process them all. 803 */ 804 repeat: 805 count = 0; 806 spin_lock(&ubi->wl_lock); 807 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 808 dbg_wl("PEB %d EC %d protection over, move to used tree", 809 e->pnum, e->ec); 810 811 list_del(&e->u.list); 812 wl_tree_add(e, &ubi->used); 813 if (count++ > 32) { 814 /* 815 * Let's be nice and avoid holding the spinlock for 816 * too long. 817 */ 818 spin_unlock(&ubi->wl_lock); 819 cond_resched(); 820 goto repeat; 821 } 822 } 823 824 ubi->pq_head += 1; 825 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 826 ubi->pq_head = 0; 827 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 828 spin_unlock(&ubi->wl_lock); 829 } 830 831 /** 832 * __schedule_ubi_work - schedule a work. 833 * @ubi: UBI device description object 834 * @wrk: the work to schedule 835 * 836 * This function adds a work defined by @wrk to the tail of the pending works 837 * list. Can only be used of ubi->work_sem is already held in read mode! 838 */ 839 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 840 { 841 spin_lock(&ubi->wl_lock); 842 list_add_tail(&wrk->list, &ubi->works); 843 ubi_assert(ubi->works_count >= 0); 844 ubi->works_count += 1; 845 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 846 wake_up_process(ubi->bgt_thread); 847 spin_unlock(&ubi->wl_lock); 848 } 849 850 /** 851 * schedule_ubi_work - schedule a work. 852 * @ubi: UBI device description object 853 * @wrk: the work to schedule 854 * 855 * This function adds a work defined by @wrk to the tail of the pending works 856 * list. 857 */ 858 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 859 { 860 down_read(&ubi->work_sem); 861 __schedule_ubi_work(ubi, wrk); 862 up_read(&ubi->work_sem); 863 } 864 865 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 866 int cancel); 867 868 #ifdef CONFIG_MTD_UBI_FASTMAP 869 /** 870 * ubi_is_erase_work - checks whether a work is erase work. 871 * @wrk: The work object to be checked 872 */ 873 int ubi_is_erase_work(struct ubi_work *wrk) 874 { 875 return wrk->func == erase_worker; 876 } 877 #endif 878 879 /** 880 * schedule_erase - schedule an erase work. 881 * @ubi: UBI device description object 882 * @e: the WL entry of the physical eraseblock to erase 883 * @vol_id: the volume ID that last used this PEB 884 * @lnum: the last used logical eraseblock number for the PEB 885 * @torture: if the physical eraseblock has to be tortured 886 * 887 * This function returns zero in case of success and a %-ENOMEM in case of 888 * failure. 889 */ 890 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 891 int vol_id, int lnum, int torture) 892 { 893 struct ubi_work *wl_wrk; 894 895 ubi_assert(e); 896 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 897 898 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 899 e->pnum, e->ec, torture); 900 901 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 902 if (!wl_wrk) 903 return -ENOMEM; 904 905 wl_wrk->func = &erase_worker; 906 wl_wrk->e = e; 907 wl_wrk->vol_id = vol_id; 908 wl_wrk->lnum = lnum; 909 wl_wrk->torture = torture; 910 911 schedule_ubi_work(ubi, wl_wrk); 912 return 0; 913 } 914 915 /** 916 * do_sync_erase - run the erase worker synchronously. 917 * @ubi: UBI device description object 918 * @e: the WL entry of the physical eraseblock to erase 919 * @vol_id: the volume ID that last used this PEB 920 * @lnum: the last used logical eraseblock number for the PEB 921 * @torture: if the physical eraseblock has to be tortured 922 * 923 */ 924 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 925 int vol_id, int lnum, int torture) 926 { 927 struct ubi_work *wl_wrk; 928 929 dbg_wl("sync erase of PEB %i", e->pnum); 930 931 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 932 if (!wl_wrk) 933 return -ENOMEM; 934 935 wl_wrk->e = e; 936 wl_wrk->vol_id = vol_id; 937 wl_wrk->lnum = lnum; 938 wl_wrk->torture = torture; 939 940 return erase_worker(ubi, wl_wrk, 0); 941 } 942 943 #ifdef CONFIG_MTD_UBI_FASTMAP 944 /** 945 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling 946 * sub-system. 947 * see: ubi_wl_put_peb() 948 * 949 * @ubi: UBI device description object 950 * @fm_e: physical eraseblock to return 951 * @lnum: the last used logical eraseblock number for the PEB 952 * @torture: if this physical eraseblock has to be tortured 953 */ 954 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, 955 int lnum, int torture) 956 { 957 struct ubi_wl_entry *e; 958 int vol_id, pnum = fm_e->pnum; 959 960 dbg_wl("PEB %d", pnum); 961 962 ubi_assert(pnum >= 0); 963 ubi_assert(pnum < ubi->peb_count); 964 965 spin_lock(&ubi->wl_lock); 966 e = ubi->lookuptbl[pnum]; 967 968 /* This can happen if we recovered from a fastmap the very 969 * first time and writing now a new one. In this case the wl system 970 * has never seen any PEB used by the original fastmap. 971 */ 972 if (!e) { 973 e = fm_e; 974 ubi_assert(e->ec >= 0); 975 ubi->lookuptbl[pnum] = e; 976 } else { 977 e->ec = fm_e->ec; 978 kfree(fm_e); 979 } 980 981 spin_unlock(&ubi->wl_lock); 982 983 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; 984 return schedule_erase(ubi, e, vol_id, lnum, torture); 985 } 986 #endif 987 988 /** 989 * wear_leveling_worker - wear-leveling worker function. 990 * @ubi: UBI device description object 991 * @wrk: the work object 992 * @cancel: non-zero if the worker has to free memory and exit 993 * 994 * This function copies a more worn out physical eraseblock to a less worn out 995 * one. Returns zero in case of success and a negative error code in case of 996 * failure. 997 */ 998 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 999 int cancel) 1000 { 1001 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 1002 int vol_id = -1, uninitialized_var(lnum); 1003 #ifdef CONFIG_MTD_UBI_FASTMAP 1004 int anchor = wrk->anchor; 1005 #endif 1006 struct ubi_wl_entry *e1, *e2; 1007 struct ubi_vid_hdr *vid_hdr; 1008 1009 kfree(wrk); 1010 if (cancel) 1011 return 0; 1012 1013 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1014 if (!vid_hdr) 1015 return -ENOMEM; 1016 1017 mutex_lock(&ubi->move_mutex); 1018 spin_lock(&ubi->wl_lock); 1019 ubi_assert(!ubi->move_from && !ubi->move_to); 1020 ubi_assert(!ubi->move_to_put); 1021 1022 if (!ubi->free.rb_node || 1023 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 1024 /* 1025 * No free physical eraseblocks? Well, they must be waiting in 1026 * the queue to be erased. Cancel movement - it will be 1027 * triggered again when a free physical eraseblock appears. 1028 * 1029 * No used physical eraseblocks? They must be temporarily 1030 * protected from being moved. They will be moved to the 1031 * @ubi->used tree later and the wear-leveling will be 1032 * triggered again. 1033 */ 1034 dbg_wl("cancel WL, a list is empty: free %d, used %d", 1035 !ubi->free.rb_node, !ubi->used.rb_node); 1036 goto out_cancel; 1037 } 1038 1039 #ifdef CONFIG_MTD_UBI_FASTMAP 1040 /* Check whether we need to produce an anchor PEB */ 1041 if (!anchor) 1042 anchor = !anchor_pebs_avalible(&ubi->free); 1043 1044 if (anchor) { 1045 e1 = find_anchor_wl_entry(&ubi->used); 1046 if (!e1) 1047 goto out_cancel; 1048 e2 = get_peb_for_wl(ubi); 1049 if (!e2) 1050 goto out_cancel; 1051 1052 self_check_in_wl_tree(ubi, e1, &ubi->used); 1053 rb_erase(&e1->u.rb, &ubi->used); 1054 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 1055 } else if (!ubi->scrub.rb_node) { 1056 #else 1057 if (!ubi->scrub.rb_node) { 1058 #endif 1059 /* 1060 * Now pick the least worn-out used physical eraseblock and a 1061 * highly worn-out free physical eraseblock. If the erase 1062 * counters differ much enough, start wear-leveling. 1063 */ 1064 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1065 e2 = get_peb_for_wl(ubi); 1066 if (!e2) 1067 goto out_cancel; 1068 1069 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 1070 dbg_wl("no WL needed: min used EC %d, max free EC %d", 1071 e1->ec, e2->ec); 1072 1073 /* Give the unused PEB back */ 1074 wl_tree_add(e2, &ubi->free); 1075 goto out_cancel; 1076 } 1077 self_check_in_wl_tree(ubi, e1, &ubi->used); 1078 rb_erase(&e1->u.rb, &ubi->used); 1079 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 1080 e1->pnum, e1->ec, e2->pnum, e2->ec); 1081 } else { 1082 /* Perform scrubbing */ 1083 scrubbing = 1; 1084 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 1085 e2 = get_peb_for_wl(ubi); 1086 if (!e2) 1087 goto out_cancel; 1088 1089 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 1090 rb_erase(&e1->u.rb, &ubi->scrub); 1091 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 1092 } 1093 1094 ubi->move_from = e1; 1095 ubi->move_to = e2; 1096 spin_unlock(&ubi->wl_lock); 1097 1098 /* 1099 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 1100 * We so far do not know which logical eraseblock our physical 1101 * eraseblock (@e1) belongs to. We have to read the volume identifier 1102 * header first. 1103 * 1104 * Note, we are protected from this PEB being unmapped and erased. The 1105 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 1106 * which is being moved was unmapped. 1107 */ 1108 1109 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 1110 if (err && err != UBI_IO_BITFLIPS) { 1111 if (err == UBI_IO_FF) { 1112 /* 1113 * We are trying to move PEB without a VID header. UBI 1114 * always write VID headers shortly after the PEB was 1115 * given, so we have a situation when it has not yet 1116 * had a chance to write it, because it was preempted. 1117 * So add this PEB to the protection queue so far, 1118 * because presumably more data will be written there 1119 * (including the missing VID header), and then we'll 1120 * move it. 1121 */ 1122 dbg_wl("PEB %d has no VID header", e1->pnum); 1123 protect = 1; 1124 goto out_not_moved; 1125 } else if (err == UBI_IO_FF_BITFLIPS) { 1126 /* 1127 * The same situation as %UBI_IO_FF, but bit-flips were 1128 * detected. It is better to schedule this PEB for 1129 * scrubbing. 1130 */ 1131 dbg_wl("PEB %d has no VID header but has bit-flips", 1132 e1->pnum); 1133 scrubbing = 1; 1134 goto out_not_moved; 1135 } 1136 1137 ubi_err("error %d while reading VID header from PEB %d", 1138 err, e1->pnum); 1139 goto out_error; 1140 } 1141 1142 vol_id = be32_to_cpu(vid_hdr->vol_id); 1143 lnum = be32_to_cpu(vid_hdr->lnum); 1144 1145 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 1146 if (err) { 1147 if (err == MOVE_CANCEL_RACE) { 1148 /* 1149 * The LEB has not been moved because the volume is 1150 * being deleted or the PEB has been put meanwhile. We 1151 * should prevent this PEB from being selected for 1152 * wear-leveling movement again, so put it to the 1153 * protection queue. 1154 */ 1155 protect = 1; 1156 goto out_not_moved; 1157 } 1158 if (err == MOVE_RETRY) { 1159 scrubbing = 1; 1160 goto out_not_moved; 1161 } 1162 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 1163 err == MOVE_TARGET_RD_ERR) { 1164 /* 1165 * Target PEB had bit-flips or write error - torture it. 1166 */ 1167 torture = 1; 1168 goto out_not_moved; 1169 } 1170 1171 if (err == MOVE_SOURCE_RD_ERR) { 1172 /* 1173 * An error happened while reading the source PEB. Do 1174 * not switch to R/O mode in this case, and give the 1175 * upper layers a possibility to recover from this, 1176 * e.g. by unmapping corresponding LEB. Instead, just 1177 * put this PEB to the @ubi->erroneous list to prevent 1178 * UBI from trying to move it over and over again. 1179 */ 1180 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 1181 ubi_err("too many erroneous eraseblocks (%d)", 1182 ubi->erroneous_peb_count); 1183 goto out_error; 1184 } 1185 erroneous = 1; 1186 goto out_not_moved; 1187 } 1188 1189 if (err < 0) 1190 goto out_error; 1191 1192 ubi_assert(0); 1193 } 1194 1195 /* The PEB has been successfully moved */ 1196 if (scrubbing) 1197 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 1198 e1->pnum, vol_id, lnum, e2->pnum); 1199 ubi_free_vid_hdr(ubi, vid_hdr); 1200 1201 spin_lock(&ubi->wl_lock); 1202 if (!ubi->move_to_put) { 1203 wl_tree_add(e2, &ubi->used); 1204 e2 = NULL; 1205 } 1206 ubi->move_from = ubi->move_to = NULL; 1207 ubi->move_to_put = ubi->wl_scheduled = 0; 1208 spin_unlock(&ubi->wl_lock); 1209 1210 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 1211 if (err) { 1212 kmem_cache_free(ubi_wl_entry_slab, e1); 1213 if (e2) 1214 kmem_cache_free(ubi_wl_entry_slab, e2); 1215 goto out_ro; 1216 } 1217 1218 if (e2) { 1219 /* 1220 * Well, the target PEB was put meanwhile, schedule it for 1221 * erasure. 1222 */ 1223 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 1224 e2->pnum, vol_id, lnum); 1225 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 1226 if (err) { 1227 kmem_cache_free(ubi_wl_entry_slab, e2); 1228 goto out_ro; 1229 } 1230 } 1231 1232 dbg_wl("done"); 1233 mutex_unlock(&ubi->move_mutex); 1234 return 0; 1235 1236 /* 1237 * For some reasons the LEB was not moved, might be an error, might be 1238 * something else. @e1 was not changed, so return it back. @e2 might 1239 * have been changed, schedule it for erasure. 1240 */ 1241 out_not_moved: 1242 if (vol_id != -1) 1243 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 1244 e1->pnum, vol_id, lnum, e2->pnum, err); 1245 else 1246 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 1247 e1->pnum, e2->pnum, err); 1248 spin_lock(&ubi->wl_lock); 1249 if (protect) 1250 prot_queue_add(ubi, e1); 1251 else if (erroneous) { 1252 wl_tree_add(e1, &ubi->erroneous); 1253 ubi->erroneous_peb_count += 1; 1254 } else if (scrubbing) 1255 wl_tree_add(e1, &ubi->scrub); 1256 else 1257 wl_tree_add(e1, &ubi->used); 1258 ubi_assert(!ubi->move_to_put); 1259 ubi->move_from = ubi->move_to = NULL; 1260 ubi->wl_scheduled = 0; 1261 spin_unlock(&ubi->wl_lock); 1262 1263 ubi_free_vid_hdr(ubi, vid_hdr); 1264 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 1265 if (err) { 1266 kmem_cache_free(ubi_wl_entry_slab, e2); 1267 goto out_ro; 1268 } 1269 mutex_unlock(&ubi->move_mutex); 1270 return 0; 1271 1272 out_error: 1273 if (vol_id != -1) 1274 ubi_err("error %d while moving PEB %d to PEB %d", 1275 err, e1->pnum, e2->pnum); 1276 else 1277 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 1278 err, e1->pnum, vol_id, lnum, e2->pnum); 1279 spin_lock(&ubi->wl_lock); 1280 ubi->move_from = ubi->move_to = NULL; 1281 ubi->move_to_put = ubi->wl_scheduled = 0; 1282 spin_unlock(&ubi->wl_lock); 1283 1284 ubi_free_vid_hdr(ubi, vid_hdr); 1285 kmem_cache_free(ubi_wl_entry_slab, e1); 1286 kmem_cache_free(ubi_wl_entry_slab, e2); 1287 1288 out_ro: 1289 ubi_ro_mode(ubi); 1290 mutex_unlock(&ubi->move_mutex); 1291 ubi_assert(err != 0); 1292 return err < 0 ? err : -EIO; 1293 1294 out_cancel: 1295 ubi->wl_scheduled = 0; 1296 spin_unlock(&ubi->wl_lock); 1297 mutex_unlock(&ubi->move_mutex); 1298 ubi_free_vid_hdr(ubi, vid_hdr); 1299 return 0; 1300 } 1301 1302 /** 1303 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1304 * @ubi: UBI device description object 1305 * @nested: set to non-zero if this function is called from UBI worker 1306 * 1307 * This function checks if it is time to start wear-leveling and schedules it 1308 * if yes. This function returns zero in case of success and a negative error 1309 * code in case of failure. 1310 */ 1311 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1312 { 1313 int err = 0; 1314 struct ubi_wl_entry *e1; 1315 struct ubi_wl_entry *e2; 1316 struct ubi_work *wrk; 1317 1318 spin_lock(&ubi->wl_lock); 1319 if (ubi->wl_scheduled) 1320 /* Wear-leveling is already in the work queue */ 1321 goto out_unlock; 1322 1323 /* 1324 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1325 * the WL worker has to be scheduled anyway. 1326 */ 1327 if (!ubi->scrub.rb_node) { 1328 if (!ubi->used.rb_node || !ubi->free.rb_node) 1329 /* No physical eraseblocks - no deal */ 1330 goto out_unlock; 1331 1332 /* 1333 * We schedule wear-leveling only if the difference between the 1334 * lowest erase counter of used physical eraseblocks and a high 1335 * erase counter of free physical eraseblocks is greater than 1336 * %UBI_WL_THRESHOLD. 1337 */ 1338 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1339 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1340 1341 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1342 goto out_unlock; 1343 dbg_wl("schedule wear-leveling"); 1344 } else 1345 dbg_wl("schedule scrubbing"); 1346 1347 ubi->wl_scheduled = 1; 1348 spin_unlock(&ubi->wl_lock); 1349 1350 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1351 if (!wrk) { 1352 err = -ENOMEM; 1353 goto out_cancel; 1354 } 1355 1356 wrk->anchor = 0; 1357 wrk->func = &wear_leveling_worker; 1358 if (nested) 1359 __schedule_ubi_work(ubi, wrk); 1360 else 1361 schedule_ubi_work(ubi, wrk); 1362 return err; 1363 1364 out_cancel: 1365 spin_lock(&ubi->wl_lock); 1366 ubi->wl_scheduled = 0; 1367 out_unlock: 1368 spin_unlock(&ubi->wl_lock); 1369 return err; 1370 } 1371 1372 #ifdef CONFIG_MTD_UBI_FASTMAP 1373 /** 1374 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. 1375 * @ubi: UBI device description object 1376 */ 1377 int ubi_ensure_anchor_pebs(struct ubi_device *ubi) 1378 { 1379 struct ubi_work *wrk; 1380 1381 spin_lock(&ubi->wl_lock); 1382 if (ubi->wl_scheduled) { 1383 spin_unlock(&ubi->wl_lock); 1384 return 0; 1385 } 1386 ubi->wl_scheduled = 1; 1387 spin_unlock(&ubi->wl_lock); 1388 1389 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1390 if (!wrk) { 1391 spin_lock(&ubi->wl_lock); 1392 ubi->wl_scheduled = 0; 1393 spin_unlock(&ubi->wl_lock); 1394 return -ENOMEM; 1395 } 1396 1397 wrk->anchor = 1; 1398 wrk->func = &wear_leveling_worker; 1399 schedule_ubi_work(ubi, wrk); 1400 return 0; 1401 } 1402 #endif 1403 1404 /** 1405 * erase_worker - physical eraseblock erase worker function. 1406 * @ubi: UBI device description object 1407 * @wl_wrk: the work object 1408 * @cancel: non-zero if the worker has to free memory and exit 1409 * 1410 * This function erases a physical eraseblock and perform torture testing if 1411 * needed. It also takes care about marking the physical eraseblock bad if 1412 * needed. Returns zero in case of success and a negative error code in case of 1413 * failure. 1414 */ 1415 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1416 int cancel) 1417 { 1418 struct ubi_wl_entry *e = wl_wrk->e; 1419 int pnum = e->pnum; 1420 int vol_id = wl_wrk->vol_id; 1421 int lnum = wl_wrk->lnum; 1422 int err, available_consumed = 0; 1423 1424 if (cancel) { 1425 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1426 kfree(wl_wrk); 1427 kmem_cache_free(ubi_wl_entry_slab, e); 1428 return 0; 1429 } 1430 1431 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1432 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1433 1434 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1435 1436 err = sync_erase(ubi, e, wl_wrk->torture); 1437 if (!err) { 1438 /* Fine, we've erased it successfully */ 1439 kfree(wl_wrk); 1440 1441 spin_lock(&ubi->wl_lock); 1442 wl_tree_add(e, &ubi->free); 1443 ubi->free_count++; 1444 spin_unlock(&ubi->wl_lock); 1445 1446 /* 1447 * One more erase operation has happened, take care about 1448 * protected physical eraseblocks. 1449 */ 1450 serve_prot_queue(ubi); 1451 1452 /* And take care about wear-leveling */ 1453 err = ensure_wear_leveling(ubi, 1); 1454 return err; 1455 } 1456 1457 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1458 kfree(wl_wrk); 1459 1460 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1461 err == -EBUSY) { 1462 int err1; 1463 1464 /* Re-schedule the LEB for erasure */ 1465 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1466 if (err1) { 1467 err = err1; 1468 goto out_ro; 1469 } 1470 return err; 1471 } 1472 1473 kmem_cache_free(ubi_wl_entry_slab, e); 1474 if (err != -EIO) 1475 /* 1476 * If this is not %-EIO, we have no idea what to do. Scheduling 1477 * this physical eraseblock for erasure again would cause 1478 * errors again and again. Well, lets switch to R/O mode. 1479 */ 1480 goto out_ro; 1481 1482 /* It is %-EIO, the PEB went bad */ 1483 1484 if (!ubi->bad_allowed) { 1485 ubi_err("bad physical eraseblock %d detected", pnum); 1486 goto out_ro; 1487 } 1488 1489 spin_lock(&ubi->volumes_lock); 1490 if (ubi->beb_rsvd_pebs == 0) { 1491 if (ubi->avail_pebs == 0) { 1492 spin_unlock(&ubi->volumes_lock); 1493 ubi_err("no reserved/available physical eraseblocks"); 1494 goto out_ro; 1495 } 1496 ubi->avail_pebs -= 1; 1497 available_consumed = 1; 1498 } 1499 spin_unlock(&ubi->volumes_lock); 1500 1501 ubi_msg("mark PEB %d as bad", pnum); 1502 err = ubi_io_mark_bad(ubi, pnum); 1503 if (err) 1504 goto out_ro; 1505 1506 spin_lock(&ubi->volumes_lock); 1507 if (ubi->beb_rsvd_pebs > 0) { 1508 if (available_consumed) { 1509 /* 1510 * The amount of reserved PEBs increased since we last 1511 * checked. 1512 */ 1513 ubi->avail_pebs += 1; 1514 available_consumed = 0; 1515 } 1516 ubi->beb_rsvd_pebs -= 1; 1517 } 1518 ubi->bad_peb_count += 1; 1519 ubi->good_peb_count -= 1; 1520 ubi_calculate_reserved(ubi); 1521 if (available_consumed) 1522 ubi_warn("no PEBs in the reserved pool, used an available PEB"); 1523 else if (ubi->beb_rsvd_pebs) 1524 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1525 else 1526 ubi_warn("last PEB from the reserve was used"); 1527 spin_unlock(&ubi->volumes_lock); 1528 1529 return err; 1530 1531 out_ro: 1532 if (available_consumed) { 1533 spin_lock(&ubi->volumes_lock); 1534 ubi->avail_pebs += 1; 1535 spin_unlock(&ubi->volumes_lock); 1536 } 1537 ubi_ro_mode(ubi); 1538 return err; 1539 } 1540 1541 /** 1542 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1543 * @ubi: UBI device description object 1544 * @vol_id: the volume ID that last used this PEB 1545 * @lnum: the last used logical eraseblock number for the PEB 1546 * @pnum: physical eraseblock to return 1547 * @torture: if this physical eraseblock has to be tortured 1548 * 1549 * This function is called to return physical eraseblock @pnum to the pool of 1550 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1551 * occurred to this @pnum and it has to be tested. This function returns zero 1552 * in case of success, and a negative error code in case of failure. 1553 */ 1554 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1555 int pnum, int torture) 1556 { 1557 int err; 1558 struct ubi_wl_entry *e; 1559 1560 dbg_wl("PEB %d", pnum); 1561 ubi_assert(pnum >= 0); 1562 ubi_assert(pnum < ubi->peb_count); 1563 1564 retry: 1565 spin_lock(&ubi->wl_lock); 1566 e = ubi->lookuptbl[pnum]; 1567 if (e == ubi->move_from) { 1568 /* 1569 * User is putting the physical eraseblock which was selected to 1570 * be moved. It will be scheduled for erasure in the 1571 * wear-leveling worker. 1572 */ 1573 dbg_wl("PEB %d is being moved, wait", pnum); 1574 spin_unlock(&ubi->wl_lock); 1575 1576 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1577 mutex_lock(&ubi->move_mutex); 1578 mutex_unlock(&ubi->move_mutex); 1579 goto retry; 1580 } else if (e == ubi->move_to) { 1581 /* 1582 * User is putting the physical eraseblock which was selected 1583 * as the target the data is moved to. It may happen if the EBA 1584 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1585 * but the WL sub-system has not put the PEB to the "used" tree 1586 * yet, but it is about to do this. So we just set a flag which 1587 * will tell the WL worker that the PEB is not needed anymore 1588 * and should be scheduled for erasure. 1589 */ 1590 dbg_wl("PEB %d is the target of data moving", pnum); 1591 ubi_assert(!ubi->move_to_put); 1592 ubi->move_to_put = 1; 1593 spin_unlock(&ubi->wl_lock); 1594 return 0; 1595 } else { 1596 if (in_wl_tree(e, &ubi->used)) { 1597 self_check_in_wl_tree(ubi, e, &ubi->used); 1598 rb_erase(&e->u.rb, &ubi->used); 1599 } else if (in_wl_tree(e, &ubi->scrub)) { 1600 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1601 rb_erase(&e->u.rb, &ubi->scrub); 1602 } else if (in_wl_tree(e, &ubi->erroneous)) { 1603 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1604 rb_erase(&e->u.rb, &ubi->erroneous); 1605 ubi->erroneous_peb_count -= 1; 1606 ubi_assert(ubi->erroneous_peb_count >= 0); 1607 /* Erroneous PEBs should be tortured */ 1608 torture = 1; 1609 } else { 1610 err = prot_queue_del(ubi, e->pnum); 1611 if (err) { 1612 ubi_err("PEB %d not found", pnum); 1613 ubi_ro_mode(ubi); 1614 spin_unlock(&ubi->wl_lock); 1615 return err; 1616 } 1617 } 1618 } 1619 spin_unlock(&ubi->wl_lock); 1620 1621 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1622 if (err) { 1623 spin_lock(&ubi->wl_lock); 1624 wl_tree_add(e, &ubi->used); 1625 spin_unlock(&ubi->wl_lock); 1626 } 1627 1628 return err; 1629 } 1630 1631 /** 1632 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1633 * @ubi: UBI device description object 1634 * @pnum: the physical eraseblock to schedule 1635 * 1636 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1637 * needs scrubbing. This function schedules a physical eraseblock for 1638 * scrubbing which is done in background. This function returns zero in case of 1639 * success and a negative error code in case of failure. 1640 */ 1641 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1642 { 1643 struct ubi_wl_entry *e; 1644 1645 ubi_msg("schedule PEB %d for scrubbing", pnum); 1646 1647 retry: 1648 spin_lock(&ubi->wl_lock); 1649 e = ubi->lookuptbl[pnum]; 1650 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1651 in_wl_tree(e, &ubi->erroneous)) { 1652 spin_unlock(&ubi->wl_lock); 1653 return 0; 1654 } 1655 1656 if (e == ubi->move_to) { 1657 /* 1658 * This physical eraseblock was used to move data to. The data 1659 * was moved but the PEB was not yet inserted to the proper 1660 * tree. We should just wait a little and let the WL worker 1661 * proceed. 1662 */ 1663 spin_unlock(&ubi->wl_lock); 1664 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1665 yield(); 1666 goto retry; 1667 } 1668 1669 if (in_wl_tree(e, &ubi->used)) { 1670 self_check_in_wl_tree(ubi, e, &ubi->used); 1671 rb_erase(&e->u.rb, &ubi->used); 1672 } else { 1673 int err; 1674 1675 err = prot_queue_del(ubi, e->pnum); 1676 if (err) { 1677 ubi_err("PEB %d not found", pnum); 1678 ubi_ro_mode(ubi); 1679 spin_unlock(&ubi->wl_lock); 1680 return err; 1681 } 1682 } 1683 1684 wl_tree_add(e, &ubi->scrub); 1685 spin_unlock(&ubi->wl_lock); 1686 1687 /* 1688 * Technically scrubbing is the same as wear-leveling, so it is done 1689 * by the WL worker. 1690 */ 1691 return ensure_wear_leveling(ubi, 0); 1692 } 1693 1694 /** 1695 * ubi_wl_flush - flush all pending works. 1696 * @ubi: UBI device description object 1697 * @vol_id: the volume id to flush for 1698 * @lnum: the logical eraseblock number to flush for 1699 * 1700 * This function executes all pending works for a particular volume id / 1701 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1702 * acts as a wildcard for all of the corresponding volume numbers or logical 1703 * eraseblock numbers. It returns zero in case of success and a negative error 1704 * code in case of failure. 1705 */ 1706 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1707 { 1708 int err = 0; 1709 int found = 1; 1710 1711 /* 1712 * Erase while the pending works queue is not empty, but not more than 1713 * the number of currently pending works. 1714 */ 1715 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1716 vol_id, lnum, ubi->works_count); 1717 1718 while (found) { 1719 struct ubi_work *wrk; 1720 found = 0; 1721 1722 down_read(&ubi->work_sem); 1723 spin_lock(&ubi->wl_lock); 1724 list_for_each_entry(wrk, &ubi->works, list) { 1725 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1726 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1727 list_del(&wrk->list); 1728 ubi->works_count -= 1; 1729 ubi_assert(ubi->works_count >= 0); 1730 spin_unlock(&ubi->wl_lock); 1731 1732 err = wrk->func(ubi, wrk, 0); 1733 if (err) { 1734 up_read(&ubi->work_sem); 1735 return err; 1736 } 1737 1738 spin_lock(&ubi->wl_lock); 1739 found = 1; 1740 break; 1741 } 1742 } 1743 spin_unlock(&ubi->wl_lock); 1744 up_read(&ubi->work_sem); 1745 } 1746 1747 /* 1748 * Make sure all the works which have been done in parallel are 1749 * finished. 1750 */ 1751 down_write(&ubi->work_sem); 1752 up_write(&ubi->work_sem); 1753 1754 return err; 1755 } 1756 1757 /** 1758 * tree_destroy - destroy an RB-tree. 1759 * @root: the root of the tree to destroy 1760 */ 1761 static void tree_destroy(struct rb_root *root) 1762 { 1763 struct rb_node *rb; 1764 struct ubi_wl_entry *e; 1765 1766 rb = root->rb_node; 1767 while (rb) { 1768 if (rb->rb_left) 1769 rb = rb->rb_left; 1770 else if (rb->rb_right) 1771 rb = rb->rb_right; 1772 else { 1773 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1774 1775 rb = rb_parent(rb); 1776 if (rb) { 1777 if (rb->rb_left == &e->u.rb) 1778 rb->rb_left = NULL; 1779 else 1780 rb->rb_right = NULL; 1781 } 1782 1783 kmem_cache_free(ubi_wl_entry_slab, e); 1784 } 1785 } 1786 } 1787 1788 /** 1789 * ubi_thread - UBI background thread. 1790 * @u: the UBI device description object pointer 1791 */ 1792 int ubi_thread(void *u) 1793 { 1794 int failures = 0; 1795 struct ubi_device *ubi = u; 1796 1797 ubi_msg("background thread \"%s\" started, PID %d", 1798 ubi->bgt_name, task_pid_nr(current)); 1799 1800 set_freezable(); 1801 for (;;) { 1802 int err; 1803 1804 if (kthread_should_stop()) 1805 break; 1806 1807 if (try_to_freeze()) 1808 continue; 1809 1810 spin_lock(&ubi->wl_lock); 1811 if (list_empty(&ubi->works) || ubi->ro_mode || 1812 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1813 set_current_state(TASK_INTERRUPTIBLE); 1814 spin_unlock(&ubi->wl_lock); 1815 schedule(); 1816 continue; 1817 } 1818 spin_unlock(&ubi->wl_lock); 1819 1820 err = do_work(ubi); 1821 if (err) { 1822 ubi_err("%s: work failed with error code %d", 1823 ubi->bgt_name, err); 1824 if (failures++ > WL_MAX_FAILURES) { 1825 /* 1826 * Too many failures, disable the thread and 1827 * switch to read-only mode. 1828 */ 1829 ubi_msg("%s: %d consecutive failures", 1830 ubi->bgt_name, WL_MAX_FAILURES); 1831 ubi_ro_mode(ubi); 1832 ubi->thread_enabled = 0; 1833 continue; 1834 } 1835 } else 1836 failures = 0; 1837 1838 cond_resched(); 1839 } 1840 1841 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1842 return 0; 1843 } 1844 1845 /** 1846 * cancel_pending - cancel all pending works. 1847 * @ubi: UBI device description object 1848 */ 1849 static void cancel_pending(struct ubi_device *ubi) 1850 { 1851 while (!list_empty(&ubi->works)) { 1852 struct ubi_work *wrk; 1853 1854 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1855 list_del(&wrk->list); 1856 wrk->func(ubi, wrk, 1); 1857 ubi->works_count -= 1; 1858 ubi_assert(ubi->works_count >= 0); 1859 } 1860 } 1861 1862 /** 1863 * ubi_wl_init - initialize the WL sub-system using attaching information. 1864 * @ubi: UBI device description object 1865 * @ai: attaching information 1866 * 1867 * This function returns zero in case of success, and a negative error code in 1868 * case of failure. 1869 */ 1870 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1871 { 1872 int err, i, reserved_pebs, found_pebs = 0; 1873 struct rb_node *rb1, *rb2; 1874 struct ubi_ainf_volume *av; 1875 struct ubi_ainf_peb *aeb, *tmp; 1876 struct ubi_wl_entry *e; 1877 1878 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1879 spin_lock_init(&ubi->wl_lock); 1880 mutex_init(&ubi->move_mutex); 1881 init_rwsem(&ubi->work_sem); 1882 ubi->max_ec = ai->max_ec; 1883 INIT_LIST_HEAD(&ubi->works); 1884 #ifdef CONFIG_MTD_UBI_FASTMAP 1885 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); 1886 #endif 1887 1888 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1889 1890 err = -ENOMEM; 1891 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1892 if (!ubi->lookuptbl) 1893 return err; 1894 1895 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1896 INIT_LIST_HEAD(&ubi->pq[i]); 1897 ubi->pq_head = 0; 1898 1899 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1900 cond_resched(); 1901 1902 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1903 if (!e) 1904 goto out_free; 1905 1906 e->pnum = aeb->pnum; 1907 e->ec = aeb->ec; 1908 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1909 ubi->lookuptbl[e->pnum] = e; 1910 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1911 kmem_cache_free(ubi_wl_entry_slab, e); 1912 goto out_free; 1913 } 1914 1915 found_pebs++; 1916 } 1917 1918 ubi->free_count = 0; 1919 list_for_each_entry(aeb, &ai->free, u.list) { 1920 cond_resched(); 1921 1922 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1923 if (!e) 1924 goto out_free; 1925 1926 e->pnum = aeb->pnum; 1927 e->ec = aeb->ec; 1928 ubi_assert(e->ec >= 0); 1929 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1930 1931 wl_tree_add(e, &ubi->free); 1932 ubi->free_count++; 1933 1934 ubi->lookuptbl[e->pnum] = e; 1935 1936 found_pebs++; 1937 } 1938 1939 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1940 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1941 cond_resched(); 1942 1943 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1944 if (!e) 1945 goto out_free; 1946 1947 e->pnum = aeb->pnum; 1948 e->ec = aeb->ec; 1949 ubi->lookuptbl[e->pnum] = e; 1950 1951 if (!aeb->scrub) { 1952 dbg_wl("add PEB %d EC %d to the used tree", 1953 e->pnum, e->ec); 1954 wl_tree_add(e, &ubi->used); 1955 } else { 1956 dbg_wl("add PEB %d EC %d to the scrub tree", 1957 e->pnum, e->ec); 1958 wl_tree_add(e, &ubi->scrub); 1959 } 1960 1961 found_pebs++; 1962 } 1963 } 1964 1965 dbg_wl("found %i PEBs", found_pebs); 1966 1967 if (ubi->fm) 1968 ubi_assert(ubi->good_peb_count == \ 1969 found_pebs + ubi->fm->used_blocks); 1970 else 1971 ubi_assert(ubi->good_peb_count == found_pebs); 1972 1973 reserved_pebs = WL_RESERVED_PEBS; 1974 #ifdef CONFIG_MTD_UBI_FASTMAP 1975 /* Reserve enough LEBs to store two fastmaps. */ 1976 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; 1977 #endif 1978 1979 if (ubi->avail_pebs < reserved_pebs) { 1980 ubi_err("no enough physical eraseblocks (%d, need %d)", 1981 ubi->avail_pebs, reserved_pebs); 1982 if (ubi->corr_peb_count) 1983 ubi_err("%d PEBs are corrupted and not used", 1984 ubi->corr_peb_count); 1985 goto out_free; 1986 } 1987 ubi->avail_pebs -= reserved_pebs; 1988 ubi->rsvd_pebs += reserved_pebs; 1989 1990 /* Schedule wear-leveling if needed */ 1991 err = ensure_wear_leveling(ubi, 0); 1992 if (err) 1993 goto out_free; 1994 1995 return 0; 1996 1997 out_free: 1998 cancel_pending(ubi); 1999 tree_destroy(&ubi->used); 2000 tree_destroy(&ubi->free); 2001 tree_destroy(&ubi->scrub); 2002 kfree(ubi->lookuptbl); 2003 return err; 2004 } 2005 2006 /** 2007 * protection_queue_destroy - destroy the protection queue. 2008 * @ubi: UBI device description object 2009 */ 2010 static void protection_queue_destroy(struct ubi_device *ubi) 2011 { 2012 int i; 2013 struct ubi_wl_entry *e, *tmp; 2014 2015 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 2016 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 2017 list_del(&e->u.list); 2018 kmem_cache_free(ubi_wl_entry_slab, e); 2019 } 2020 } 2021 } 2022 2023 /** 2024 * ubi_wl_close - close the wear-leveling sub-system. 2025 * @ubi: UBI device description object 2026 */ 2027 void ubi_wl_close(struct ubi_device *ubi) 2028 { 2029 dbg_wl("close the WL sub-system"); 2030 cancel_pending(ubi); 2031 protection_queue_destroy(ubi); 2032 tree_destroy(&ubi->used); 2033 tree_destroy(&ubi->erroneous); 2034 tree_destroy(&ubi->free); 2035 tree_destroy(&ubi->scrub); 2036 kfree(ubi->lookuptbl); 2037 } 2038 2039 /** 2040 * self_check_ec - make sure that the erase counter of a PEB is correct. 2041 * @ubi: UBI device description object 2042 * @pnum: the physical eraseblock number to check 2043 * @ec: the erase counter to check 2044 * 2045 * This function returns zero if the erase counter of physical eraseblock @pnum 2046 * is equivalent to @ec, and a negative error code if not or if an error 2047 * occurred. 2048 */ 2049 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2050 { 2051 int err; 2052 long long read_ec; 2053 struct ubi_ec_hdr *ec_hdr; 2054 2055 if (!ubi_dbg_chk_gen(ubi)) 2056 return 0; 2057 2058 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2059 if (!ec_hdr) 2060 return -ENOMEM; 2061 2062 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2063 if (err && err != UBI_IO_BITFLIPS) { 2064 /* The header does not have to exist */ 2065 err = 0; 2066 goto out_free; 2067 } 2068 2069 read_ec = be64_to_cpu(ec_hdr->ec); 2070 if (ec != read_ec && read_ec - ec > 1) { 2071 ubi_err("self-check failed for PEB %d", pnum); 2072 ubi_err("read EC is %lld, should be %d", read_ec, ec); 2073 dump_stack(); 2074 err = 1; 2075 } else 2076 err = 0; 2077 2078 out_free: 2079 kfree(ec_hdr); 2080 return err; 2081 } 2082 2083 /** 2084 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2085 * @ubi: UBI device description object 2086 * @e: the wear-leveling entry to check 2087 * @root: the root of the tree 2088 * 2089 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2090 * is not. 2091 */ 2092 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2093 struct ubi_wl_entry *e, struct rb_root *root) 2094 { 2095 if (!ubi_dbg_chk_gen(ubi)) 2096 return 0; 2097 2098 if (in_wl_tree(e, root)) 2099 return 0; 2100 2101 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", 2102 e->pnum, e->ec, root); 2103 dump_stack(); 2104 return -EINVAL; 2105 } 2106 2107 /** 2108 * self_check_in_pq - check if wear-leveling entry is in the protection 2109 * queue. 2110 * @ubi: UBI device description object 2111 * @e: the wear-leveling entry to check 2112 * 2113 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2114 */ 2115 static int self_check_in_pq(const struct ubi_device *ubi, 2116 struct ubi_wl_entry *e) 2117 { 2118 struct ubi_wl_entry *p; 2119 int i; 2120 2121 if (!ubi_dbg_chk_gen(ubi)) 2122 return 0; 2123 2124 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 2125 list_for_each_entry(p, &ubi->pq[i], u.list) 2126 if (p == e) 2127 return 0; 2128 2129 ubi_err("self-check failed for PEB %d, EC %d, Protect queue", 2130 e->pnum, e->ec); 2131 dump_stack(); 2132 return -EINVAL; 2133 } 2134