xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 4cff79e9)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107 
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110 
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118 
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131 
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137 
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 				 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 			    struct ubi_wl_entry *e);
143 
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154 	struct rb_node **p, *parent = NULL;
155 
156 	p = &root->rb_node;
157 	while (*p) {
158 		struct ubi_wl_entry *e1;
159 
160 		parent = *p;
161 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162 
163 		if (e->ec < e1->ec)
164 			p = &(*p)->rb_left;
165 		else if (e->ec > e1->ec)
166 			p = &(*p)->rb_right;
167 		else {
168 			ubi_assert(e->pnum != e1->pnum);
169 			if (e->pnum < e1->pnum)
170 				p = &(*p)->rb_left;
171 			else
172 				p = &(*p)->rb_right;
173 		}
174 	}
175 
176 	rb_link_node(&e->u.rb, parent, p);
177 	rb_insert_color(&e->u.rb, root);
178 }
179 
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190 	ubi->lookuptbl[e->pnum] = NULL;
191 	kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193 
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203 	int err;
204 	struct ubi_work *wrk;
205 
206 	cond_resched();
207 
208 	/*
209 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 	 * it in read mode, so many of them may be doing works at a time. But
211 	 * the queue flush code has to be sure the whole queue of works is
212 	 * done, and it takes the mutex in write mode.
213 	 */
214 	down_read(&ubi->work_sem);
215 	spin_lock(&ubi->wl_lock);
216 	if (list_empty(&ubi->works)) {
217 		spin_unlock(&ubi->wl_lock);
218 		up_read(&ubi->work_sem);
219 		return 0;
220 	}
221 
222 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 	list_del(&wrk->list);
224 	ubi->works_count -= 1;
225 	ubi_assert(ubi->works_count >= 0);
226 	spin_unlock(&ubi->wl_lock);
227 
228 	/*
229 	 * Call the worker function. Do not touch the work structure
230 	 * after this call as it will have been freed or reused by that
231 	 * time by the worker function.
232 	 */
233 	err = wrk->func(ubi, wrk, 0);
234 	if (err)
235 		ubi_err(ubi, "work failed with error code %d", err);
236 	up_read(&ubi->work_sem);
237 
238 	return err;
239 }
240 
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251 	struct rb_node *p;
252 
253 	p = root->rb_node;
254 	while (p) {
255 		struct ubi_wl_entry *e1;
256 
257 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258 
259 		if (e->pnum == e1->pnum) {
260 			ubi_assert(e == e1);
261 			return 1;
262 		}
263 
264 		if (e->ec < e1->ec)
265 			p = p->rb_left;
266 		else if (e->ec > e1->ec)
267 			p = p->rb_right;
268 		else {
269 			ubi_assert(e->pnum != e1->pnum);
270 			if (e->pnum < e1->pnum)
271 				p = p->rb_left;
272 			else
273 				p = p->rb_right;
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 /**
281  * prot_queue_add - add physical eraseblock to the protection queue.
282  * @ubi: UBI device description object
283  * @e: the physical eraseblock to add
284  *
285  * This function adds @e to the tail of the protection queue @ubi->pq, where
286  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288  * be locked.
289  */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292 	int pq_tail = ubi->pq_head - 1;
293 
294 	if (pq_tail < 0)
295 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
296 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300 
301 /**
302  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303  * @ubi: UBI device description object
304  * @root: the RB-tree where to look for
305  * @diff: maximum possible difference from the smallest erase counter
306  *
307  * This function looks for a wear leveling entry with erase counter closest to
308  * min + @diff, where min is the smallest erase counter.
309  */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311 					  struct rb_root *root, int diff)
312 {
313 	struct rb_node *p;
314 	struct ubi_wl_entry *e, *prev_e = NULL;
315 	int max;
316 
317 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318 	max = e->ec + diff;
319 
320 	p = root->rb_node;
321 	while (p) {
322 		struct ubi_wl_entry *e1;
323 
324 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325 		if (e1->ec >= max)
326 			p = p->rb_left;
327 		else {
328 			p = p->rb_right;
329 			prev_e = e;
330 			e = e1;
331 		}
332 	}
333 
334 	/* If no fastmap has been written and this WL entry can be used
335 	 * as anchor PEB, hold it back and return the second best WL entry
336 	 * such that fastmap can use the anchor PEB later. */
337 	if (prev_e && !ubi->fm_disabled &&
338 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
339 		return prev_e;
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 			  int vol_id, int lnum, int torture, bool nested)
584 {
585 	struct ubi_work *wl_wrk;
586 
587 	ubi_assert(e);
588 
589 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 	       e->pnum, e->ec, torture);
591 
592 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 	if (!wl_wrk)
594 		return -ENOMEM;
595 
596 	wl_wrk->func = &erase_worker;
597 	wl_wrk->e = e;
598 	wl_wrk->vol_id = vol_id;
599 	wl_wrk->lnum = lnum;
600 	wl_wrk->torture = torture;
601 
602 	if (nested)
603 		__schedule_ubi_work(ubi, wl_wrk);
604 	else
605 		schedule_ubi_work(ubi, wl_wrk);
606 	return 0;
607 }
608 
609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
610 /**
611  * do_sync_erase - run the erase worker synchronously.
612  * @ubi: UBI device description object
613  * @e: the WL entry of the physical eraseblock to erase
614  * @vol_id: the volume ID that last used this PEB
615  * @lnum: the last used logical eraseblock number for the PEB
616  * @torture: if the physical eraseblock has to be tortured
617  *
618  */
619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 			 int vol_id, int lnum, int torture)
621 {
622 	struct ubi_work wl_wrk;
623 
624 	dbg_wl("sync erase of PEB %i", e->pnum);
625 
626 	wl_wrk.e = e;
627 	wl_wrk.vol_id = vol_id;
628 	wl_wrk.lnum = lnum;
629 	wl_wrk.torture = torture;
630 
631 	return __erase_worker(ubi, &wl_wrk);
632 }
633 
634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
635 /**
636  * wear_leveling_worker - wear-leveling worker function.
637  * @ubi: UBI device description object
638  * @wrk: the work object
639  * @shutdown: non-zero if the worker has to free memory and exit
640  * because the WL-subsystem is shutting down
641  *
642  * This function copies a more worn out physical eraseblock to a less worn out
643  * one. Returns zero in case of success and a negative error code in case of
644  * failure.
645  */
646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647 				int shutdown)
648 {
649 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
651 #ifdef CONFIG_MTD_UBI_FASTMAP
652 	int anchor = wrk->anchor;
653 #endif
654 	struct ubi_wl_entry *e1, *e2;
655 	struct ubi_vid_io_buf *vidb;
656 	struct ubi_vid_hdr *vid_hdr;
657 	int dst_leb_clean = 0;
658 
659 	kfree(wrk);
660 	if (shutdown)
661 		return 0;
662 
663 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
664 	if (!vidb)
665 		return -ENOMEM;
666 
667 	vid_hdr = ubi_get_vid_hdr(vidb);
668 
669 	down_read(&ubi->fm_eba_sem);
670 	mutex_lock(&ubi->move_mutex);
671 	spin_lock(&ubi->wl_lock);
672 	ubi_assert(!ubi->move_from && !ubi->move_to);
673 	ubi_assert(!ubi->move_to_put);
674 
675 	if (!ubi->free.rb_node ||
676 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
677 		/*
678 		 * No free physical eraseblocks? Well, they must be waiting in
679 		 * the queue to be erased. Cancel movement - it will be
680 		 * triggered again when a free physical eraseblock appears.
681 		 *
682 		 * No used physical eraseblocks? They must be temporarily
683 		 * protected from being moved. They will be moved to the
684 		 * @ubi->used tree later and the wear-leveling will be
685 		 * triggered again.
686 		 */
687 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
688 		       !ubi->free.rb_node, !ubi->used.rb_node);
689 		goto out_cancel;
690 	}
691 
692 #ifdef CONFIG_MTD_UBI_FASTMAP
693 	/* Check whether we need to produce an anchor PEB */
694 	if (!anchor)
695 		anchor = !anchor_pebs_available(&ubi->free);
696 
697 	if (anchor) {
698 		e1 = find_anchor_wl_entry(&ubi->used);
699 		if (!e1)
700 			goto out_cancel;
701 		e2 = get_peb_for_wl(ubi);
702 		if (!e2)
703 			goto out_cancel;
704 
705 		self_check_in_wl_tree(ubi, e1, &ubi->used);
706 		rb_erase(&e1->u.rb, &ubi->used);
707 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
708 	} else if (!ubi->scrub.rb_node) {
709 #else
710 	if (!ubi->scrub.rb_node) {
711 #endif
712 		/*
713 		 * Now pick the least worn-out used physical eraseblock and a
714 		 * highly worn-out free physical eraseblock. If the erase
715 		 * counters differ much enough, start wear-leveling.
716 		 */
717 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
718 		e2 = get_peb_for_wl(ubi);
719 		if (!e2)
720 			goto out_cancel;
721 
722 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
723 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
724 			       e1->ec, e2->ec);
725 
726 			/* Give the unused PEB back */
727 			wl_tree_add(e2, &ubi->free);
728 			ubi->free_count++;
729 			goto out_cancel;
730 		}
731 		self_check_in_wl_tree(ubi, e1, &ubi->used);
732 		rb_erase(&e1->u.rb, &ubi->used);
733 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
734 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
735 	} else {
736 		/* Perform scrubbing */
737 		scrubbing = 1;
738 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
739 		e2 = get_peb_for_wl(ubi);
740 		if (!e2)
741 			goto out_cancel;
742 
743 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
744 		rb_erase(&e1->u.rb, &ubi->scrub);
745 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
746 	}
747 
748 	ubi->move_from = e1;
749 	ubi->move_to = e2;
750 	spin_unlock(&ubi->wl_lock);
751 
752 	/*
753 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
754 	 * We so far do not know which logical eraseblock our physical
755 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
756 	 * header first.
757 	 *
758 	 * Note, we are protected from this PEB being unmapped and erased. The
759 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
760 	 * which is being moved was unmapped.
761 	 */
762 
763 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
764 	if (err && err != UBI_IO_BITFLIPS) {
765 		dst_leb_clean = 1;
766 		if (err == UBI_IO_FF) {
767 			/*
768 			 * We are trying to move PEB without a VID header. UBI
769 			 * always write VID headers shortly after the PEB was
770 			 * given, so we have a situation when it has not yet
771 			 * had a chance to write it, because it was preempted.
772 			 * So add this PEB to the protection queue so far,
773 			 * because presumably more data will be written there
774 			 * (including the missing VID header), and then we'll
775 			 * move it.
776 			 */
777 			dbg_wl("PEB %d has no VID header", e1->pnum);
778 			protect = 1;
779 			goto out_not_moved;
780 		} else if (err == UBI_IO_FF_BITFLIPS) {
781 			/*
782 			 * The same situation as %UBI_IO_FF, but bit-flips were
783 			 * detected. It is better to schedule this PEB for
784 			 * scrubbing.
785 			 */
786 			dbg_wl("PEB %d has no VID header but has bit-flips",
787 			       e1->pnum);
788 			scrubbing = 1;
789 			goto out_not_moved;
790 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
791 			/*
792 			 * While a full scan would detect interrupted erasures
793 			 * at attach time we can face them here when attached from
794 			 * Fastmap.
795 			 */
796 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
797 			       e1->pnum);
798 			erase = 1;
799 			goto out_not_moved;
800 		}
801 
802 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
803 			err, e1->pnum);
804 		goto out_error;
805 	}
806 
807 	vol_id = be32_to_cpu(vid_hdr->vol_id);
808 	lnum = be32_to_cpu(vid_hdr->lnum);
809 
810 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
811 	if (err) {
812 		if (err == MOVE_CANCEL_RACE) {
813 			/*
814 			 * The LEB has not been moved because the volume is
815 			 * being deleted or the PEB has been put meanwhile. We
816 			 * should prevent this PEB from being selected for
817 			 * wear-leveling movement again, so put it to the
818 			 * protection queue.
819 			 */
820 			protect = 1;
821 			dst_leb_clean = 1;
822 			goto out_not_moved;
823 		}
824 		if (err == MOVE_RETRY) {
825 			scrubbing = 1;
826 			dst_leb_clean = 1;
827 			goto out_not_moved;
828 		}
829 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
830 		    err == MOVE_TARGET_RD_ERR) {
831 			/*
832 			 * Target PEB had bit-flips or write error - torture it.
833 			 */
834 			torture = 1;
835 			keep = 1;
836 			goto out_not_moved;
837 		}
838 
839 		if (err == MOVE_SOURCE_RD_ERR) {
840 			/*
841 			 * An error happened while reading the source PEB. Do
842 			 * not switch to R/O mode in this case, and give the
843 			 * upper layers a possibility to recover from this,
844 			 * e.g. by unmapping corresponding LEB. Instead, just
845 			 * put this PEB to the @ubi->erroneous list to prevent
846 			 * UBI from trying to move it over and over again.
847 			 */
848 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
849 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
850 					ubi->erroneous_peb_count);
851 				goto out_error;
852 			}
853 			dst_leb_clean = 1;
854 			erroneous = 1;
855 			goto out_not_moved;
856 		}
857 
858 		if (err < 0)
859 			goto out_error;
860 
861 		ubi_assert(0);
862 	}
863 
864 	/* The PEB has been successfully moved */
865 	if (scrubbing)
866 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
867 			e1->pnum, vol_id, lnum, e2->pnum);
868 	ubi_free_vid_buf(vidb);
869 
870 	spin_lock(&ubi->wl_lock);
871 	if (!ubi->move_to_put) {
872 		wl_tree_add(e2, &ubi->used);
873 		e2 = NULL;
874 	}
875 	ubi->move_from = ubi->move_to = NULL;
876 	ubi->move_to_put = ubi->wl_scheduled = 0;
877 	spin_unlock(&ubi->wl_lock);
878 
879 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
880 	if (err) {
881 		if (e2)
882 			wl_entry_destroy(ubi, e2);
883 		goto out_ro;
884 	}
885 
886 	if (e2) {
887 		/*
888 		 * Well, the target PEB was put meanwhile, schedule it for
889 		 * erasure.
890 		 */
891 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
892 		       e2->pnum, vol_id, lnum);
893 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
894 		if (err)
895 			goto out_ro;
896 	}
897 
898 	dbg_wl("done");
899 	mutex_unlock(&ubi->move_mutex);
900 	up_read(&ubi->fm_eba_sem);
901 	return 0;
902 
903 	/*
904 	 * For some reasons the LEB was not moved, might be an error, might be
905 	 * something else. @e1 was not changed, so return it back. @e2 might
906 	 * have been changed, schedule it for erasure.
907 	 */
908 out_not_moved:
909 	if (vol_id != -1)
910 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
911 		       e1->pnum, vol_id, lnum, e2->pnum, err);
912 	else
913 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
914 		       e1->pnum, e2->pnum, err);
915 	spin_lock(&ubi->wl_lock);
916 	if (protect)
917 		prot_queue_add(ubi, e1);
918 	else if (erroneous) {
919 		wl_tree_add(e1, &ubi->erroneous);
920 		ubi->erroneous_peb_count += 1;
921 	} else if (scrubbing)
922 		wl_tree_add(e1, &ubi->scrub);
923 	else if (keep)
924 		wl_tree_add(e1, &ubi->used);
925 	if (dst_leb_clean) {
926 		wl_tree_add(e2, &ubi->free);
927 		ubi->free_count++;
928 	}
929 
930 	ubi_assert(!ubi->move_to_put);
931 	ubi->move_from = ubi->move_to = NULL;
932 	ubi->wl_scheduled = 0;
933 	spin_unlock(&ubi->wl_lock);
934 
935 	ubi_free_vid_buf(vidb);
936 	if (dst_leb_clean) {
937 		ensure_wear_leveling(ubi, 1);
938 	} else {
939 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
940 		if (err)
941 			goto out_ro;
942 	}
943 
944 	if (erase) {
945 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
946 		if (err)
947 			goto out_ro;
948 	}
949 
950 	mutex_unlock(&ubi->move_mutex);
951 	up_read(&ubi->fm_eba_sem);
952 	return 0;
953 
954 out_error:
955 	if (vol_id != -1)
956 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
957 			err, e1->pnum, e2->pnum);
958 	else
959 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
960 			err, e1->pnum, vol_id, lnum, e2->pnum);
961 	spin_lock(&ubi->wl_lock);
962 	ubi->move_from = ubi->move_to = NULL;
963 	ubi->move_to_put = ubi->wl_scheduled = 0;
964 	spin_unlock(&ubi->wl_lock);
965 
966 	ubi_free_vid_buf(vidb);
967 	wl_entry_destroy(ubi, e1);
968 	wl_entry_destroy(ubi, e2);
969 
970 out_ro:
971 	ubi_ro_mode(ubi);
972 	mutex_unlock(&ubi->move_mutex);
973 	up_read(&ubi->fm_eba_sem);
974 	ubi_assert(err != 0);
975 	return err < 0 ? err : -EIO;
976 
977 out_cancel:
978 	ubi->wl_scheduled = 0;
979 	spin_unlock(&ubi->wl_lock);
980 	mutex_unlock(&ubi->move_mutex);
981 	up_read(&ubi->fm_eba_sem);
982 	ubi_free_vid_buf(vidb);
983 	return 0;
984 }
985 
986 /**
987  * ensure_wear_leveling - schedule wear-leveling if it is needed.
988  * @ubi: UBI device description object
989  * @nested: set to non-zero if this function is called from UBI worker
990  *
991  * This function checks if it is time to start wear-leveling and schedules it
992  * if yes. This function returns zero in case of success and a negative error
993  * code in case of failure.
994  */
995 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
996 {
997 	int err = 0;
998 	struct ubi_wl_entry *e1;
999 	struct ubi_wl_entry *e2;
1000 	struct ubi_work *wrk;
1001 
1002 	spin_lock(&ubi->wl_lock);
1003 	if (ubi->wl_scheduled)
1004 		/* Wear-leveling is already in the work queue */
1005 		goto out_unlock;
1006 
1007 	/*
1008 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009 	 * the WL worker has to be scheduled anyway.
1010 	 */
1011 	if (!ubi->scrub.rb_node) {
1012 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1013 			/* No physical eraseblocks - no deal */
1014 			goto out_unlock;
1015 
1016 		/*
1017 		 * We schedule wear-leveling only if the difference between the
1018 		 * lowest erase counter of used physical eraseblocks and a high
1019 		 * erase counter of free physical eraseblocks is greater than
1020 		 * %UBI_WL_THRESHOLD.
1021 		 */
1022 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1023 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1024 
1025 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1026 			goto out_unlock;
1027 		dbg_wl("schedule wear-leveling");
1028 	} else
1029 		dbg_wl("schedule scrubbing");
1030 
1031 	ubi->wl_scheduled = 1;
1032 	spin_unlock(&ubi->wl_lock);
1033 
1034 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1035 	if (!wrk) {
1036 		err = -ENOMEM;
1037 		goto out_cancel;
1038 	}
1039 
1040 	wrk->anchor = 0;
1041 	wrk->func = &wear_leveling_worker;
1042 	if (nested)
1043 		__schedule_ubi_work(ubi, wrk);
1044 	else
1045 		schedule_ubi_work(ubi, wrk);
1046 	return err;
1047 
1048 out_cancel:
1049 	spin_lock(&ubi->wl_lock);
1050 	ubi->wl_scheduled = 0;
1051 out_unlock:
1052 	spin_unlock(&ubi->wl_lock);
1053 	return err;
1054 }
1055 
1056 /**
1057  * __erase_worker - physical eraseblock erase worker function.
1058  * @ubi: UBI device description object
1059  * @wl_wrk: the work object
1060  * @shutdown: non-zero if the worker has to free memory and exit
1061  * because the WL sub-system is shutting down
1062  *
1063  * This function erases a physical eraseblock and perform torture testing if
1064  * needed. It also takes care about marking the physical eraseblock bad if
1065  * needed. Returns zero in case of success and a negative error code in case of
1066  * failure.
1067  */
1068 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1069 {
1070 	struct ubi_wl_entry *e = wl_wrk->e;
1071 	int pnum = e->pnum;
1072 	int vol_id = wl_wrk->vol_id;
1073 	int lnum = wl_wrk->lnum;
1074 	int err, available_consumed = 0;
1075 
1076 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078 
1079 	err = sync_erase(ubi, e, wl_wrk->torture);
1080 	if (!err) {
1081 		spin_lock(&ubi->wl_lock);
1082 		wl_tree_add(e, &ubi->free);
1083 		ubi->free_count++;
1084 		spin_unlock(&ubi->wl_lock);
1085 
1086 		/*
1087 		 * One more erase operation has happened, take care about
1088 		 * protected physical eraseblocks.
1089 		 */
1090 		serve_prot_queue(ubi);
1091 
1092 		/* And take care about wear-leveling */
1093 		err = ensure_wear_leveling(ubi, 1);
1094 		return err;
1095 	}
1096 
1097 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1098 
1099 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1100 	    err == -EBUSY) {
1101 		int err1;
1102 
1103 		/* Re-schedule the LEB for erasure */
1104 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1105 		if (err1) {
1106 			wl_entry_destroy(ubi, e);
1107 			err = err1;
1108 			goto out_ro;
1109 		}
1110 		return err;
1111 	}
1112 
1113 	wl_entry_destroy(ubi, e);
1114 	if (err != -EIO)
1115 		/*
1116 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1117 		 * this physical eraseblock for erasure again would cause
1118 		 * errors again and again. Well, lets switch to R/O mode.
1119 		 */
1120 		goto out_ro;
1121 
1122 	/* It is %-EIO, the PEB went bad */
1123 
1124 	if (!ubi->bad_allowed) {
1125 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1126 		goto out_ro;
1127 	}
1128 
1129 	spin_lock(&ubi->volumes_lock);
1130 	if (ubi->beb_rsvd_pebs == 0) {
1131 		if (ubi->avail_pebs == 0) {
1132 			spin_unlock(&ubi->volumes_lock);
1133 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1134 			goto out_ro;
1135 		}
1136 		ubi->avail_pebs -= 1;
1137 		available_consumed = 1;
1138 	}
1139 	spin_unlock(&ubi->volumes_lock);
1140 
1141 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1142 	err = ubi_io_mark_bad(ubi, pnum);
1143 	if (err)
1144 		goto out_ro;
1145 
1146 	spin_lock(&ubi->volumes_lock);
1147 	if (ubi->beb_rsvd_pebs > 0) {
1148 		if (available_consumed) {
1149 			/*
1150 			 * The amount of reserved PEBs increased since we last
1151 			 * checked.
1152 			 */
1153 			ubi->avail_pebs += 1;
1154 			available_consumed = 0;
1155 		}
1156 		ubi->beb_rsvd_pebs -= 1;
1157 	}
1158 	ubi->bad_peb_count += 1;
1159 	ubi->good_peb_count -= 1;
1160 	ubi_calculate_reserved(ubi);
1161 	if (available_consumed)
1162 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1163 	else if (ubi->beb_rsvd_pebs)
1164 		ubi_msg(ubi, "%d PEBs left in the reserve",
1165 			ubi->beb_rsvd_pebs);
1166 	else
1167 		ubi_warn(ubi, "last PEB from the reserve was used");
1168 	spin_unlock(&ubi->volumes_lock);
1169 
1170 	return err;
1171 
1172 out_ro:
1173 	if (available_consumed) {
1174 		spin_lock(&ubi->volumes_lock);
1175 		ubi->avail_pebs += 1;
1176 		spin_unlock(&ubi->volumes_lock);
1177 	}
1178 	ubi_ro_mode(ubi);
1179 	return err;
1180 }
1181 
1182 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1183 			  int shutdown)
1184 {
1185 	int ret;
1186 
1187 	if (shutdown) {
1188 		struct ubi_wl_entry *e = wl_wrk->e;
1189 
1190 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1191 		kfree(wl_wrk);
1192 		wl_entry_destroy(ubi, e);
1193 		return 0;
1194 	}
1195 
1196 	ret = __erase_worker(ubi, wl_wrk);
1197 	kfree(wl_wrk);
1198 	return ret;
1199 }
1200 
1201 /**
1202  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1203  * @ubi: UBI device description object
1204  * @vol_id: the volume ID that last used this PEB
1205  * @lnum: the last used logical eraseblock number for the PEB
1206  * @pnum: physical eraseblock to return
1207  * @torture: if this physical eraseblock has to be tortured
1208  *
1209  * This function is called to return physical eraseblock @pnum to the pool of
1210  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1211  * occurred to this @pnum and it has to be tested. This function returns zero
1212  * in case of success, and a negative error code in case of failure.
1213  */
1214 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1215 		   int pnum, int torture)
1216 {
1217 	int err;
1218 	struct ubi_wl_entry *e;
1219 
1220 	dbg_wl("PEB %d", pnum);
1221 	ubi_assert(pnum >= 0);
1222 	ubi_assert(pnum < ubi->peb_count);
1223 
1224 	down_read(&ubi->fm_protect);
1225 
1226 retry:
1227 	spin_lock(&ubi->wl_lock);
1228 	e = ubi->lookuptbl[pnum];
1229 	if (e == ubi->move_from) {
1230 		/*
1231 		 * User is putting the physical eraseblock which was selected to
1232 		 * be moved. It will be scheduled for erasure in the
1233 		 * wear-leveling worker.
1234 		 */
1235 		dbg_wl("PEB %d is being moved, wait", pnum);
1236 		spin_unlock(&ubi->wl_lock);
1237 
1238 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1239 		mutex_lock(&ubi->move_mutex);
1240 		mutex_unlock(&ubi->move_mutex);
1241 		goto retry;
1242 	} else if (e == ubi->move_to) {
1243 		/*
1244 		 * User is putting the physical eraseblock which was selected
1245 		 * as the target the data is moved to. It may happen if the EBA
1246 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1247 		 * but the WL sub-system has not put the PEB to the "used" tree
1248 		 * yet, but it is about to do this. So we just set a flag which
1249 		 * will tell the WL worker that the PEB is not needed anymore
1250 		 * and should be scheduled for erasure.
1251 		 */
1252 		dbg_wl("PEB %d is the target of data moving", pnum);
1253 		ubi_assert(!ubi->move_to_put);
1254 		ubi->move_to_put = 1;
1255 		spin_unlock(&ubi->wl_lock);
1256 		up_read(&ubi->fm_protect);
1257 		return 0;
1258 	} else {
1259 		if (in_wl_tree(e, &ubi->used)) {
1260 			self_check_in_wl_tree(ubi, e, &ubi->used);
1261 			rb_erase(&e->u.rb, &ubi->used);
1262 		} else if (in_wl_tree(e, &ubi->scrub)) {
1263 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1264 			rb_erase(&e->u.rb, &ubi->scrub);
1265 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1266 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1267 			rb_erase(&e->u.rb, &ubi->erroneous);
1268 			ubi->erroneous_peb_count -= 1;
1269 			ubi_assert(ubi->erroneous_peb_count >= 0);
1270 			/* Erroneous PEBs should be tortured */
1271 			torture = 1;
1272 		} else {
1273 			err = prot_queue_del(ubi, e->pnum);
1274 			if (err) {
1275 				ubi_err(ubi, "PEB %d not found", pnum);
1276 				ubi_ro_mode(ubi);
1277 				spin_unlock(&ubi->wl_lock);
1278 				up_read(&ubi->fm_protect);
1279 				return err;
1280 			}
1281 		}
1282 	}
1283 	spin_unlock(&ubi->wl_lock);
1284 
1285 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1286 	if (err) {
1287 		spin_lock(&ubi->wl_lock);
1288 		wl_tree_add(e, &ubi->used);
1289 		spin_unlock(&ubi->wl_lock);
1290 	}
1291 
1292 	up_read(&ubi->fm_protect);
1293 	return err;
1294 }
1295 
1296 /**
1297  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1298  * @ubi: UBI device description object
1299  * @pnum: the physical eraseblock to schedule
1300  *
1301  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1302  * needs scrubbing. This function schedules a physical eraseblock for
1303  * scrubbing which is done in background. This function returns zero in case of
1304  * success and a negative error code in case of failure.
1305  */
1306 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1307 {
1308 	struct ubi_wl_entry *e;
1309 
1310 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1311 
1312 retry:
1313 	spin_lock(&ubi->wl_lock);
1314 	e = ubi->lookuptbl[pnum];
1315 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1316 				   in_wl_tree(e, &ubi->erroneous)) {
1317 		spin_unlock(&ubi->wl_lock);
1318 		return 0;
1319 	}
1320 
1321 	if (e == ubi->move_to) {
1322 		/*
1323 		 * This physical eraseblock was used to move data to. The data
1324 		 * was moved but the PEB was not yet inserted to the proper
1325 		 * tree. We should just wait a little and let the WL worker
1326 		 * proceed.
1327 		 */
1328 		spin_unlock(&ubi->wl_lock);
1329 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1330 		yield();
1331 		goto retry;
1332 	}
1333 
1334 	if (in_wl_tree(e, &ubi->used)) {
1335 		self_check_in_wl_tree(ubi, e, &ubi->used);
1336 		rb_erase(&e->u.rb, &ubi->used);
1337 	} else {
1338 		int err;
1339 
1340 		err = prot_queue_del(ubi, e->pnum);
1341 		if (err) {
1342 			ubi_err(ubi, "PEB %d not found", pnum);
1343 			ubi_ro_mode(ubi);
1344 			spin_unlock(&ubi->wl_lock);
1345 			return err;
1346 		}
1347 	}
1348 
1349 	wl_tree_add(e, &ubi->scrub);
1350 	spin_unlock(&ubi->wl_lock);
1351 
1352 	/*
1353 	 * Technically scrubbing is the same as wear-leveling, so it is done
1354 	 * by the WL worker.
1355 	 */
1356 	return ensure_wear_leveling(ubi, 0);
1357 }
1358 
1359 /**
1360  * ubi_wl_flush - flush all pending works.
1361  * @ubi: UBI device description object
1362  * @vol_id: the volume id to flush for
1363  * @lnum: the logical eraseblock number to flush for
1364  *
1365  * This function executes all pending works for a particular volume id /
1366  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1367  * acts as a wildcard for all of the corresponding volume numbers or logical
1368  * eraseblock numbers. It returns zero in case of success and a negative error
1369  * code in case of failure.
1370  */
1371 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1372 {
1373 	int err = 0;
1374 	int found = 1;
1375 
1376 	/*
1377 	 * Erase while the pending works queue is not empty, but not more than
1378 	 * the number of currently pending works.
1379 	 */
1380 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1381 	       vol_id, lnum, ubi->works_count);
1382 
1383 	while (found) {
1384 		struct ubi_work *wrk, *tmp;
1385 		found = 0;
1386 
1387 		down_read(&ubi->work_sem);
1388 		spin_lock(&ubi->wl_lock);
1389 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1390 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1391 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1392 				list_del(&wrk->list);
1393 				ubi->works_count -= 1;
1394 				ubi_assert(ubi->works_count >= 0);
1395 				spin_unlock(&ubi->wl_lock);
1396 
1397 				err = wrk->func(ubi, wrk, 0);
1398 				if (err) {
1399 					up_read(&ubi->work_sem);
1400 					return err;
1401 				}
1402 
1403 				spin_lock(&ubi->wl_lock);
1404 				found = 1;
1405 				break;
1406 			}
1407 		}
1408 		spin_unlock(&ubi->wl_lock);
1409 		up_read(&ubi->work_sem);
1410 	}
1411 
1412 	/*
1413 	 * Make sure all the works which have been done in parallel are
1414 	 * finished.
1415 	 */
1416 	down_write(&ubi->work_sem);
1417 	up_write(&ubi->work_sem);
1418 
1419 	return err;
1420 }
1421 
1422 /**
1423  * tree_destroy - destroy an RB-tree.
1424  * @ubi: UBI device description object
1425  * @root: the root of the tree to destroy
1426  */
1427 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1428 {
1429 	struct rb_node *rb;
1430 	struct ubi_wl_entry *e;
1431 
1432 	rb = root->rb_node;
1433 	while (rb) {
1434 		if (rb->rb_left)
1435 			rb = rb->rb_left;
1436 		else if (rb->rb_right)
1437 			rb = rb->rb_right;
1438 		else {
1439 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1440 
1441 			rb = rb_parent(rb);
1442 			if (rb) {
1443 				if (rb->rb_left == &e->u.rb)
1444 					rb->rb_left = NULL;
1445 				else
1446 					rb->rb_right = NULL;
1447 			}
1448 
1449 			wl_entry_destroy(ubi, e);
1450 		}
1451 	}
1452 }
1453 
1454 /**
1455  * ubi_thread - UBI background thread.
1456  * @u: the UBI device description object pointer
1457  */
1458 int ubi_thread(void *u)
1459 {
1460 	int failures = 0;
1461 	struct ubi_device *ubi = u;
1462 
1463 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1464 		ubi->bgt_name, task_pid_nr(current));
1465 
1466 	set_freezable();
1467 	for (;;) {
1468 		int err;
1469 
1470 		if (kthread_should_stop())
1471 			break;
1472 
1473 		if (try_to_freeze())
1474 			continue;
1475 
1476 		spin_lock(&ubi->wl_lock);
1477 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1478 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1479 			set_current_state(TASK_INTERRUPTIBLE);
1480 			spin_unlock(&ubi->wl_lock);
1481 			schedule();
1482 			continue;
1483 		}
1484 		spin_unlock(&ubi->wl_lock);
1485 
1486 		err = do_work(ubi);
1487 		if (err) {
1488 			ubi_err(ubi, "%s: work failed with error code %d",
1489 				ubi->bgt_name, err);
1490 			if (failures++ > WL_MAX_FAILURES) {
1491 				/*
1492 				 * Too many failures, disable the thread and
1493 				 * switch to read-only mode.
1494 				 */
1495 				ubi_msg(ubi, "%s: %d consecutive failures",
1496 					ubi->bgt_name, WL_MAX_FAILURES);
1497 				ubi_ro_mode(ubi);
1498 				ubi->thread_enabled = 0;
1499 				continue;
1500 			}
1501 		} else
1502 			failures = 0;
1503 
1504 		cond_resched();
1505 	}
1506 
1507 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1508 	return 0;
1509 }
1510 
1511 /**
1512  * shutdown_work - shutdown all pending works.
1513  * @ubi: UBI device description object
1514  */
1515 static void shutdown_work(struct ubi_device *ubi)
1516 {
1517 #ifdef CONFIG_MTD_UBI_FASTMAP
1518 	flush_work(&ubi->fm_work);
1519 #endif
1520 	while (!list_empty(&ubi->works)) {
1521 		struct ubi_work *wrk;
1522 
1523 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1524 		list_del(&wrk->list);
1525 		wrk->func(ubi, wrk, 1);
1526 		ubi->works_count -= 1;
1527 		ubi_assert(ubi->works_count >= 0);
1528 	}
1529 }
1530 
1531 /**
1532  * erase_aeb - erase a PEB given in UBI attach info PEB
1533  * @ubi: UBI device description object
1534  * @aeb: UBI attach info PEB
1535  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1536  */
1537 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1538 {
1539 	struct ubi_wl_entry *e;
1540 	int err;
1541 
1542 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1543 	if (!e)
1544 		return -ENOMEM;
1545 
1546 	e->pnum = aeb->pnum;
1547 	e->ec = aeb->ec;
1548 	ubi->lookuptbl[e->pnum] = e;
1549 
1550 	if (sync) {
1551 		err = sync_erase(ubi, e, false);
1552 		if (err)
1553 			goto out_free;
1554 
1555 		wl_tree_add(e, &ubi->free);
1556 		ubi->free_count++;
1557 	} else {
1558 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1559 		if (err)
1560 			goto out_free;
1561 	}
1562 
1563 	return 0;
1564 
1565 out_free:
1566 	wl_entry_destroy(ubi, e);
1567 
1568 	return err;
1569 }
1570 
1571 /**
1572  * ubi_wl_init - initialize the WL sub-system using attaching information.
1573  * @ubi: UBI device description object
1574  * @ai: attaching information
1575  *
1576  * This function returns zero in case of success, and a negative error code in
1577  * case of failure.
1578  */
1579 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1580 {
1581 	int err, i, reserved_pebs, found_pebs = 0;
1582 	struct rb_node *rb1, *rb2;
1583 	struct ubi_ainf_volume *av;
1584 	struct ubi_ainf_peb *aeb, *tmp;
1585 	struct ubi_wl_entry *e;
1586 
1587 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1588 	spin_lock_init(&ubi->wl_lock);
1589 	mutex_init(&ubi->move_mutex);
1590 	init_rwsem(&ubi->work_sem);
1591 	ubi->max_ec = ai->max_ec;
1592 	INIT_LIST_HEAD(&ubi->works);
1593 
1594 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1595 
1596 	err = -ENOMEM;
1597 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1598 	if (!ubi->lookuptbl)
1599 		return err;
1600 
1601 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1602 		INIT_LIST_HEAD(&ubi->pq[i]);
1603 	ubi->pq_head = 0;
1604 
1605 	ubi->free_count = 0;
1606 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1607 		cond_resched();
1608 
1609 		err = erase_aeb(ubi, aeb, false);
1610 		if (err)
1611 			goto out_free;
1612 
1613 		found_pebs++;
1614 	}
1615 
1616 	list_for_each_entry(aeb, &ai->free, u.list) {
1617 		cond_resched();
1618 
1619 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1620 		if (!e) {
1621 			err = -ENOMEM;
1622 			goto out_free;
1623 		}
1624 
1625 		e->pnum = aeb->pnum;
1626 		e->ec = aeb->ec;
1627 		ubi_assert(e->ec >= 0);
1628 
1629 		wl_tree_add(e, &ubi->free);
1630 		ubi->free_count++;
1631 
1632 		ubi->lookuptbl[e->pnum] = e;
1633 
1634 		found_pebs++;
1635 	}
1636 
1637 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1638 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1639 			cond_resched();
1640 
1641 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1642 			if (!e) {
1643 				err = -ENOMEM;
1644 				goto out_free;
1645 			}
1646 
1647 			e->pnum = aeb->pnum;
1648 			e->ec = aeb->ec;
1649 			ubi->lookuptbl[e->pnum] = e;
1650 
1651 			if (!aeb->scrub) {
1652 				dbg_wl("add PEB %d EC %d to the used tree",
1653 				       e->pnum, e->ec);
1654 				wl_tree_add(e, &ubi->used);
1655 			} else {
1656 				dbg_wl("add PEB %d EC %d to the scrub tree",
1657 				       e->pnum, e->ec);
1658 				wl_tree_add(e, &ubi->scrub);
1659 			}
1660 
1661 			found_pebs++;
1662 		}
1663 	}
1664 
1665 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1666 		cond_resched();
1667 
1668 		e = ubi_find_fm_block(ubi, aeb->pnum);
1669 
1670 		if (e) {
1671 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1672 			ubi->lookuptbl[e->pnum] = e;
1673 		} else {
1674 			bool sync = false;
1675 
1676 			/*
1677 			 * Usually old Fastmap PEBs are scheduled for erasure
1678 			 * and we don't have to care about them but if we face
1679 			 * an power cut before scheduling them we need to
1680 			 * take care of them here.
1681 			 */
1682 			if (ubi->lookuptbl[aeb->pnum])
1683 				continue;
1684 
1685 			/*
1686 			 * The fastmap update code might not find a free PEB for
1687 			 * writing the fastmap anchor to and then reuses the
1688 			 * current fastmap anchor PEB. When this PEB gets erased
1689 			 * and a power cut happens before it is written again we
1690 			 * must make sure that the fastmap attach code doesn't
1691 			 * find any outdated fastmap anchors, hence we erase the
1692 			 * outdated fastmap anchor PEBs synchronously here.
1693 			 */
1694 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1695 				sync = true;
1696 
1697 			err = erase_aeb(ubi, aeb, sync);
1698 			if (err)
1699 				goto out_free;
1700 		}
1701 
1702 		found_pebs++;
1703 	}
1704 
1705 	dbg_wl("found %i PEBs", found_pebs);
1706 
1707 	ubi_assert(ubi->good_peb_count == found_pebs);
1708 
1709 	reserved_pebs = WL_RESERVED_PEBS;
1710 	ubi_fastmap_init(ubi, &reserved_pebs);
1711 
1712 	if (ubi->avail_pebs < reserved_pebs) {
1713 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1714 			ubi->avail_pebs, reserved_pebs);
1715 		if (ubi->corr_peb_count)
1716 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1717 				ubi->corr_peb_count);
1718 		err = -ENOSPC;
1719 		goto out_free;
1720 	}
1721 	ubi->avail_pebs -= reserved_pebs;
1722 	ubi->rsvd_pebs += reserved_pebs;
1723 
1724 	/* Schedule wear-leveling if needed */
1725 	err = ensure_wear_leveling(ubi, 0);
1726 	if (err)
1727 		goto out_free;
1728 
1729 	return 0;
1730 
1731 out_free:
1732 	shutdown_work(ubi);
1733 	tree_destroy(ubi, &ubi->used);
1734 	tree_destroy(ubi, &ubi->free);
1735 	tree_destroy(ubi, &ubi->scrub);
1736 	kfree(ubi->lookuptbl);
1737 	return err;
1738 }
1739 
1740 /**
1741  * protection_queue_destroy - destroy the protection queue.
1742  * @ubi: UBI device description object
1743  */
1744 static void protection_queue_destroy(struct ubi_device *ubi)
1745 {
1746 	int i;
1747 	struct ubi_wl_entry *e, *tmp;
1748 
1749 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1750 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1751 			list_del(&e->u.list);
1752 			wl_entry_destroy(ubi, e);
1753 		}
1754 	}
1755 }
1756 
1757 /**
1758  * ubi_wl_close - close the wear-leveling sub-system.
1759  * @ubi: UBI device description object
1760  */
1761 void ubi_wl_close(struct ubi_device *ubi)
1762 {
1763 	dbg_wl("close the WL sub-system");
1764 	ubi_fastmap_close(ubi);
1765 	shutdown_work(ubi);
1766 	protection_queue_destroy(ubi);
1767 	tree_destroy(ubi, &ubi->used);
1768 	tree_destroy(ubi, &ubi->erroneous);
1769 	tree_destroy(ubi, &ubi->free);
1770 	tree_destroy(ubi, &ubi->scrub);
1771 	kfree(ubi->lookuptbl);
1772 }
1773 
1774 /**
1775  * self_check_ec - make sure that the erase counter of a PEB is correct.
1776  * @ubi: UBI device description object
1777  * @pnum: the physical eraseblock number to check
1778  * @ec: the erase counter to check
1779  *
1780  * This function returns zero if the erase counter of physical eraseblock @pnum
1781  * is equivalent to @ec, and a negative error code if not or if an error
1782  * occurred.
1783  */
1784 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1785 {
1786 	int err;
1787 	long long read_ec;
1788 	struct ubi_ec_hdr *ec_hdr;
1789 
1790 	if (!ubi_dbg_chk_gen(ubi))
1791 		return 0;
1792 
1793 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1794 	if (!ec_hdr)
1795 		return -ENOMEM;
1796 
1797 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1798 	if (err && err != UBI_IO_BITFLIPS) {
1799 		/* The header does not have to exist */
1800 		err = 0;
1801 		goto out_free;
1802 	}
1803 
1804 	read_ec = be64_to_cpu(ec_hdr->ec);
1805 	if (ec != read_ec && read_ec - ec > 1) {
1806 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1807 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1808 		dump_stack();
1809 		err = 1;
1810 	} else
1811 		err = 0;
1812 
1813 out_free:
1814 	kfree(ec_hdr);
1815 	return err;
1816 }
1817 
1818 /**
1819  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1820  * @ubi: UBI device description object
1821  * @e: the wear-leveling entry to check
1822  * @root: the root of the tree
1823  *
1824  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1825  * is not.
1826  */
1827 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1828 				 struct ubi_wl_entry *e, struct rb_root *root)
1829 {
1830 	if (!ubi_dbg_chk_gen(ubi))
1831 		return 0;
1832 
1833 	if (in_wl_tree(e, root))
1834 		return 0;
1835 
1836 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1837 		e->pnum, e->ec, root);
1838 	dump_stack();
1839 	return -EINVAL;
1840 }
1841 
1842 /**
1843  * self_check_in_pq - check if wear-leveling entry is in the protection
1844  *                        queue.
1845  * @ubi: UBI device description object
1846  * @e: the wear-leveling entry to check
1847  *
1848  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1849  */
1850 static int self_check_in_pq(const struct ubi_device *ubi,
1851 			    struct ubi_wl_entry *e)
1852 {
1853 	struct ubi_wl_entry *p;
1854 	int i;
1855 
1856 	if (!ubi_dbg_chk_gen(ubi))
1857 		return 0;
1858 
1859 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1860 		list_for_each_entry(p, &ubi->pq[i], u.list)
1861 			if (p == e)
1862 				return 0;
1863 
1864 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1865 		e->pnum, e->ec);
1866 	dump_stack();
1867 	return -EINVAL;
1868 }
1869 #ifndef CONFIG_MTD_UBI_FASTMAP
1870 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1871 {
1872 	struct ubi_wl_entry *e;
1873 
1874 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1875 	self_check_in_wl_tree(ubi, e, &ubi->free);
1876 	ubi->free_count--;
1877 	ubi_assert(ubi->free_count >= 0);
1878 	rb_erase(&e->u.rb, &ubi->free);
1879 
1880 	return e;
1881 }
1882 
1883 /**
1884  * produce_free_peb - produce a free physical eraseblock.
1885  * @ubi: UBI device description object
1886  *
1887  * This function tries to make a free PEB by means of synchronous execution of
1888  * pending works. This may be needed if, for example the background thread is
1889  * disabled. Returns zero in case of success and a negative error code in case
1890  * of failure.
1891  */
1892 static int produce_free_peb(struct ubi_device *ubi)
1893 {
1894 	int err;
1895 
1896 	while (!ubi->free.rb_node && ubi->works_count) {
1897 		spin_unlock(&ubi->wl_lock);
1898 
1899 		dbg_wl("do one work synchronously");
1900 		err = do_work(ubi);
1901 
1902 		spin_lock(&ubi->wl_lock);
1903 		if (err)
1904 			return err;
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 /**
1911  * ubi_wl_get_peb - get a physical eraseblock.
1912  * @ubi: UBI device description object
1913  *
1914  * This function returns a physical eraseblock in case of success and a
1915  * negative error code in case of failure.
1916  * Returns with ubi->fm_eba_sem held in read mode!
1917  */
1918 int ubi_wl_get_peb(struct ubi_device *ubi)
1919 {
1920 	int err;
1921 	struct ubi_wl_entry *e;
1922 
1923 retry:
1924 	down_read(&ubi->fm_eba_sem);
1925 	spin_lock(&ubi->wl_lock);
1926 	if (!ubi->free.rb_node) {
1927 		if (ubi->works_count == 0) {
1928 			ubi_err(ubi, "no free eraseblocks");
1929 			ubi_assert(list_empty(&ubi->works));
1930 			spin_unlock(&ubi->wl_lock);
1931 			return -ENOSPC;
1932 		}
1933 
1934 		err = produce_free_peb(ubi);
1935 		if (err < 0) {
1936 			spin_unlock(&ubi->wl_lock);
1937 			return err;
1938 		}
1939 		spin_unlock(&ubi->wl_lock);
1940 		up_read(&ubi->fm_eba_sem);
1941 		goto retry;
1942 
1943 	}
1944 	e = wl_get_wle(ubi);
1945 	prot_queue_add(ubi, e);
1946 	spin_unlock(&ubi->wl_lock);
1947 
1948 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1949 				    ubi->peb_size - ubi->vid_hdr_aloffset);
1950 	if (err) {
1951 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1952 		return err;
1953 	}
1954 
1955 	return e->pnum;
1956 }
1957 #else
1958 #include "fastmap-wl.c"
1959 #endif
1960