1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e, *prev_e = NULL; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 prev_e = e; 338 e = e1; 339 } 340 } 341 342 return e; 343 } 344 345 /** 346 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 347 * @ubi: UBI device description object 348 * @root: the RB-tree where to look for 349 * 350 * This function looks for a wear leveling entry with medium erase counter, 351 * but not greater or equivalent than the lowest erase counter plus 352 * %WL_FREE_MAX_DIFF/2. 353 */ 354 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 355 struct rb_root *root) 356 { 357 struct ubi_wl_entry *e, *first, *last; 358 359 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 360 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 361 362 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 363 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 364 365 /* If no fastmap has been written and this WL entry can be used 366 * as anchor PEB, hold it back and return the second best 367 * WL entry such that fastmap can use the anchor PEB later. */ 368 e = may_reserve_for_fm(ubi, e, root); 369 } else 370 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 371 372 return e; 373 } 374 375 /** 376 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 377 * refill_wl_user_pool(). 378 * @ubi: UBI device description object 379 * 380 * This function returns a a wear leveling entry in case of success and 381 * NULL in case of failure. 382 */ 383 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 384 { 385 struct ubi_wl_entry *e; 386 387 e = find_mean_wl_entry(ubi, &ubi->free); 388 if (!e) { 389 ubi_err(ubi, "no free eraseblocks"); 390 return NULL; 391 } 392 393 self_check_in_wl_tree(ubi, e, &ubi->free); 394 395 /* 396 * Move the physical eraseblock to the protection queue where it will 397 * be protected from being moved for some time. 398 */ 399 rb_erase(&e->u.rb, &ubi->free); 400 ubi->free_count--; 401 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 402 403 return e; 404 } 405 406 /** 407 * prot_queue_del - remove a physical eraseblock from the protection queue. 408 * @ubi: UBI device description object 409 * @pnum: the physical eraseblock to remove 410 * 411 * This function deletes PEB @pnum from the protection queue and returns zero 412 * in case of success and %-ENODEV if the PEB was not found. 413 */ 414 static int prot_queue_del(struct ubi_device *ubi, int pnum) 415 { 416 struct ubi_wl_entry *e; 417 418 e = ubi->lookuptbl[pnum]; 419 if (!e) 420 return -ENODEV; 421 422 if (self_check_in_pq(ubi, e)) 423 return -ENODEV; 424 425 list_del(&e->u.list); 426 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 427 return 0; 428 } 429 430 /** 431 * sync_erase - synchronously erase a physical eraseblock. 432 * @ubi: UBI device description object 433 * @e: the the physical eraseblock to erase 434 * @torture: if the physical eraseblock has to be tortured 435 * 436 * This function returns zero in case of success and a negative error code in 437 * case of failure. 438 */ 439 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 440 int torture) 441 { 442 int err; 443 struct ubi_ec_hdr *ec_hdr; 444 unsigned long long ec = e->ec; 445 446 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 447 448 err = self_check_ec(ubi, e->pnum, e->ec); 449 if (err) 450 return -EINVAL; 451 452 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 453 if (!ec_hdr) 454 return -ENOMEM; 455 456 err = ubi_io_sync_erase(ubi, e->pnum, torture); 457 if (err < 0) 458 goto out_free; 459 460 ec += err; 461 if (ec > UBI_MAX_ERASECOUNTER) { 462 /* 463 * Erase counter overflow. Upgrade UBI and use 64-bit 464 * erase counters internally. 465 */ 466 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 467 e->pnum, ec); 468 err = -EINVAL; 469 goto out_free; 470 } 471 472 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 473 474 ec_hdr->ec = cpu_to_be64(ec); 475 476 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 477 if (err) 478 goto out_free; 479 480 e->ec = ec; 481 spin_lock(&ubi->wl_lock); 482 if (e->ec > ubi->max_ec) 483 ubi->max_ec = e->ec; 484 spin_unlock(&ubi->wl_lock); 485 486 out_free: 487 kfree(ec_hdr); 488 return err; 489 } 490 491 /** 492 * serve_prot_queue - check if it is time to stop protecting PEBs. 493 * @ubi: UBI device description object 494 * 495 * This function is called after each erase operation and removes PEBs from the 496 * tail of the protection queue. These PEBs have been protected for long enough 497 * and should be moved to the used tree. 498 */ 499 static void serve_prot_queue(struct ubi_device *ubi) 500 { 501 struct ubi_wl_entry *e, *tmp; 502 int count; 503 504 /* 505 * There may be several protected physical eraseblock to remove, 506 * process them all. 507 */ 508 repeat: 509 count = 0; 510 spin_lock(&ubi->wl_lock); 511 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 512 dbg_wl("PEB %d EC %d protection over, move to used tree", 513 e->pnum, e->ec); 514 515 list_del(&e->u.list); 516 wl_tree_add(e, &ubi->used); 517 if (count++ > 32) { 518 /* 519 * Let's be nice and avoid holding the spinlock for 520 * too long. 521 */ 522 spin_unlock(&ubi->wl_lock); 523 cond_resched(); 524 goto repeat; 525 } 526 } 527 528 ubi->pq_head += 1; 529 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 530 ubi->pq_head = 0; 531 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 532 spin_unlock(&ubi->wl_lock); 533 } 534 535 /** 536 * __schedule_ubi_work - schedule a work. 537 * @ubi: UBI device description object 538 * @wrk: the work to schedule 539 * 540 * This function adds a work defined by @wrk to the tail of the pending works 541 * list. Can only be used if ubi->work_sem is already held in read mode! 542 */ 543 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 544 { 545 spin_lock(&ubi->wl_lock); 546 list_add_tail(&wrk->list, &ubi->works); 547 ubi_assert(ubi->works_count >= 0); 548 ubi->works_count += 1; 549 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 550 wake_up_process(ubi->bgt_thread); 551 spin_unlock(&ubi->wl_lock); 552 } 553 554 /** 555 * schedule_ubi_work - schedule a work. 556 * @ubi: UBI device description object 557 * @wrk: the work to schedule 558 * 559 * This function adds a work defined by @wrk to the tail of the pending works 560 * list. 561 */ 562 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 563 { 564 down_read(&ubi->work_sem); 565 __schedule_ubi_work(ubi, wrk); 566 up_read(&ubi->work_sem); 567 } 568 569 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 570 int shutdown); 571 572 /** 573 * schedule_erase - schedule an erase work. 574 * @ubi: UBI device description object 575 * @e: the WL entry of the physical eraseblock to erase 576 * @vol_id: the volume ID that last used this PEB 577 * @lnum: the last used logical eraseblock number for the PEB 578 * @torture: if the physical eraseblock has to be tortured 579 * 580 * This function returns zero in case of success and a %-ENOMEM in case of 581 * failure. 582 */ 583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 584 int vol_id, int lnum, int torture, bool nested) 585 { 586 struct ubi_work *wl_wrk; 587 588 ubi_assert(e); 589 590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 591 e->pnum, e->ec, torture); 592 593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 594 if (!wl_wrk) 595 return -ENOMEM; 596 597 wl_wrk->func = &erase_worker; 598 wl_wrk->e = e; 599 wl_wrk->vol_id = vol_id; 600 wl_wrk->lnum = lnum; 601 wl_wrk->torture = torture; 602 603 if (nested) 604 __schedule_ubi_work(ubi, wl_wrk); 605 else 606 schedule_ubi_work(ubi, wl_wrk); 607 return 0; 608 } 609 610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 611 /** 612 * do_sync_erase - run the erase worker synchronously. 613 * @ubi: UBI device description object 614 * @e: the WL entry of the physical eraseblock to erase 615 * @vol_id: the volume ID that last used this PEB 616 * @lnum: the last used logical eraseblock number for the PEB 617 * @torture: if the physical eraseblock has to be tortured 618 * 619 */ 620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 621 int vol_id, int lnum, int torture) 622 { 623 struct ubi_work wl_wrk; 624 625 dbg_wl("sync erase of PEB %i", e->pnum); 626 627 wl_wrk.e = e; 628 wl_wrk.vol_id = vol_id; 629 wl_wrk.lnum = lnum; 630 wl_wrk.torture = torture; 631 632 return __erase_worker(ubi, &wl_wrk); 633 } 634 635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 636 /** 637 * wear_leveling_worker - wear-leveling worker function. 638 * @ubi: UBI device description object 639 * @wrk: the work object 640 * @shutdown: non-zero if the worker has to free memory and exit 641 * because the WL-subsystem is shutting down 642 * 643 * This function copies a more worn out physical eraseblock to a less worn out 644 * one. Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 648 int shutdown) 649 { 650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 651 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 652 struct ubi_wl_entry *e1, *e2; 653 struct ubi_vid_io_buf *vidb; 654 struct ubi_vid_hdr *vid_hdr; 655 int dst_leb_clean = 0; 656 657 kfree(wrk); 658 if (shutdown) 659 return 0; 660 661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 662 if (!vidb) 663 return -ENOMEM; 664 665 vid_hdr = ubi_get_vid_hdr(vidb); 666 667 down_read(&ubi->fm_eba_sem); 668 mutex_lock(&ubi->move_mutex); 669 spin_lock(&ubi->wl_lock); 670 ubi_assert(!ubi->move_from && !ubi->move_to); 671 ubi_assert(!ubi->move_to_put); 672 673 if (!ubi->free.rb_node || 674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 675 /* 676 * No free physical eraseblocks? Well, they must be waiting in 677 * the queue to be erased. Cancel movement - it will be 678 * triggered again when a free physical eraseblock appears. 679 * 680 * No used physical eraseblocks? They must be temporarily 681 * protected from being moved. They will be moved to the 682 * @ubi->used tree later and the wear-leveling will be 683 * triggered again. 684 */ 685 dbg_wl("cancel WL, a list is empty: free %d, used %d", 686 !ubi->free.rb_node, !ubi->used.rb_node); 687 goto out_cancel; 688 } 689 690 #ifdef CONFIG_MTD_UBI_FASTMAP 691 if (ubi->fm_do_produce_anchor) { 692 e1 = find_anchor_wl_entry(&ubi->used); 693 if (!e1) 694 goto out_cancel; 695 e2 = get_peb_for_wl(ubi); 696 if (!e2) 697 goto out_cancel; 698 699 /* 700 * Anchor move within the anchor area is useless. 701 */ 702 if (e2->pnum < UBI_FM_MAX_START) 703 goto out_cancel; 704 705 self_check_in_wl_tree(ubi, e1, &ubi->used); 706 rb_erase(&e1->u.rb, &ubi->used); 707 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 708 ubi->fm_do_produce_anchor = 0; 709 } else if (!ubi->scrub.rb_node) { 710 #else 711 if (!ubi->scrub.rb_node) { 712 #endif 713 /* 714 * Now pick the least worn-out used physical eraseblock and a 715 * highly worn-out free physical eraseblock. If the erase 716 * counters differ much enough, start wear-leveling. 717 */ 718 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 719 e2 = get_peb_for_wl(ubi); 720 if (!e2) 721 goto out_cancel; 722 723 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 724 dbg_wl("no WL needed: min used EC %d, max free EC %d", 725 e1->ec, e2->ec); 726 727 /* Give the unused PEB back */ 728 wl_tree_add(e2, &ubi->free); 729 ubi->free_count++; 730 goto out_cancel; 731 } 732 self_check_in_wl_tree(ubi, e1, &ubi->used); 733 rb_erase(&e1->u.rb, &ubi->used); 734 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 735 e1->pnum, e1->ec, e2->pnum, e2->ec); 736 } else { 737 /* Perform scrubbing */ 738 scrubbing = 1; 739 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 740 e2 = get_peb_for_wl(ubi); 741 if (!e2) 742 goto out_cancel; 743 744 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 745 rb_erase(&e1->u.rb, &ubi->scrub); 746 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 747 } 748 749 ubi->move_from = e1; 750 ubi->move_to = e2; 751 spin_unlock(&ubi->wl_lock); 752 753 /* 754 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 755 * We so far do not know which logical eraseblock our physical 756 * eraseblock (@e1) belongs to. We have to read the volume identifier 757 * header first. 758 * 759 * Note, we are protected from this PEB being unmapped and erased. The 760 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 761 * which is being moved was unmapped. 762 */ 763 764 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 765 if (err && err != UBI_IO_BITFLIPS) { 766 dst_leb_clean = 1; 767 if (err == UBI_IO_FF) { 768 /* 769 * We are trying to move PEB without a VID header. UBI 770 * always write VID headers shortly after the PEB was 771 * given, so we have a situation when it has not yet 772 * had a chance to write it, because it was preempted. 773 * So add this PEB to the protection queue so far, 774 * because presumably more data will be written there 775 * (including the missing VID header), and then we'll 776 * move it. 777 */ 778 dbg_wl("PEB %d has no VID header", e1->pnum); 779 protect = 1; 780 goto out_not_moved; 781 } else if (err == UBI_IO_FF_BITFLIPS) { 782 /* 783 * The same situation as %UBI_IO_FF, but bit-flips were 784 * detected. It is better to schedule this PEB for 785 * scrubbing. 786 */ 787 dbg_wl("PEB %d has no VID header but has bit-flips", 788 e1->pnum); 789 scrubbing = 1; 790 goto out_not_moved; 791 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 792 /* 793 * While a full scan would detect interrupted erasures 794 * at attach time we can face them here when attached from 795 * Fastmap. 796 */ 797 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 798 e1->pnum); 799 erase = 1; 800 goto out_not_moved; 801 } 802 803 ubi_err(ubi, "error %d while reading VID header from PEB %d", 804 err, e1->pnum); 805 goto out_error; 806 } 807 808 vol_id = be32_to_cpu(vid_hdr->vol_id); 809 lnum = be32_to_cpu(vid_hdr->lnum); 810 811 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 812 if (err) { 813 if (err == MOVE_CANCEL_RACE) { 814 /* 815 * The LEB has not been moved because the volume is 816 * being deleted or the PEB has been put meanwhile. We 817 * should prevent this PEB from being selected for 818 * wear-leveling movement again, so put it to the 819 * protection queue. 820 */ 821 protect = 1; 822 dst_leb_clean = 1; 823 goto out_not_moved; 824 } 825 if (err == MOVE_RETRY) { 826 scrubbing = 1; 827 dst_leb_clean = 1; 828 goto out_not_moved; 829 } 830 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 831 err == MOVE_TARGET_RD_ERR) { 832 /* 833 * Target PEB had bit-flips or write error - torture it. 834 */ 835 torture = 1; 836 keep = 1; 837 goto out_not_moved; 838 } 839 840 if (err == MOVE_SOURCE_RD_ERR) { 841 /* 842 * An error happened while reading the source PEB. Do 843 * not switch to R/O mode in this case, and give the 844 * upper layers a possibility to recover from this, 845 * e.g. by unmapping corresponding LEB. Instead, just 846 * put this PEB to the @ubi->erroneous list to prevent 847 * UBI from trying to move it over and over again. 848 */ 849 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 850 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 851 ubi->erroneous_peb_count); 852 goto out_error; 853 } 854 dst_leb_clean = 1; 855 erroneous = 1; 856 goto out_not_moved; 857 } 858 859 if (err < 0) 860 goto out_error; 861 862 ubi_assert(0); 863 } 864 865 /* The PEB has been successfully moved */ 866 if (scrubbing) 867 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 868 e1->pnum, vol_id, lnum, e2->pnum); 869 ubi_free_vid_buf(vidb); 870 871 spin_lock(&ubi->wl_lock); 872 if (!ubi->move_to_put) { 873 wl_tree_add(e2, &ubi->used); 874 e2 = NULL; 875 } 876 ubi->move_from = ubi->move_to = NULL; 877 ubi->move_to_put = ubi->wl_scheduled = 0; 878 spin_unlock(&ubi->wl_lock); 879 880 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 881 if (err) { 882 if (e2) 883 wl_entry_destroy(ubi, e2); 884 goto out_ro; 885 } 886 887 if (e2) { 888 /* 889 * Well, the target PEB was put meanwhile, schedule it for 890 * erasure. 891 */ 892 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 893 e2->pnum, vol_id, lnum); 894 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 895 if (err) 896 goto out_ro; 897 } 898 899 dbg_wl("done"); 900 mutex_unlock(&ubi->move_mutex); 901 up_read(&ubi->fm_eba_sem); 902 return 0; 903 904 /* 905 * For some reasons the LEB was not moved, might be an error, might be 906 * something else. @e1 was not changed, so return it back. @e2 might 907 * have been changed, schedule it for erasure. 908 */ 909 out_not_moved: 910 if (vol_id != -1) 911 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 912 e1->pnum, vol_id, lnum, e2->pnum, err); 913 else 914 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 915 e1->pnum, e2->pnum, err); 916 spin_lock(&ubi->wl_lock); 917 if (protect) 918 prot_queue_add(ubi, e1); 919 else if (erroneous) { 920 wl_tree_add(e1, &ubi->erroneous); 921 ubi->erroneous_peb_count += 1; 922 } else if (scrubbing) 923 wl_tree_add(e1, &ubi->scrub); 924 else if (keep) 925 wl_tree_add(e1, &ubi->used); 926 if (dst_leb_clean) { 927 wl_tree_add(e2, &ubi->free); 928 ubi->free_count++; 929 } 930 931 ubi_assert(!ubi->move_to_put); 932 ubi->move_from = ubi->move_to = NULL; 933 ubi->wl_scheduled = 0; 934 spin_unlock(&ubi->wl_lock); 935 936 ubi_free_vid_buf(vidb); 937 if (dst_leb_clean) { 938 ensure_wear_leveling(ubi, 1); 939 } else { 940 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 941 if (err) 942 goto out_ro; 943 } 944 945 if (erase) { 946 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 947 if (err) 948 goto out_ro; 949 } 950 951 mutex_unlock(&ubi->move_mutex); 952 up_read(&ubi->fm_eba_sem); 953 return 0; 954 955 out_error: 956 if (vol_id != -1) 957 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 958 err, e1->pnum, e2->pnum); 959 else 960 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 961 err, e1->pnum, vol_id, lnum, e2->pnum); 962 spin_lock(&ubi->wl_lock); 963 ubi->move_from = ubi->move_to = NULL; 964 ubi->move_to_put = ubi->wl_scheduled = 0; 965 spin_unlock(&ubi->wl_lock); 966 967 ubi_free_vid_buf(vidb); 968 wl_entry_destroy(ubi, e1); 969 wl_entry_destroy(ubi, e2); 970 971 out_ro: 972 ubi_ro_mode(ubi); 973 mutex_unlock(&ubi->move_mutex); 974 up_read(&ubi->fm_eba_sem); 975 ubi_assert(err != 0); 976 return err < 0 ? err : -EIO; 977 978 out_cancel: 979 ubi->wl_scheduled = 0; 980 spin_unlock(&ubi->wl_lock); 981 mutex_unlock(&ubi->move_mutex); 982 up_read(&ubi->fm_eba_sem); 983 ubi_free_vid_buf(vidb); 984 return 0; 985 } 986 987 /** 988 * ensure_wear_leveling - schedule wear-leveling if it is needed. 989 * @ubi: UBI device description object 990 * @nested: set to non-zero if this function is called from UBI worker 991 * 992 * This function checks if it is time to start wear-leveling and schedules it 993 * if yes. This function returns zero in case of success and a negative error 994 * code in case of failure. 995 */ 996 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 997 { 998 int err = 0; 999 struct ubi_wl_entry *e1; 1000 struct ubi_wl_entry *e2; 1001 struct ubi_work *wrk; 1002 1003 spin_lock(&ubi->wl_lock); 1004 if (ubi->wl_scheduled) 1005 /* Wear-leveling is already in the work queue */ 1006 goto out_unlock; 1007 1008 /* 1009 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1010 * the WL worker has to be scheduled anyway. 1011 */ 1012 if (!ubi->scrub.rb_node) { 1013 if (!ubi->used.rb_node || !ubi->free.rb_node) 1014 /* No physical eraseblocks - no deal */ 1015 goto out_unlock; 1016 1017 /* 1018 * We schedule wear-leveling only if the difference between the 1019 * lowest erase counter of used physical eraseblocks and a high 1020 * erase counter of free physical eraseblocks is greater than 1021 * %UBI_WL_THRESHOLD. 1022 */ 1023 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1024 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1025 1026 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1027 goto out_unlock; 1028 dbg_wl("schedule wear-leveling"); 1029 } else 1030 dbg_wl("schedule scrubbing"); 1031 1032 ubi->wl_scheduled = 1; 1033 spin_unlock(&ubi->wl_lock); 1034 1035 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1036 if (!wrk) { 1037 err = -ENOMEM; 1038 goto out_cancel; 1039 } 1040 1041 wrk->func = &wear_leveling_worker; 1042 if (nested) 1043 __schedule_ubi_work(ubi, wrk); 1044 else 1045 schedule_ubi_work(ubi, wrk); 1046 return err; 1047 1048 out_cancel: 1049 spin_lock(&ubi->wl_lock); 1050 ubi->wl_scheduled = 0; 1051 out_unlock: 1052 spin_unlock(&ubi->wl_lock); 1053 return err; 1054 } 1055 1056 /** 1057 * __erase_worker - physical eraseblock erase worker function. 1058 * @ubi: UBI device description object 1059 * @wl_wrk: the work object 1060 * @shutdown: non-zero if the worker has to free memory and exit 1061 * because the WL sub-system is shutting down 1062 * 1063 * This function erases a physical eraseblock and perform torture testing if 1064 * needed. It also takes care about marking the physical eraseblock bad if 1065 * needed. Returns zero in case of success and a negative error code in case of 1066 * failure. 1067 */ 1068 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1069 { 1070 struct ubi_wl_entry *e = wl_wrk->e; 1071 int pnum = e->pnum; 1072 int vol_id = wl_wrk->vol_id; 1073 int lnum = wl_wrk->lnum; 1074 int err, available_consumed = 0; 1075 1076 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1077 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1078 1079 err = sync_erase(ubi, e, wl_wrk->torture); 1080 if (!err) { 1081 spin_lock(&ubi->wl_lock); 1082 1083 if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) { 1084 ubi->fm_anchor = e; 1085 ubi->fm_do_produce_anchor = 0; 1086 } else { 1087 wl_tree_add(e, &ubi->free); 1088 ubi->free_count++; 1089 } 1090 1091 spin_unlock(&ubi->wl_lock); 1092 1093 /* 1094 * One more erase operation has happened, take care about 1095 * protected physical eraseblocks. 1096 */ 1097 serve_prot_queue(ubi); 1098 1099 /* And take care about wear-leveling */ 1100 err = ensure_wear_leveling(ubi, 1); 1101 return err; 1102 } 1103 1104 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1105 1106 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1107 err == -EBUSY) { 1108 int err1; 1109 1110 /* Re-schedule the LEB for erasure */ 1111 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1112 if (err1) { 1113 wl_entry_destroy(ubi, e); 1114 err = err1; 1115 goto out_ro; 1116 } 1117 return err; 1118 } 1119 1120 wl_entry_destroy(ubi, e); 1121 if (err != -EIO) 1122 /* 1123 * If this is not %-EIO, we have no idea what to do. Scheduling 1124 * this physical eraseblock for erasure again would cause 1125 * errors again and again. Well, lets switch to R/O mode. 1126 */ 1127 goto out_ro; 1128 1129 /* It is %-EIO, the PEB went bad */ 1130 1131 if (!ubi->bad_allowed) { 1132 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1133 goto out_ro; 1134 } 1135 1136 spin_lock(&ubi->volumes_lock); 1137 if (ubi->beb_rsvd_pebs == 0) { 1138 if (ubi->avail_pebs == 0) { 1139 spin_unlock(&ubi->volumes_lock); 1140 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1141 goto out_ro; 1142 } 1143 ubi->avail_pebs -= 1; 1144 available_consumed = 1; 1145 } 1146 spin_unlock(&ubi->volumes_lock); 1147 1148 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1149 err = ubi_io_mark_bad(ubi, pnum); 1150 if (err) 1151 goto out_ro; 1152 1153 spin_lock(&ubi->volumes_lock); 1154 if (ubi->beb_rsvd_pebs > 0) { 1155 if (available_consumed) { 1156 /* 1157 * The amount of reserved PEBs increased since we last 1158 * checked. 1159 */ 1160 ubi->avail_pebs += 1; 1161 available_consumed = 0; 1162 } 1163 ubi->beb_rsvd_pebs -= 1; 1164 } 1165 ubi->bad_peb_count += 1; 1166 ubi->good_peb_count -= 1; 1167 ubi_calculate_reserved(ubi); 1168 if (available_consumed) 1169 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1170 else if (ubi->beb_rsvd_pebs) 1171 ubi_msg(ubi, "%d PEBs left in the reserve", 1172 ubi->beb_rsvd_pebs); 1173 else 1174 ubi_warn(ubi, "last PEB from the reserve was used"); 1175 spin_unlock(&ubi->volumes_lock); 1176 1177 return err; 1178 1179 out_ro: 1180 if (available_consumed) { 1181 spin_lock(&ubi->volumes_lock); 1182 ubi->avail_pebs += 1; 1183 spin_unlock(&ubi->volumes_lock); 1184 } 1185 ubi_ro_mode(ubi); 1186 return err; 1187 } 1188 1189 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1190 int shutdown) 1191 { 1192 int ret; 1193 1194 if (shutdown) { 1195 struct ubi_wl_entry *e = wl_wrk->e; 1196 1197 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1198 kfree(wl_wrk); 1199 wl_entry_destroy(ubi, e); 1200 return 0; 1201 } 1202 1203 ret = __erase_worker(ubi, wl_wrk); 1204 kfree(wl_wrk); 1205 return ret; 1206 } 1207 1208 /** 1209 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1210 * @ubi: UBI device description object 1211 * @vol_id: the volume ID that last used this PEB 1212 * @lnum: the last used logical eraseblock number for the PEB 1213 * @pnum: physical eraseblock to return 1214 * @torture: if this physical eraseblock has to be tortured 1215 * 1216 * This function is called to return physical eraseblock @pnum to the pool of 1217 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1218 * occurred to this @pnum and it has to be tested. This function returns zero 1219 * in case of success, and a negative error code in case of failure. 1220 */ 1221 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1222 int pnum, int torture) 1223 { 1224 int err; 1225 struct ubi_wl_entry *e; 1226 1227 dbg_wl("PEB %d", pnum); 1228 ubi_assert(pnum >= 0); 1229 ubi_assert(pnum < ubi->peb_count); 1230 1231 down_read(&ubi->fm_protect); 1232 1233 retry: 1234 spin_lock(&ubi->wl_lock); 1235 e = ubi->lookuptbl[pnum]; 1236 if (e == ubi->move_from) { 1237 /* 1238 * User is putting the physical eraseblock which was selected to 1239 * be moved. It will be scheduled for erasure in the 1240 * wear-leveling worker. 1241 */ 1242 dbg_wl("PEB %d is being moved, wait", pnum); 1243 spin_unlock(&ubi->wl_lock); 1244 1245 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1246 mutex_lock(&ubi->move_mutex); 1247 mutex_unlock(&ubi->move_mutex); 1248 goto retry; 1249 } else if (e == ubi->move_to) { 1250 /* 1251 * User is putting the physical eraseblock which was selected 1252 * as the target the data is moved to. It may happen if the EBA 1253 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1254 * but the WL sub-system has not put the PEB to the "used" tree 1255 * yet, but it is about to do this. So we just set a flag which 1256 * will tell the WL worker that the PEB is not needed anymore 1257 * and should be scheduled for erasure. 1258 */ 1259 dbg_wl("PEB %d is the target of data moving", pnum); 1260 ubi_assert(!ubi->move_to_put); 1261 ubi->move_to_put = 1; 1262 spin_unlock(&ubi->wl_lock); 1263 up_read(&ubi->fm_protect); 1264 return 0; 1265 } else { 1266 if (in_wl_tree(e, &ubi->used)) { 1267 self_check_in_wl_tree(ubi, e, &ubi->used); 1268 rb_erase(&e->u.rb, &ubi->used); 1269 } else if (in_wl_tree(e, &ubi->scrub)) { 1270 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1271 rb_erase(&e->u.rb, &ubi->scrub); 1272 } else if (in_wl_tree(e, &ubi->erroneous)) { 1273 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1274 rb_erase(&e->u.rb, &ubi->erroneous); 1275 ubi->erroneous_peb_count -= 1; 1276 ubi_assert(ubi->erroneous_peb_count >= 0); 1277 /* Erroneous PEBs should be tortured */ 1278 torture = 1; 1279 } else { 1280 err = prot_queue_del(ubi, e->pnum); 1281 if (err) { 1282 ubi_err(ubi, "PEB %d not found", pnum); 1283 ubi_ro_mode(ubi); 1284 spin_unlock(&ubi->wl_lock); 1285 up_read(&ubi->fm_protect); 1286 return err; 1287 } 1288 } 1289 } 1290 spin_unlock(&ubi->wl_lock); 1291 1292 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1293 if (err) { 1294 spin_lock(&ubi->wl_lock); 1295 wl_tree_add(e, &ubi->used); 1296 spin_unlock(&ubi->wl_lock); 1297 } 1298 1299 up_read(&ubi->fm_protect); 1300 return err; 1301 } 1302 1303 /** 1304 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1305 * @ubi: UBI device description object 1306 * @pnum: the physical eraseblock to schedule 1307 * 1308 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1309 * needs scrubbing. This function schedules a physical eraseblock for 1310 * scrubbing which is done in background. This function returns zero in case of 1311 * success and a negative error code in case of failure. 1312 */ 1313 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1314 { 1315 struct ubi_wl_entry *e; 1316 1317 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1318 1319 retry: 1320 spin_lock(&ubi->wl_lock); 1321 e = ubi->lookuptbl[pnum]; 1322 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1323 in_wl_tree(e, &ubi->erroneous)) { 1324 spin_unlock(&ubi->wl_lock); 1325 return 0; 1326 } 1327 1328 if (e == ubi->move_to) { 1329 /* 1330 * This physical eraseblock was used to move data to. The data 1331 * was moved but the PEB was not yet inserted to the proper 1332 * tree. We should just wait a little and let the WL worker 1333 * proceed. 1334 */ 1335 spin_unlock(&ubi->wl_lock); 1336 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1337 yield(); 1338 goto retry; 1339 } 1340 1341 if (in_wl_tree(e, &ubi->used)) { 1342 self_check_in_wl_tree(ubi, e, &ubi->used); 1343 rb_erase(&e->u.rb, &ubi->used); 1344 } else { 1345 int err; 1346 1347 err = prot_queue_del(ubi, e->pnum); 1348 if (err) { 1349 ubi_err(ubi, "PEB %d not found", pnum); 1350 ubi_ro_mode(ubi); 1351 spin_unlock(&ubi->wl_lock); 1352 return err; 1353 } 1354 } 1355 1356 wl_tree_add(e, &ubi->scrub); 1357 spin_unlock(&ubi->wl_lock); 1358 1359 /* 1360 * Technically scrubbing is the same as wear-leveling, so it is done 1361 * by the WL worker. 1362 */ 1363 return ensure_wear_leveling(ubi, 0); 1364 } 1365 1366 /** 1367 * ubi_wl_flush - flush all pending works. 1368 * @ubi: UBI device description object 1369 * @vol_id: the volume id to flush for 1370 * @lnum: the logical eraseblock number to flush for 1371 * 1372 * This function executes all pending works for a particular volume id / 1373 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1374 * acts as a wildcard for all of the corresponding volume numbers or logical 1375 * eraseblock numbers. It returns zero in case of success and a negative error 1376 * code in case of failure. 1377 */ 1378 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1379 { 1380 int err = 0; 1381 int found = 1; 1382 1383 /* 1384 * Erase while the pending works queue is not empty, but not more than 1385 * the number of currently pending works. 1386 */ 1387 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1388 vol_id, lnum, ubi->works_count); 1389 1390 while (found) { 1391 struct ubi_work *wrk, *tmp; 1392 found = 0; 1393 1394 down_read(&ubi->work_sem); 1395 spin_lock(&ubi->wl_lock); 1396 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1397 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1398 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1399 list_del(&wrk->list); 1400 ubi->works_count -= 1; 1401 ubi_assert(ubi->works_count >= 0); 1402 spin_unlock(&ubi->wl_lock); 1403 1404 err = wrk->func(ubi, wrk, 0); 1405 if (err) { 1406 up_read(&ubi->work_sem); 1407 return err; 1408 } 1409 1410 spin_lock(&ubi->wl_lock); 1411 found = 1; 1412 break; 1413 } 1414 } 1415 spin_unlock(&ubi->wl_lock); 1416 up_read(&ubi->work_sem); 1417 } 1418 1419 /* 1420 * Make sure all the works which have been done in parallel are 1421 * finished. 1422 */ 1423 down_write(&ubi->work_sem); 1424 up_write(&ubi->work_sem); 1425 1426 return err; 1427 } 1428 1429 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1430 { 1431 if (in_wl_tree(e, &ubi->scrub)) 1432 return false; 1433 else if (in_wl_tree(e, &ubi->erroneous)) 1434 return false; 1435 else if (ubi->move_from == e) 1436 return false; 1437 else if (ubi->move_to == e) 1438 return false; 1439 1440 return true; 1441 } 1442 1443 /** 1444 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1445 * @ubi: UBI device description object 1446 * @pnum: the physical eraseblock to schedule 1447 * @force: dont't read the block, assume bitflips happened and take action. 1448 * 1449 * This function reads the given eraseblock and checks if bitflips occured. 1450 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1451 * If scrubbing is forced with @force, the eraseblock is not read, 1452 * but scheduled for scrubbing right away. 1453 * 1454 * Returns: 1455 * %EINVAL, PEB is out of range 1456 * %ENOENT, PEB is no longer used by UBI 1457 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1458 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1459 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1460 * %0, no bit flips detected 1461 */ 1462 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1463 { 1464 int err = 0; 1465 struct ubi_wl_entry *e; 1466 1467 if (pnum < 0 || pnum >= ubi->peb_count) { 1468 err = -EINVAL; 1469 goto out; 1470 } 1471 1472 /* 1473 * Pause all parallel work, otherwise it can happen that the 1474 * erase worker frees a wl entry under us. 1475 */ 1476 down_write(&ubi->work_sem); 1477 1478 /* 1479 * Make sure that the wl entry does not change state while 1480 * inspecting it. 1481 */ 1482 spin_lock(&ubi->wl_lock); 1483 e = ubi->lookuptbl[pnum]; 1484 if (!e) { 1485 spin_unlock(&ubi->wl_lock); 1486 err = -ENOENT; 1487 goto out_resume; 1488 } 1489 1490 /* 1491 * Does it make sense to check this PEB? 1492 */ 1493 if (!scrub_possible(ubi, e)) { 1494 spin_unlock(&ubi->wl_lock); 1495 err = -EBUSY; 1496 goto out_resume; 1497 } 1498 spin_unlock(&ubi->wl_lock); 1499 1500 if (!force) { 1501 mutex_lock(&ubi->buf_mutex); 1502 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1503 mutex_unlock(&ubi->buf_mutex); 1504 } 1505 1506 if (force || err == UBI_IO_BITFLIPS) { 1507 /* 1508 * Okay, bit flip happened, let's figure out what we can do. 1509 */ 1510 spin_lock(&ubi->wl_lock); 1511 1512 /* 1513 * Recheck. We released wl_lock, UBI might have killed the 1514 * wl entry under us. 1515 */ 1516 e = ubi->lookuptbl[pnum]; 1517 if (!e) { 1518 spin_unlock(&ubi->wl_lock); 1519 err = -ENOENT; 1520 goto out_resume; 1521 } 1522 1523 /* 1524 * Need to re-check state 1525 */ 1526 if (!scrub_possible(ubi, e)) { 1527 spin_unlock(&ubi->wl_lock); 1528 err = -EBUSY; 1529 goto out_resume; 1530 } 1531 1532 if (in_pq(ubi, e)) { 1533 prot_queue_del(ubi, e->pnum); 1534 wl_tree_add(e, &ubi->scrub); 1535 spin_unlock(&ubi->wl_lock); 1536 1537 err = ensure_wear_leveling(ubi, 1); 1538 } else if (in_wl_tree(e, &ubi->used)) { 1539 rb_erase(&e->u.rb, &ubi->used); 1540 wl_tree_add(e, &ubi->scrub); 1541 spin_unlock(&ubi->wl_lock); 1542 1543 err = ensure_wear_leveling(ubi, 1); 1544 } else if (in_wl_tree(e, &ubi->free)) { 1545 rb_erase(&e->u.rb, &ubi->free); 1546 ubi->free_count--; 1547 spin_unlock(&ubi->wl_lock); 1548 1549 /* 1550 * This PEB is empty we can schedule it for 1551 * erasure right away. No wear leveling needed. 1552 */ 1553 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1554 force ? 0 : 1, true); 1555 } else { 1556 spin_unlock(&ubi->wl_lock); 1557 err = -EAGAIN; 1558 } 1559 1560 if (!err && !force) 1561 err = -EUCLEAN; 1562 } else { 1563 err = 0; 1564 } 1565 1566 out_resume: 1567 up_write(&ubi->work_sem); 1568 out: 1569 1570 return err; 1571 } 1572 1573 /** 1574 * tree_destroy - destroy an RB-tree. 1575 * @ubi: UBI device description object 1576 * @root: the root of the tree to destroy 1577 */ 1578 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1579 { 1580 struct rb_node *rb; 1581 struct ubi_wl_entry *e; 1582 1583 rb = root->rb_node; 1584 while (rb) { 1585 if (rb->rb_left) 1586 rb = rb->rb_left; 1587 else if (rb->rb_right) 1588 rb = rb->rb_right; 1589 else { 1590 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1591 1592 rb = rb_parent(rb); 1593 if (rb) { 1594 if (rb->rb_left == &e->u.rb) 1595 rb->rb_left = NULL; 1596 else 1597 rb->rb_right = NULL; 1598 } 1599 1600 wl_entry_destroy(ubi, e); 1601 } 1602 } 1603 } 1604 1605 /** 1606 * ubi_thread - UBI background thread. 1607 * @u: the UBI device description object pointer 1608 */ 1609 int ubi_thread(void *u) 1610 { 1611 int failures = 0; 1612 struct ubi_device *ubi = u; 1613 1614 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1615 ubi->bgt_name, task_pid_nr(current)); 1616 1617 set_freezable(); 1618 for (;;) { 1619 int err; 1620 1621 if (kthread_should_stop()) 1622 break; 1623 1624 if (try_to_freeze()) 1625 continue; 1626 1627 spin_lock(&ubi->wl_lock); 1628 if (list_empty(&ubi->works) || ubi->ro_mode || 1629 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1630 set_current_state(TASK_INTERRUPTIBLE); 1631 spin_unlock(&ubi->wl_lock); 1632 schedule(); 1633 continue; 1634 } 1635 spin_unlock(&ubi->wl_lock); 1636 1637 err = do_work(ubi); 1638 if (err) { 1639 ubi_err(ubi, "%s: work failed with error code %d", 1640 ubi->bgt_name, err); 1641 if (failures++ > WL_MAX_FAILURES) { 1642 /* 1643 * Too many failures, disable the thread and 1644 * switch to read-only mode. 1645 */ 1646 ubi_msg(ubi, "%s: %d consecutive failures", 1647 ubi->bgt_name, WL_MAX_FAILURES); 1648 ubi_ro_mode(ubi); 1649 ubi->thread_enabled = 0; 1650 continue; 1651 } 1652 } else 1653 failures = 0; 1654 1655 cond_resched(); 1656 } 1657 1658 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1659 ubi->thread_enabled = 0; 1660 return 0; 1661 } 1662 1663 /** 1664 * shutdown_work - shutdown all pending works. 1665 * @ubi: UBI device description object 1666 */ 1667 static void shutdown_work(struct ubi_device *ubi) 1668 { 1669 while (!list_empty(&ubi->works)) { 1670 struct ubi_work *wrk; 1671 1672 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1673 list_del(&wrk->list); 1674 wrk->func(ubi, wrk, 1); 1675 ubi->works_count -= 1; 1676 ubi_assert(ubi->works_count >= 0); 1677 } 1678 } 1679 1680 /** 1681 * erase_aeb - erase a PEB given in UBI attach info PEB 1682 * @ubi: UBI device description object 1683 * @aeb: UBI attach info PEB 1684 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1685 */ 1686 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1687 { 1688 struct ubi_wl_entry *e; 1689 int err; 1690 1691 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1692 if (!e) 1693 return -ENOMEM; 1694 1695 e->pnum = aeb->pnum; 1696 e->ec = aeb->ec; 1697 ubi->lookuptbl[e->pnum] = e; 1698 1699 if (sync) { 1700 err = sync_erase(ubi, e, false); 1701 if (err) 1702 goto out_free; 1703 1704 wl_tree_add(e, &ubi->free); 1705 ubi->free_count++; 1706 } else { 1707 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1708 if (err) 1709 goto out_free; 1710 } 1711 1712 return 0; 1713 1714 out_free: 1715 wl_entry_destroy(ubi, e); 1716 1717 return err; 1718 } 1719 1720 /** 1721 * ubi_wl_init - initialize the WL sub-system using attaching information. 1722 * @ubi: UBI device description object 1723 * @ai: attaching information 1724 * 1725 * This function returns zero in case of success, and a negative error code in 1726 * case of failure. 1727 */ 1728 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1729 { 1730 int err, i, reserved_pebs, found_pebs = 0; 1731 struct rb_node *rb1, *rb2; 1732 struct ubi_ainf_volume *av; 1733 struct ubi_ainf_peb *aeb, *tmp; 1734 struct ubi_wl_entry *e; 1735 1736 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1737 spin_lock_init(&ubi->wl_lock); 1738 mutex_init(&ubi->move_mutex); 1739 init_rwsem(&ubi->work_sem); 1740 ubi->max_ec = ai->max_ec; 1741 INIT_LIST_HEAD(&ubi->works); 1742 1743 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1744 1745 err = -ENOMEM; 1746 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1747 if (!ubi->lookuptbl) 1748 return err; 1749 1750 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1751 INIT_LIST_HEAD(&ubi->pq[i]); 1752 ubi->pq_head = 0; 1753 1754 ubi->free_count = 0; 1755 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1756 cond_resched(); 1757 1758 err = erase_aeb(ubi, aeb, false); 1759 if (err) 1760 goto out_free; 1761 1762 found_pebs++; 1763 } 1764 1765 list_for_each_entry(aeb, &ai->free, u.list) { 1766 cond_resched(); 1767 1768 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1769 if (!e) { 1770 err = -ENOMEM; 1771 goto out_free; 1772 } 1773 1774 e->pnum = aeb->pnum; 1775 e->ec = aeb->ec; 1776 ubi_assert(e->ec >= 0); 1777 1778 wl_tree_add(e, &ubi->free); 1779 ubi->free_count++; 1780 1781 ubi->lookuptbl[e->pnum] = e; 1782 1783 found_pebs++; 1784 } 1785 1786 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1787 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1788 cond_resched(); 1789 1790 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1791 if (!e) { 1792 err = -ENOMEM; 1793 goto out_free; 1794 } 1795 1796 e->pnum = aeb->pnum; 1797 e->ec = aeb->ec; 1798 ubi->lookuptbl[e->pnum] = e; 1799 1800 if (!aeb->scrub) { 1801 dbg_wl("add PEB %d EC %d to the used tree", 1802 e->pnum, e->ec); 1803 wl_tree_add(e, &ubi->used); 1804 } else { 1805 dbg_wl("add PEB %d EC %d to the scrub tree", 1806 e->pnum, e->ec); 1807 wl_tree_add(e, &ubi->scrub); 1808 } 1809 1810 found_pebs++; 1811 } 1812 } 1813 1814 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1815 cond_resched(); 1816 1817 e = ubi_find_fm_block(ubi, aeb->pnum); 1818 1819 if (e) { 1820 ubi_assert(!ubi->lookuptbl[e->pnum]); 1821 ubi->lookuptbl[e->pnum] = e; 1822 } else { 1823 bool sync = false; 1824 1825 /* 1826 * Usually old Fastmap PEBs are scheduled for erasure 1827 * and we don't have to care about them but if we face 1828 * an power cut before scheduling them we need to 1829 * take care of them here. 1830 */ 1831 if (ubi->lookuptbl[aeb->pnum]) 1832 continue; 1833 1834 /* 1835 * The fastmap update code might not find a free PEB for 1836 * writing the fastmap anchor to and then reuses the 1837 * current fastmap anchor PEB. When this PEB gets erased 1838 * and a power cut happens before it is written again we 1839 * must make sure that the fastmap attach code doesn't 1840 * find any outdated fastmap anchors, hence we erase the 1841 * outdated fastmap anchor PEBs synchronously here. 1842 */ 1843 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1844 sync = true; 1845 1846 err = erase_aeb(ubi, aeb, sync); 1847 if (err) 1848 goto out_free; 1849 } 1850 1851 found_pebs++; 1852 } 1853 1854 dbg_wl("found %i PEBs", found_pebs); 1855 1856 ubi_assert(ubi->good_peb_count == found_pebs); 1857 1858 reserved_pebs = WL_RESERVED_PEBS; 1859 ubi_fastmap_init(ubi, &reserved_pebs); 1860 1861 if (ubi->avail_pebs < reserved_pebs) { 1862 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1863 ubi->avail_pebs, reserved_pebs); 1864 if (ubi->corr_peb_count) 1865 ubi_err(ubi, "%d PEBs are corrupted and not used", 1866 ubi->corr_peb_count); 1867 err = -ENOSPC; 1868 goto out_free; 1869 } 1870 ubi->avail_pebs -= reserved_pebs; 1871 ubi->rsvd_pebs += reserved_pebs; 1872 1873 /* Schedule wear-leveling if needed */ 1874 err = ensure_wear_leveling(ubi, 0); 1875 if (err) 1876 goto out_free; 1877 1878 #ifdef CONFIG_MTD_UBI_FASTMAP 1879 ubi_ensure_anchor_pebs(ubi); 1880 #endif 1881 return 0; 1882 1883 out_free: 1884 shutdown_work(ubi); 1885 tree_destroy(ubi, &ubi->used); 1886 tree_destroy(ubi, &ubi->free); 1887 tree_destroy(ubi, &ubi->scrub); 1888 kfree(ubi->lookuptbl); 1889 return err; 1890 } 1891 1892 /** 1893 * protection_queue_destroy - destroy the protection queue. 1894 * @ubi: UBI device description object 1895 */ 1896 static void protection_queue_destroy(struct ubi_device *ubi) 1897 { 1898 int i; 1899 struct ubi_wl_entry *e, *tmp; 1900 1901 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1902 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1903 list_del(&e->u.list); 1904 wl_entry_destroy(ubi, e); 1905 } 1906 } 1907 } 1908 1909 /** 1910 * ubi_wl_close - close the wear-leveling sub-system. 1911 * @ubi: UBI device description object 1912 */ 1913 void ubi_wl_close(struct ubi_device *ubi) 1914 { 1915 dbg_wl("close the WL sub-system"); 1916 ubi_fastmap_close(ubi); 1917 shutdown_work(ubi); 1918 protection_queue_destroy(ubi); 1919 tree_destroy(ubi, &ubi->used); 1920 tree_destroy(ubi, &ubi->erroneous); 1921 tree_destroy(ubi, &ubi->free); 1922 tree_destroy(ubi, &ubi->scrub); 1923 kfree(ubi->lookuptbl); 1924 } 1925 1926 /** 1927 * self_check_ec - make sure that the erase counter of a PEB is correct. 1928 * @ubi: UBI device description object 1929 * @pnum: the physical eraseblock number to check 1930 * @ec: the erase counter to check 1931 * 1932 * This function returns zero if the erase counter of physical eraseblock @pnum 1933 * is equivalent to @ec, and a negative error code if not or if an error 1934 * occurred. 1935 */ 1936 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1937 { 1938 int err; 1939 long long read_ec; 1940 struct ubi_ec_hdr *ec_hdr; 1941 1942 if (!ubi_dbg_chk_gen(ubi)) 1943 return 0; 1944 1945 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1946 if (!ec_hdr) 1947 return -ENOMEM; 1948 1949 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1950 if (err && err != UBI_IO_BITFLIPS) { 1951 /* The header does not have to exist */ 1952 err = 0; 1953 goto out_free; 1954 } 1955 1956 read_ec = be64_to_cpu(ec_hdr->ec); 1957 if (ec != read_ec && read_ec - ec > 1) { 1958 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1959 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1960 dump_stack(); 1961 err = 1; 1962 } else 1963 err = 0; 1964 1965 out_free: 1966 kfree(ec_hdr); 1967 return err; 1968 } 1969 1970 /** 1971 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1972 * @ubi: UBI device description object 1973 * @e: the wear-leveling entry to check 1974 * @root: the root of the tree 1975 * 1976 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1977 * is not. 1978 */ 1979 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1980 struct ubi_wl_entry *e, struct rb_root *root) 1981 { 1982 if (!ubi_dbg_chk_gen(ubi)) 1983 return 0; 1984 1985 if (in_wl_tree(e, root)) 1986 return 0; 1987 1988 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1989 e->pnum, e->ec, root); 1990 dump_stack(); 1991 return -EINVAL; 1992 } 1993 1994 /** 1995 * self_check_in_pq - check if wear-leveling entry is in the protection 1996 * queue. 1997 * @ubi: UBI device description object 1998 * @e: the wear-leveling entry to check 1999 * 2000 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2001 */ 2002 static int self_check_in_pq(const struct ubi_device *ubi, 2003 struct ubi_wl_entry *e) 2004 { 2005 if (!ubi_dbg_chk_gen(ubi)) 2006 return 0; 2007 2008 if (in_pq(ubi, e)) 2009 return 0; 2010 2011 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2012 e->pnum, e->ec); 2013 dump_stack(); 2014 return -EINVAL; 2015 } 2016 #ifndef CONFIG_MTD_UBI_FASTMAP 2017 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2018 { 2019 struct ubi_wl_entry *e; 2020 2021 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2022 self_check_in_wl_tree(ubi, e, &ubi->free); 2023 ubi->free_count--; 2024 ubi_assert(ubi->free_count >= 0); 2025 rb_erase(&e->u.rb, &ubi->free); 2026 2027 return e; 2028 } 2029 2030 /** 2031 * produce_free_peb - produce a free physical eraseblock. 2032 * @ubi: UBI device description object 2033 * 2034 * This function tries to make a free PEB by means of synchronous execution of 2035 * pending works. This may be needed if, for example the background thread is 2036 * disabled. Returns zero in case of success and a negative error code in case 2037 * of failure. 2038 */ 2039 static int produce_free_peb(struct ubi_device *ubi) 2040 { 2041 int err; 2042 2043 while (!ubi->free.rb_node && ubi->works_count) { 2044 spin_unlock(&ubi->wl_lock); 2045 2046 dbg_wl("do one work synchronously"); 2047 err = do_work(ubi); 2048 2049 spin_lock(&ubi->wl_lock); 2050 if (err) 2051 return err; 2052 } 2053 2054 return 0; 2055 } 2056 2057 /** 2058 * ubi_wl_get_peb - get a physical eraseblock. 2059 * @ubi: UBI device description object 2060 * 2061 * This function returns a physical eraseblock in case of success and a 2062 * negative error code in case of failure. 2063 * Returns with ubi->fm_eba_sem held in read mode! 2064 */ 2065 int ubi_wl_get_peb(struct ubi_device *ubi) 2066 { 2067 int err; 2068 struct ubi_wl_entry *e; 2069 2070 retry: 2071 down_read(&ubi->fm_eba_sem); 2072 spin_lock(&ubi->wl_lock); 2073 if (!ubi->free.rb_node) { 2074 if (ubi->works_count == 0) { 2075 ubi_err(ubi, "no free eraseblocks"); 2076 ubi_assert(list_empty(&ubi->works)); 2077 spin_unlock(&ubi->wl_lock); 2078 return -ENOSPC; 2079 } 2080 2081 err = produce_free_peb(ubi); 2082 if (err < 0) { 2083 spin_unlock(&ubi->wl_lock); 2084 return err; 2085 } 2086 spin_unlock(&ubi->wl_lock); 2087 up_read(&ubi->fm_eba_sem); 2088 goto retry; 2089 2090 } 2091 e = wl_get_wle(ubi); 2092 prot_queue_add(ubi, e); 2093 spin_unlock(&ubi->wl_lock); 2094 2095 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2096 ubi->peb_size - ubi->vid_hdr_aloffset); 2097 if (err) { 2098 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2099 return err; 2100 } 2101 2102 return e->pnum; 2103 } 2104 #else 2105 #include "fastmap-wl.c" 2106 #endif 2107