1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_entry_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 e = e1; 338 } 339 } 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * @nested: denotes whether the work_sem is already held 579 * 580 * This function returns zero in case of success and a %-ENOMEM in case of 581 * failure. 582 */ 583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 584 int vol_id, int lnum, int torture, bool nested) 585 { 586 struct ubi_work *wl_wrk; 587 588 ubi_assert(e); 589 590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 591 e->pnum, e->ec, torture); 592 593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 594 if (!wl_wrk) 595 return -ENOMEM; 596 597 wl_wrk->func = &erase_worker; 598 wl_wrk->e = e; 599 wl_wrk->vol_id = vol_id; 600 wl_wrk->lnum = lnum; 601 wl_wrk->torture = torture; 602 603 if (nested) 604 __schedule_ubi_work(ubi, wl_wrk); 605 else 606 schedule_ubi_work(ubi, wl_wrk); 607 return 0; 608 } 609 610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 611 /** 612 * do_sync_erase - run the erase worker synchronously. 613 * @ubi: UBI device description object 614 * @e: the WL entry of the physical eraseblock to erase 615 * @vol_id: the volume ID that last used this PEB 616 * @lnum: the last used logical eraseblock number for the PEB 617 * @torture: if the physical eraseblock has to be tortured 618 * 619 */ 620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 621 int vol_id, int lnum, int torture) 622 { 623 struct ubi_work wl_wrk; 624 625 dbg_wl("sync erase of PEB %i", e->pnum); 626 627 wl_wrk.e = e; 628 wl_wrk.vol_id = vol_id; 629 wl_wrk.lnum = lnum; 630 wl_wrk.torture = torture; 631 632 return __erase_worker(ubi, &wl_wrk); 633 } 634 635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 636 /** 637 * wear_leveling_worker - wear-leveling worker function. 638 * @ubi: UBI device description object 639 * @wrk: the work object 640 * @shutdown: non-zero if the worker has to free memory and exit 641 * because the WL-subsystem is shutting down 642 * 643 * This function copies a more worn out physical eraseblock to a less worn out 644 * one. Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 648 int shutdown) 649 { 650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 651 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 652 struct ubi_wl_entry *e1, *e2; 653 struct ubi_vid_io_buf *vidb; 654 struct ubi_vid_hdr *vid_hdr; 655 int dst_leb_clean = 0; 656 657 kfree(wrk); 658 if (shutdown) 659 return 0; 660 661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 662 if (!vidb) 663 return -ENOMEM; 664 665 vid_hdr = ubi_get_vid_hdr(vidb); 666 667 down_read(&ubi->fm_eba_sem); 668 mutex_lock(&ubi->move_mutex); 669 spin_lock(&ubi->wl_lock); 670 ubi_assert(!ubi->move_from && !ubi->move_to); 671 ubi_assert(!ubi->move_to_put); 672 673 #ifdef CONFIG_MTD_UBI_FASTMAP 674 if (!next_peb_for_wl(ubi, true) || 675 #else 676 if (!ubi->free.rb_node || 677 #endif 678 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 679 /* 680 * No free physical eraseblocks? Well, they must be waiting in 681 * the queue to be erased. Cancel movement - it will be 682 * triggered again when a free physical eraseblock appears. 683 * 684 * No used physical eraseblocks? They must be temporarily 685 * protected from being moved. They will be moved to the 686 * @ubi->used tree later and the wear-leveling will be 687 * triggered again. 688 */ 689 dbg_wl("cancel WL, a list is empty: free %d, used %d", 690 !ubi->free.rb_node, !ubi->used.rb_node); 691 goto out_cancel; 692 } 693 694 #ifdef CONFIG_MTD_UBI_FASTMAP 695 e1 = find_anchor_wl_entry(&ubi->used); 696 if (e1 && ubi->fm_anchor && 697 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 698 ubi->fm_do_produce_anchor = 1; 699 /* 700 * fm_anchor is no longer considered a good anchor. 701 * NULL assignment also prevents multiple wear level checks 702 * of this PEB. 703 */ 704 wl_tree_add(ubi->fm_anchor, &ubi->free); 705 ubi->fm_anchor = NULL; 706 ubi->free_count++; 707 } 708 709 if (ubi->fm_do_produce_anchor) { 710 if (!e1) 711 goto out_cancel; 712 e2 = get_peb_for_wl(ubi); 713 if (!e2) 714 goto out_cancel; 715 716 self_check_in_wl_tree(ubi, e1, &ubi->used); 717 rb_erase(&e1->u.rb, &ubi->used); 718 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 719 ubi->fm_do_produce_anchor = 0; 720 } else if (!ubi->scrub.rb_node) { 721 #else 722 if (!ubi->scrub.rb_node) { 723 #endif 724 /* 725 * Now pick the least worn-out used physical eraseblock and a 726 * highly worn-out free physical eraseblock. If the erase 727 * counters differ much enough, start wear-leveling. 728 */ 729 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 730 e2 = get_peb_for_wl(ubi); 731 if (!e2) 732 goto out_cancel; 733 734 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 735 dbg_wl("no WL needed: min used EC %d, max free EC %d", 736 e1->ec, e2->ec); 737 738 /* Give the unused PEB back */ 739 wl_tree_add(e2, &ubi->free); 740 ubi->free_count++; 741 goto out_cancel; 742 } 743 self_check_in_wl_tree(ubi, e1, &ubi->used); 744 rb_erase(&e1->u.rb, &ubi->used); 745 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 746 e1->pnum, e1->ec, e2->pnum, e2->ec); 747 } else { 748 /* Perform scrubbing */ 749 scrubbing = 1; 750 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 751 e2 = get_peb_for_wl(ubi); 752 if (!e2) 753 goto out_cancel; 754 755 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 756 rb_erase(&e1->u.rb, &ubi->scrub); 757 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 758 } 759 760 ubi->move_from = e1; 761 ubi->move_to = e2; 762 spin_unlock(&ubi->wl_lock); 763 764 /* 765 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 766 * We so far do not know which logical eraseblock our physical 767 * eraseblock (@e1) belongs to. We have to read the volume identifier 768 * header first. 769 * 770 * Note, we are protected from this PEB being unmapped and erased. The 771 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 772 * which is being moved was unmapped. 773 */ 774 775 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 776 if (err && err != UBI_IO_BITFLIPS) { 777 dst_leb_clean = 1; 778 if (err == UBI_IO_FF) { 779 /* 780 * We are trying to move PEB without a VID header. UBI 781 * always write VID headers shortly after the PEB was 782 * given, so we have a situation when it has not yet 783 * had a chance to write it, because it was preempted. 784 * So add this PEB to the protection queue so far, 785 * because presumably more data will be written there 786 * (including the missing VID header), and then we'll 787 * move it. 788 */ 789 dbg_wl("PEB %d has no VID header", e1->pnum); 790 protect = 1; 791 goto out_not_moved; 792 } else if (err == UBI_IO_FF_BITFLIPS) { 793 /* 794 * The same situation as %UBI_IO_FF, but bit-flips were 795 * detected. It is better to schedule this PEB for 796 * scrubbing. 797 */ 798 dbg_wl("PEB %d has no VID header but has bit-flips", 799 e1->pnum); 800 scrubbing = 1; 801 goto out_not_moved; 802 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 803 /* 804 * While a full scan would detect interrupted erasures 805 * at attach time we can face them here when attached from 806 * Fastmap. 807 */ 808 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 809 e1->pnum); 810 erase = 1; 811 goto out_not_moved; 812 } 813 814 ubi_err(ubi, "error %d while reading VID header from PEB %d", 815 err, e1->pnum); 816 goto out_error; 817 } 818 819 vol_id = be32_to_cpu(vid_hdr->vol_id); 820 lnum = be32_to_cpu(vid_hdr->lnum); 821 822 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 823 if (err) { 824 if (err == MOVE_CANCEL_RACE) { 825 /* 826 * The LEB has not been moved because the volume is 827 * being deleted or the PEB has been put meanwhile. We 828 * should prevent this PEB from being selected for 829 * wear-leveling movement again, so put it to the 830 * protection queue. 831 */ 832 protect = 1; 833 dst_leb_clean = 1; 834 goto out_not_moved; 835 } 836 if (err == MOVE_RETRY) { 837 /* 838 * For source PEB: 839 * 1. The scrubbing is set for scrub type PEB, it will 840 * be put back into ubi->scrub list. 841 * 2. Non-scrub type PEB will be put back into ubi->used 842 * list. 843 */ 844 keep = 1; 845 dst_leb_clean = 1; 846 goto out_not_moved; 847 } 848 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 849 err == MOVE_TARGET_RD_ERR) { 850 /* 851 * Target PEB had bit-flips or write error - torture it. 852 */ 853 torture = 1; 854 keep = 1; 855 goto out_not_moved; 856 } 857 858 if (err == MOVE_SOURCE_RD_ERR) { 859 /* 860 * An error happened while reading the source PEB. Do 861 * not switch to R/O mode in this case, and give the 862 * upper layers a possibility to recover from this, 863 * e.g. by unmapping corresponding LEB. Instead, just 864 * put this PEB to the @ubi->erroneous list to prevent 865 * UBI from trying to move it over and over again. 866 */ 867 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 868 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 869 ubi->erroneous_peb_count); 870 goto out_error; 871 } 872 dst_leb_clean = 1; 873 erroneous = 1; 874 goto out_not_moved; 875 } 876 877 if (err < 0) 878 goto out_error; 879 880 ubi_assert(0); 881 } 882 883 /* The PEB has been successfully moved */ 884 if (scrubbing) 885 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 886 e1->pnum, vol_id, lnum, e2->pnum); 887 ubi_free_vid_buf(vidb); 888 889 spin_lock(&ubi->wl_lock); 890 if (!ubi->move_to_put) { 891 wl_tree_add(e2, &ubi->used); 892 e2 = NULL; 893 } 894 ubi->move_from = ubi->move_to = NULL; 895 ubi->move_to_put = ubi->wl_scheduled = 0; 896 spin_unlock(&ubi->wl_lock); 897 898 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 899 if (err) { 900 if (e2) { 901 spin_lock(&ubi->wl_lock); 902 wl_entry_destroy(ubi, e2); 903 spin_unlock(&ubi->wl_lock); 904 } 905 goto out_ro; 906 } 907 908 if (e2) { 909 /* 910 * Well, the target PEB was put meanwhile, schedule it for 911 * erasure. 912 */ 913 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 914 e2->pnum, vol_id, lnum); 915 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 916 if (err) 917 goto out_ro; 918 } 919 920 dbg_wl("done"); 921 mutex_unlock(&ubi->move_mutex); 922 up_read(&ubi->fm_eba_sem); 923 return 0; 924 925 /* 926 * For some reasons the LEB was not moved, might be an error, might be 927 * something else. @e1 was not changed, so return it back. @e2 might 928 * have been changed, schedule it for erasure. 929 */ 930 out_not_moved: 931 if (vol_id != -1) 932 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 933 e1->pnum, vol_id, lnum, e2->pnum, err); 934 else 935 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 936 e1->pnum, e2->pnum, err); 937 spin_lock(&ubi->wl_lock); 938 if (protect) 939 prot_queue_add(ubi, e1); 940 else if (erroneous) { 941 wl_tree_add(e1, &ubi->erroneous); 942 ubi->erroneous_peb_count += 1; 943 } else if (scrubbing) 944 wl_tree_add(e1, &ubi->scrub); 945 else if (keep) 946 wl_tree_add(e1, &ubi->used); 947 if (dst_leb_clean) { 948 wl_tree_add(e2, &ubi->free); 949 ubi->free_count++; 950 } 951 952 ubi_assert(!ubi->move_to_put); 953 ubi->move_from = ubi->move_to = NULL; 954 ubi->wl_scheduled = 0; 955 spin_unlock(&ubi->wl_lock); 956 957 ubi_free_vid_buf(vidb); 958 if (dst_leb_clean) { 959 ensure_wear_leveling(ubi, 1); 960 } else { 961 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 962 if (err) 963 goto out_ro; 964 } 965 966 if (erase) { 967 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 968 if (err) 969 goto out_ro; 970 } 971 972 mutex_unlock(&ubi->move_mutex); 973 up_read(&ubi->fm_eba_sem); 974 return 0; 975 976 out_error: 977 if (vol_id != -1) 978 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 979 err, e1->pnum, e2->pnum); 980 else 981 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 982 err, e1->pnum, vol_id, lnum, e2->pnum); 983 spin_lock(&ubi->wl_lock); 984 ubi->move_from = ubi->move_to = NULL; 985 ubi->move_to_put = ubi->wl_scheduled = 0; 986 wl_entry_destroy(ubi, e1); 987 wl_entry_destroy(ubi, e2); 988 spin_unlock(&ubi->wl_lock); 989 990 ubi_free_vid_buf(vidb); 991 992 out_ro: 993 ubi_ro_mode(ubi); 994 mutex_unlock(&ubi->move_mutex); 995 up_read(&ubi->fm_eba_sem); 996 ubi_assert(err != 0); 997 return err < 0 ? err : -EIO; 998 999 out_cancel: 1000 ubi->wl_scheduled = 0; 1001 spin_unlock(&ubi->wl_lock); 1002 mutex_unlock(&ubi->move_mutex); 1003 up_read(&ubi->fm_eba_sem); 1004 ubi_free_vid_buf(vidb); 1005 return 0; 1006 } 1007 1008 /** 1009 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1010 * @ubi: UBI device description object 1011 * @nested: set to non-zero if this function is called from UBI worker 1012 * 1013 * This function checks if it is time to start wear-leveling and schedules it 1014 * if yes. This function returns zero in case of success and a negative error 1015 * code in case of failure. 1016 */ 1017 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1018 { 1019 int err = 0; 1020 struct ubi_work *wrk; 1021 1022 spin_lock(&ubi->wl_lock); 1023 if (ubi->wl_scheduled) 1024 /* Wear-leveling is already in the work queue */ 1025 goto out_unlock; 1026 1027 /* 1028 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1029 * WL worker has to be scheduled anyway. 1030 */ 1031 if (!ubi->scrub.rb_node) { 1032 #ifdef CONFIG_MTD_UBI_FASTMAP 1033 if (!need_wear_leveling(ubi)) 1034 goto out_unlock; 1035 #else 1036 struct ubi_wl_entry *e1; 1037 struct ubi_wl_entry *e2; 1038 1039 if (!ubi->used.rb_node || !ubi->free.rb_node) 1040 /* No physical eraseblocks - no deal */ 1041 goto out_unlock; 1042 1043 /* 1044 * We schedule wear-leveling only if the difference between the 1045 * lowest erase counter of used physical eraseblocks and a high 1046 * erase counter of free physical eraseblocks is greater than 1047 * %UBI_WL_THRESHOLD. 1048 */ 1049 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1050 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1051 1052 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1053 goto out_unlock; 1054 #endif 1055 dbg_wl("schedule wear-leveling"); 1056 } else 1057 dbg_wl("schedule scrubbing"); 1058 1059 ubi->wl_scheduled = 1; 1060 spin_unlock(&ubi->wl_lock); 1061 1062 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1063 if (!wrk) { 1064 err = -ENOMEM; 1065 goto out_cancel; 1066 } 1067 1068 wrk->func = &wear_leveling_worker; 1069 if (nested) 1070 __schedule_ubi_work(ubi, wrk); 1071 else 1072 schedule_ubi_work(ubi, wrk); 1073 return err; 1074 1075 out_cancel: 1076 spin_lock(&ubi->wl_lock); 1077 ubi->wl_scheduled = 0; 1078 out_unlock: 1079 spin_unlock(&ubi->wl_lock); 1080 return err; 1081 } 1082 1083 /** 1084 * __erase_worker - physical eraseblock erase worker function. 1085 * @ubi: UBI device description object 1086 * @wl_wrk: the work object 1087 * 1088 * This function erases a physical eraseblock and perform torture testing if 1089 * needed. It also takes care about marking the physical eraseblock bad if 1090 * needed. Returns zero in case of success and a negative error code in case of 1091 * failure. 1092 */ 1093 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1094 { 1095 struct ubi_wl_entry *e = wl_wrk->e; 1096 int pnum = e->pnum; 1097 int vol_id = wl_wrk->vol_id; 1098 int lnum = wl_wrk->lnum; 1099 int err, available_consumed = 0; 1100 1101 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1102 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1103 1104 err = sync_erase(ubi, e, wl_wrk->torture); 1105 if (!err) { 1106 spin_lock(&ubi->wl_lock); 1107 1108 if (!ubi->fm_disabled && !ubi->fm_anchor && 1109 e->pnum < UBI_FM_MAX_START) { 1110 /* 1111 * Abort anchor production, if needed it will be 1112 * enabled again in the wear leveling started below. 1113 */ 1114 ubi->fm_anchor = e; 1115 ubi->fm_do_produce_anchor = 0; 1116 } else { 1117 wl_tree_add(e, &ubi->free); 1118 ubi->free_count++; 1119 } 1120 1121 spin_unlock(&ubi->wl_lock); 1122 1123 /* 1124 * One more erase operation has happened, take care about 1125 * protected physical eraseblocks. 1126 */ 1127 serve_prot_queue(ubi); 1128 1129 /* And take care about wear-leveling */ 1130 err = ensure_wear_leveling(ubi, 1); 1131 return err; 1132 } 1133 1134 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1135 1136 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1137 err == -EBUSY) { 1138 int err1; 1139 1140 /* Re-schedule the LEB for erasure */ 1141 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true); 1142 if (err1) { 1143 spin_lock(&ubi->wl_lock); 1144 wl_entry_destroy(ubi, e); 1145 spin_unlock(&ubi->wl_lock); 1146 err = err1; 1147 goto out_ro; 1148 } 1149 return err; 1150 } 1151 1152 spin_lock(&ubi->wl_lock); 1153 wl_entry_destroy(ubi, e); 1154 spin_unlock(&ubi->wl_lock); 1155 if (err != -EIO) 1156 /* 1157 * If this is not %-EIO, we have no idea what to do. Scheduling 1158 * this physical eraseblock for erasure again would cause 1159 * errors again and again. Well, lets switch to R/O mode. 1160 */ 1161 goto out_ro; 1162 1163 /* It is %-EIO, the PEB went bad */ 1164 1165 if (!ubi->bad_allowed) { 1166 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1167 goto out_ro; 1168 } 1169 1170 spin_lock(&ubi->volumes_lock); 1171 if (ubi->beb_rsvd_pebs == 0) { 1172 if (ubi->avail_pebs == 0) { 1173 spin_unlock(&ubi->volumes_lock); 1174 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1175 goto out_ro; 1176 } 1177 ubi->avail_pebs -= 1; 1178 available_consumed = 1; 1179 } 1180 spin_unlock(&ubi->volumes_lock); 1181 1182 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1183 err = ubi_io_mark_bad(ubi, pnum); 1184 if (err) 1185 goto out_ro; 1186 1187 spin_lock(&ubi->volumes_lock); 1188 if (ubi->beb_rsvd_pebs > 0) { 1189 if (available_consumed) { 1190 /* 1191 * The amount of reserved PEBs increased since we last 1192 * checked. 1193 */ 1194 ubi->avail_pebs += 1; 1195 available_consumed = 0; 1196 } 1197 ubi->beb_rsvd_pebs -= 1; 1198 } 1199 ubi->bad_peb_count += 1; 1200 ubi->good_peb_count -= 1; 1201 ubi_calculate_reserved(ubi); 1202 if (available_consumed) 1203 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1204 else if (ubi->beb_rsvd_pebs) 1205 ubi_msg(ubi, "%d PEBs left in the reserve", 1206 ubi->beb_rsvd_pebs); 1207 else 1208 ubi_warn(ubi, "last PEB from the reserve was used"); 1209 spin_unlock(&ubi->volumes_lock); 1210 1211 return err; 1212 1213 out_ro: 1214 if (available_consumed) { 1215 spin_lock(&ubi->volumes_lock); 1216 ubi->avail_pebs += 1; 1217 spin_unlock(&ubi->volumes_lock); 1218 } 1219 ubi_ro_mode(ubi); 1220 return err; 1221 } 1222 1223 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1224 int shutdown) 1225 { 1226 int ret; 1227 1228 if (shutdown) { 1229 struct ubi_wl_entry *e = wl_wrk->e; 1230 1231 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1232 kfree(wl_wrk); 1233 wl_entry_destroy(ubi, e); 1234 return 0; 1235 } 1236 1237 ret = __erase_worker(ubi, wl_wrk); 1238 kfree(wl_wrk); 1239 return ret; 1240 } 1241 1242 /** 1243 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1244 * @ubi: UBI device description object 1245 * @vol_id: the volume ID that last used this PEB 1246 * @lnum: the last used logical eraseblock number for the PEB 1247 * @pnum: physical eraseblock to return 1248 * @torture: if this physical eraseblock has to be tortured 1249 * 1250 * This function is called to return physical eraseblock @pnum to the pool of 1251 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1252 * occurred to this @pnum and it has to be tested. This function returns zero 1253 * in case of success, and a negative error code in case of failure. 1254 */ 1255 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1256 int pnum, int torture) 1257 { 1258 int err; 1259 struct ubi_wl_entry *e; 1260 1261 dbg_wl("PEB %d", pnum); 1262 ubi_assert(pnum >= 0); 1263 ubi_assert(pnum < ubi->peb_count); 1264 1265 down_read(&ubi->fm_protect); 1266 1267 retry: 1268 spin_lock(&ubi->wl_lock); 1269 e = ubi->lookuptbl[pnum]; 1270 if (!e) { 1271 /* 1272 * This wl entry has been removed for some errors by other 1273 * process (eg. wear leveling worker), corresponding process 1274 * (except __erase_worker, which cannot concurrent with 1275 * ubi_wl_put_peb) will set ubi ro_mode at the same time, 1276 * just ignore this wl entry. 1277 */ 1278 spin_unlock(&ubi->wl_lock); 1279 up_read(&ubi->fm_protect); 1280 return 0; 1281 } 1282 if (e == ubi->move_from) { 1283 /* 1284 * User is putting the physical eraseblock which was selected to 1285 * be moved. It will be scheduled for erasure in the 1286 * wear-leveling worker. 1287 */ 1288 dbg_wl("PEB %d is being moved, wait", pnum); 1289 spin_unlock(&ubi->wl_lock); 1290 1291 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1292 mutex_lock(&ubi->move_mutex); 1293 mutex_unlock(&ubi->move_mutex); 1294 goto retry; 1295 } else if (e == ubi->move_to) { 1296 /* 1297 * User is putting the physical eraseblock which was selected 1298 * as the target the data is moved to. It may happen if the EBA 1299 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1300 * but the WL sub-system has not put the PEB to the "used" tree 1301 * yet, but it is about to do this. So we just set a flag which 1302 * will tell the WL worker that the PEB is not needed anymore 1303 * and should be scheduled for erasure. 1304 */ 1305 dbg_wl("PEB %d is the target of data moving", pnum); 1306 ubi_assert(!ubi->move_to_put); 1307 ubi->move_to_put = 1; 1308 spin_unlock(&ubi->wl_lock); 1309 up_read(&ubi->fm_protect); 1310 return 0; 1311 } else { 1312 if (in_wl_tree(e, &ubi->used)) { 1313 self_check_in_wl_tree(ubi, e, &ubi->used); 1314 rb_erase(&e->u.rb, &ubi->used); 1315 } else if (in_wl_tree(e, &ubi->scrub)) { 1316 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1317 rb_erase(&e->u.rb, &ubi->scrub); 1318 } else if (in_wl_tree(e, &ubi->erroneous)) { 1319 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1320 rb_erase(&e->u.rb, &ubi->erroneous); 1321 ubi->erroneous_peb_count -= 1; 1322 ubi_assert(ubi->erroneous_peb_count >= 0); 1323 /* Erroneous PEBs should be tortured */ 1324 torture = 1; 1325 } else { 1326 err = prot_queue_del(ubi, e->pnum); 1327 if (err) { 1328 ubi_err(ubi, "PEB %d not found", pnum); 1329 ubi_ro_mode(ubi); 1330 spin_unlock(&ubi->wl_lock); 1331 up_read(&ubi->fm_protect); 1332 return err; 1333 } 1334 } 1335 } 1336 spin_unlock(&ubi->wl_lock); 1337 1338 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1339 if (err) { 1340 spin_lock(&ubi->wl_lock); 1341 wl_tree_add(e, &ubi->used); 1342 spin_unlock(&ubi->wl_lock); 1343 } 1344 1345 up_read(&ubi->fm_protect); 1346 return err; 1347 } 1348 1349 /** 1350 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1351 * @ubi: UBI device description object 1352 * @pnum: the physical eraseblock to schedule 1353 * 1354 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1355 * needs scrubbing. This function schedules a physical eraseblock for 1356 * scrubbing which is done in background. This function returns zero in case of 1357 * success and a negative error code in case of failure. 1358 */ 1359 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1360 { 1361 struct ubi_wl_entry *e; 1362 1363 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1364 1365 retry: 1366 spin_lock(&ubi->wl_lock); 1367 e = ubi->lookuptbl[pnum]; 1368 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1369 in_wl_tree(e, &ubi->erroneous)) { 1370 spin_unlock(&ubi->wl_lock); 1371 return 0; 1372 } 1373 1374 if (e == ubi->move_to) { 1375 /* 1376 * This physical eraseblock was used to move data to. The data 1377 * was moved but the PEB was not yet inserted to the proper 1378 * tree. We should just wait a little and let the WL worker 1379 * proceed. 1380 */ 1381 spin_unlock(&ubi->wl_lock); 1382 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1383 yield(); 1384 goto retry; 1385 } 1386 1387 if (in_wl_tree(e, &ubi->used)) { 1388 self_check_in_wl_tree(ubi, e, &ubi->used); 1389 rb_erase(&e->u.rb, &ubi->used); 1390 } else { 1391 int err; 1392 1393 err = prot_queue_del(ubi, e->pnum); 1394 if (err) { 1395 ubi_err(ubi, "PEB %d not found", pnum); 1396 ubi_ro_mode(ubi); 1397 spin_unlock(&ubi->wl_lock); 1398 return err; 1399 } 1400 } 1401 1402 wl_tree_add(e, &ubi->scrub); 1403 spin_unlock(&ubi->wl_lock); 1404 1405 /* 1406 * Technically scrubbing is the same as wear-leveling, so it is done 1407 * by the WL worker. 1408 */ 1409 return ensure_wear_leveling(ubi, 0); 1410 } 1411 1412 /** 1413 * ubi_wl_flush - flush all pending works. 1414 * @ubi: UBI device description object 1415 * @vol_id: the volume id to flush for 1416 * @lnum: the logical eraseblock number to flush for 1417 * 1418 * This function executes all pending works for a particular volume id / 1419 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1420 * acts as a wildcard for all of the corresponding volume numbers or logical 1421 * eraseblock numbers. It returns zero in case of success and a negative error 1422 * code in case of failure. 1423 */ 1424 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1425 { 1426 int err = 0; 1427 int found = 1; 1428 1429 /* 1430 * Erase while the pending works queue is not empty, but not more than 1431 * the number of currently pending works. 1432 */ 1433 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1434 vol_id, lnum, ubi->works_count); 1435 1436 while (found) { 1437 struct ubi_work *wrk, *tmp; 1438 found = 0; 1439 1440 down_read(&ubi->work_sem); 1441 spin_lock(&ubi->wl_lock); 1442 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1443 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1444 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1445 list_del(&wrk->list); 1446 ubi->works_count -= 1; 1447 ubi_assert(ubi->works_count >= 0); 1448 spin_unlock(&ubi->wl_lock); 1449 1450 err = wrk->func(ubi, wrk, 0); 1451 if (err) { 1452 up_read(&ubi->work_sem); 1453 return err; 1454 } 1455 1456 spin_lock(&ubi->wl_lock); 1457 found = 1; 1458 break; 1459 } 1460 } 1461 spin_unlock(&ubi->wl_lock); 1462 up_read(&ubi->work_sem); 1463 } 1464 1465 /* 1466 * Make sure all the works which have been done in parallel are 1467 * finished. 1468 */ 1469 down_write(&ubi->work_sem); 1470 up_write(&ubi->work_sem); 1471 1472 return err; 1473 } 1474 1475 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1476 { 1477 if (in_wl_tree(e, &ubi->scrub)) 1478 return false; 1479 else if (in_wl_tree(e, &ubi->erroneous)) 1480 return false; 1481 else if (ubi->move_from == e) 1482 return false; 1483 else if (ubi->move_to == e) 1484 return false; 1485 1486 return true; 1487 } 1488 1489 /** 1490 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1491 * @ubi: UBI device description object 1492 * @pnum: the physical eraseblock to schedule 1493 * @force: don't read the block, assume bitflips happened and take action. 1494 * 1495 * This function reads the given eraseblock and checks if bitflips occured. 1496 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1497 * If scrubbing is forced with @force, the eraseblock is not read, 1498 * but scheduled for scrubbing right away. 1499 * 1500 * Returns: 1501 * %EINVAL, PEB is out of range 1502 * %ENOENT, PEB is no longer used by UBI 1503 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1504 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1505 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1506 * %0, no bit flips detected 1507 */ 1508 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1509 { 1510 int err = 0; 1511 struct ubi_wl_entry *e; 1512 1513 if (pnum < 0 || pnum >= ubi->peb_count) { 1514 err = -EINVAL; 1515 goto out; 1516 } 1517 1518 /* 1519 * Pause all parallel work, otherwise it can happen that the 1520 * erase worker frees a wl entry under us. 1521 */ 1522 down_write(&ubi->work_sem); 1523 1524 /* 1525 * Make sure that the wl entry does not change state while 1526 * inspecting it. 1527 */ 1528 spin_lock(&ubi->wl_lock); 1529 e = ubi->lookuptbl[pnum]; 1530 if (!e) { 1531 spin_unlock(&ubi->wl_lock); 1532 err = -ENOENT; 1533 goto out_resume; 1534 } 1535 1536 /* 1537 * Does it make sense to check this PEB? 1538 */ 1539 if (!scrub_possible(ubi, e)) { 1540 spin_unlock(&ubi->wl_lock); 1541 err = -EBUSY; 1542 goto out_resume; 1543 } 1544 spin_unlock(&ubi->wl_lock); 1545 1546 if (!force) { 1547 mutex_lock(&ubi->buf_mutex); 1548 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1549 mutex_unlock(&ubi->buf_mutex); 1550 } 1551 1552 if (force || err == UBI_IO_BITFLIPS) { 1553 /* 1554 * Okay, bit flip happened, let's figure out what we can do. 1555 */ 1556 spin_lock(&ubi->wl_lock); 1557 1558 /* 1559 * Recheck. We released wl_lock, UBI might have killed the 1560 * wl entry under us. 1561 */ 1562 e = ubi->lookuptbl[pnum]; 1563 if (!e) { 1564 spin_unlock(&ubi->wl_lock); 1565 err = -ENOENT; 1566 goto out_resume; 1567 } 1568 1569 /* 1570 * Need to re-check state 1571 */ 1572 if (!scrub_possible(ubi, e)) { 1573 spin_unlock(&ubi->wl_lock); 1574 err = -EBUSY; 1575 goto out_resume; 1576 } 1577 1578 if (in_pq(ubi, e)) { 1579 prot_queue_del(ubi, e->pnum); 1580 wl_tree_add(e, &ubi->scrub); 1581 spin_unlock(&ubi->wl_lock); 1582 1583 err = ensure_wear_leveling(ubi, 1); 1584 } else if (in_wl_tree(e, &ubi->used)) { 1585 rb_erase(&e->u.rb, &ubi->used); 1586 wl_tree_add(e, &ubi->scrub); 1587 spin_unlock(&ubi->wl_lock); 1588 1589 err = ensure_wear_leveling(ubi, 1); 1590 } else if (in_wl_tree(e, &ubi->free)) { 1591 rb_erase(&e->u.rb, &ubi->free); 1592 ubi->free_count--; 1593 spin_unlock(&ubi->wl_lock); 1594 1595 /* 1596 * This PEB is empty we can schedule it for 1597 * erasure right away. No wear leveling needed. 1598 */ 1599 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1600 force ? 0 : 1, true); 1601 } else { 1602 spin_unlock(&ubi->wl_lock); 1603 err = -EAGAIN; 1604 } 1605 1606 if (!err && !force) 1607 err = -EUCLEAN; 1608 } else { 1609 err = 0; 1610 } 1611 1612 out_resume: 1613 up_write(&ubi->work_sem); 1614 out: 1615 1616 return err; 1617 } 1618 1619 /** 1620 * tree_destroy - destroy an RB-tree. 1621 * @ubi: UBI device description object 1622 * @root: the root of the tree to destroy 1623 */ 1624 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1625 { 1626 struct rb_node *rb; 1627 struct ubi_wl_entry *e; 1628 1629 rb = root->rb_node; 1630 while (rb) { 1631 if (rb->rb_left) 1632 rb = rb->rb_left; 1633 else if (rb->rb_right) 1634 rb = rb->rb_right; 1635 else { 1636 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1637 1638 rb = rb_parent(rb); 1639 if (rb) { 1640 if (rb->rb_left == &e->u.rb) 1641 rb->rb_left = NULL; 1642 else 1643 rb->rb_right = NULL; 1644 } 1645 1646 wl_entry_destroy(ubi, e); 1647 } 1648 } 1649 } 1650 1651 /** 1652 * ubi_thread - UBI background thread. 1653 * @u: the UBI device description object pointer 1654 */ 1655 int ubi_thread(void *u) 1656 { 1657 int failures = 0; 1658 struct ubi_device *ubi = u; 1659 1660 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1661 ubi->bgt_name, task_pid_nr(current)); 1662 1663 set_freezable(); 1664 for (;;) { 1665 int err; 1666 1667 if (kthread_should_stop()) 1668 break; 1669 1670 if (try_to_freeze()) 1671 continue; 1672 1673 spin_lock(&ubi->wl_lock); 1674 if (list_empty(&ubi->works) || ubi->ro_mode || 1675 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1676 set_current_state(TASK_INTERRUPTIBLE); 1677 spin_unlock(&ubi->wl_lock); 1678 1679 /* 1680 * Check kthread_should_stop() after we set the task 1681 * state to guarantee that we either see the stop bit 1682 * and exit or the task state is reset to runnable such 1683 * that it's not scheduled out indefinitely and detects 1684 * the stop bit at kthread_should_stop(). 1685 */ 1686 if (kthread_should_stop()) { 1687 set_current_state(TASK_RUNNING); 1688 break; 1689 } 1690 1691 schedule(); 1692 continue; 1693 } 1694 spin_unlock(&ubi->wl_lock); 1695 1696 err = do_work(ubi); 1697 if (err) { 1698 ubi_err(ubi, "%s: work failed with error code %d", 1699 ubi->bgt_name, err); 1700 if (failures++ > WL_MAX_FAILURES) { 1701 /* 1702 * Too many failures, disable the thread and 1703 * switch to read-only mode. 1704 */ 1705 ubi_msg(ubi, "%s: %d consecutive failures", 1706 ubi->bgt_name, WL_MAX_FAILURES); 1707 ubi_ro_mode(ubi); 1708 ubi->thread_enabled = 0; 1709 continue; 1710 } 1711 } else 1712 failures = 0; 1713 1714 cond_resched(); 1715 } 1716 1717 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1718 ubi->thread_enabled = 0; 1719 return 0; 1720 } 1721 1722 /** 1723 * shutdown_work - shutdown all pending works. 1724 * @ubi: UBI device description object 1725 */ 1726 static void shutdown_work(struct ubi_device *ubi) 1727 { 1728 while (!list_empty(&ubi->works)) { 1729 struct ubi_work *wrk; 1730 1731 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1732 list_del(&wrk->list); 1733 wrk->func(ubi, wrk, 1); 1734 ubi->works_count -= 1; 1735 ubi_assert(ubi->works_count >= 0); 1736 } 1737 } 1738 1739 /** 1740 * erase_aeb - erase a PEB given in UBI attach info PEB 1741 * @ubi: UBI device description object 1742 * @aeb: UBI attach info PEB 1743 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1744 */ 1745 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1746 { 1747 struct ubi_wl_entry *e; 1748 int err; 1749 1750 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1751 if (!e) 1752 return -ENOMEM; 1753 1754 e->pnum = aeb->pnum; 1755 e->ec = aeb->ec; 1756 ubi->lookuptbl[e->pnum] = e; 1757 1758 if (sync) { 1759 err = sync_erase(ubi, e, false); 1760 if (err) 1761 goto out_free; 1762 1763 wl_tree_add(e, &ubi->free); 1764 ubi->free_count++; 1765 } else { 1766 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1767 if (err) 1768 goto out_free; 1769 } 1770 1771 return 0; 1772 1773 out_free: 1774 wl_entry_destroy(ubi, e); 1775 1776 return err; 1777 } 1778 1779 /** 1780 * ubi_wl_init - initialize the WL sub-system using attaching information. 1781 * @ubi: UBI device description object 1782 * @ai: attaching information 1783 * 1784 * This function returns zero in case of success, and a negative error code in 1785 * case of failure. 1786 */ 1787 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1788 { 1789 int err, i, reserved_pebs, found_pebs = 0; 1790 struct rb_node *rb1, *rb2; 1791 struct ubi_ainf_volume *av; 1792 struct ubi_ainf_peb *aeb, *tmp; 1793 struct ubi_wl_entry *e; 1794 1795 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1796 spin_lock_init(&ubi->wl_lock); 1797 mutex_init(&ubi->move_mutex); 1798 init_rwsem(&ubi->work_sem); 1799 ubi->max_ec = ai->max_ec; 1800 INIT_LIST_HEAD(&ubi->works); 1801 1802 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1803 1804 err = -ENOMEM; 1805 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1806 if (!ubi->lookuptbl) 1807 return err; 1808 1809 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1810 INIT_LIST_HEAD(&ubi->pq[i]); 1811 ubi->pq_head = 0; 1812 1813 ubi->free_count = 0; 1814 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1815 cond_resched(); 1816 1817 err = erase_aeb(ubi, aeb, false); 1818 if (err) 1819 goto out_free; 1820 1821 found_pebs++; 1822 } 1823 1824 list_for_each_entry(aeb, &ai->free, u.list) { 1825 cond_resched(); 1826 1827 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1828 if (!e) { 1829 err = -ENOMEM; 1830 goto out_free; 1831 } 1832 1833 e->pnum = aeb->pnum; 1834 e->ec = aeb->ec; 1835 ubi_assert(e->ec >= 0); 1836 1837 wl_tree_add(e, &ubi->free); 1838 ubi->free_count++; 1839 1840 ubi->lookuptbl[e->pnum] = e; 1841 1842 found_pebs++; 1843 } 1844 1845 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1846 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1847 cond_resched(); 1848 1849 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1850 if (!e) { 1851 err = -ENOMEM; 1852 goto out_free; 1853 } 1854 1855 e->pnum = aeb->pnum; 1856 e->ec = aeb->ec; 1857 ubi->lookuptbl[e->pnum] = e; 1858 1859 if (!aeb->scrub) { 1860 dbg_wl("add PEB %d EC %d to the used tree", 1861 e->pnum, e->ec); 1862 wl_tree_add(e, &ubi->used); 1863 } else { 1864 dbg_wl("add PEB %d EC %d to the scrub tree", 1865 e->pnum, e->ec); 1866 wl_tree_add(e, &ubi->scrub); 1867 } 1868 1869 found_pebs++; 1870 } 1871 } 1872 1873 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1874 cond_resched(); 1875 1876 e = ubi_find_fm_block(ubi, aeb->pnum); 1877 1878 if (e) { 1879 ubi_assert(!ubi->lookuptbl[e->pnum]); 1880 ubi->lookuptbl[e->pnum] = e; 1881 } else { 1882 bool sync = false; 1883 1884 /* 1885 * Usually old Fastmap PEBs are scheduled for erasure 1886 * and we don't have to care about them but if we face 1887 * an power cut before scheduling them we need to 1888 * take care of them here. 1889 */ 1890 if (ubi->lookuptbl[aeb->pnum]) 1891 continue; 1892 1893 /* 1894 * The fastmap update code might not find a free PEB for 1895 * writing the fastmap anchor to and then reuses the 1896 * current fastmap anchor PEB. When this PEB gets erased 1897 * and a power cut happens before it is written again we 1898 * must make sure that the fastmap attach code doesn't 1899 * find any outdated fastmap anchors, hence we erase the 1900 * outdated fastmap anchor PEBs synchronously here. 1901 */ 1902 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1903 sync = true; 1904 1905 err = erase_aeb(ubi, aeb, sync); 1906 if (err) 1907 goto out_free; 1908 } 1909 1910 found_pebs++; 1911 } 1912 1913 dbg_wl("found %i PEBs", found_pebs); 1914 1915 ubi_assert(ubi->good_peb_count == found_pebs); 1916 1917 reserved_pebs = WL_RESERVED_PEBS; 1918 ubi_fastmap_init(ubi, &reserved_pebs); 1919 1920 if (ubi->avail_pebs < reserved_pebs) { 1921 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1922 ubi->avail_pebs, reserved_pebs); 1923 if (ubi->corr_peb_count) 1924 ubi_err(ubi, "%d PEBs are corrupted and not used", 1925 ubi->corr_peb_count); 1926 err = -ENOSPC; 1927 goto out_free; 1928 } 1929 ubi->avail_pebs -= reserved_pebs; 1930 ubi->rsvd_pebs += reserved_pebs; 1931 1932 /* Schedule wear-leveling if needed */ 1933 err = ensure_wear_leveling(ubi, 0); 1934 if (err) 1935 goto out_free; 1936 1937 #ifdef CONFIG_MTD_UBI_FASTMAP 1938 if (!ubi->ro_mode && !ubi->fm_disabled) 1939 ubi_ensure_anchor_pebs(ubi); 1940 #endif 1941 return 0; 1942 1943 out_free: 1944 shutdown_work(ubi); 1945 tree_destroy(ubi, &ubi->used); 1946 tree_destroy(ubi, &ubi->free); 1947 tree_destroy(ubi, &ubi->scrub); 1948 kfree(ubi->lookuptbl); 1949 return err; 1950 } 1951 1952 /** 1953 * protection_queue_destroy - destroy the protection queue. 1954 * @ubi: UBI device description object 1955 */ 1956 static void protection_queue_destroy(struct ubi_device *ubi) 1957 { 1958 int i; 1959 struct ubi_wl_entry *e, *tmp; 1960 1961 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1962 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1963 list_del(&e->u.list); 1964 wl_entry_destroy(ubi, e); 1965 } 1966 } 1967 } 1968 1969 /** 1970 * ubi_wl_close - close the wear-leveling sub-system. 1971 * @ubi: UBI device description object 1972 */ 1973 void ubi_wl_close(struct ubi_device *ubi) 1974 { 1975 dbg_wl("close the WL sub-system"); 1976 ubi_fastmap_close(ubi); 1977 shutdown_work(ubi); 1978 protection_queue_destroy(ubi); 1979 tree_destroy(ubi, &ubi->used); 1980 tree_destroy(ubi, &ubi->erroneous); 1981 tree_destroy(ubi, &ubi->free); 1982 tree_destroy(ubi, &ubi->scrub); 1983 kfree(ubi->lookuptbl); 1984 } 1985 1986 /** 1987 * self_check_ec - make sure that the erase counter of a PEB is correct. 1988 * @ubi: UBI device description object 1989 * @pnum: the physical eraseblock number to check 1990 * @ec: the erase counter to check 1991 * 1992 * This function returns zero if the erase counter of physical eraseblock @pnum 1993 * is equivalent to @ec, and a negative error code if not or if an error 1994 * occurred. 1995 */ 1996 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1997 { 1998 int err; 1999 long long read_ec; 2000 struct ubi_ec_hdr *ec_hdr; 2001 2002 if (!ubi_dbg_chk_gen(ubi)) 2003 return 0; 2004 2005 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2006 if (!ec_hdr) 2007 return -ENOMEM; 2008 2009 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2010 if (err && err != UBI_IO_BITFLIPS) { 2011 /* The header does not have to exist */ 2012 err = 0; 2013 goto out_free; 2014 } 2015 2016 read_ec = be64_to_cpu(ec_hdr->ec); 2017 if (ec != read_ec && read_ec - ec > 1) { 2018 ubi_err(ubi, "self-check failed for PEB %d", pnum); 2019 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 2020 dump_stack(); 2021 err = 1; 2022 } else 2023 err = 0; 2024 2025 out_free: 2026 kfree(ec_hdr); 2027 return err; 2028 } 2029 2030 /** 2031 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2032 * @ubi: UBI device description object 2033 * @e: the wear-leveling entry to check 2034 * @root: the root of the tree 2035 * 2036 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2037 * is not. 2038 */ 2039 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2040 struct ubi_wl_entry *e, struct rb_root *root) 2041 { 2042 if (!ubi_dbg_chk_gen(ubi)) 2043 return 0; 2044 2045 if (in_wl_tree(e, root)) 2046 return 0; 2047 2048 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2049 e->pnum, e->ec, root); 2050 dump_stack(); 2051 return -EINVAL; 2052 } 2053 2054 /** 2055 * self_check_in_pq - check if wear-leveling entry is in the protection 2056 * queue. 2057 * @ubi: UBI device description object 2058 * @e: the wear-leveling entry to check 2059 * 2060 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2061 */ 2062 static int self_check_in_pq(const struct ubi_device *ubi, 2063 struct ubi_wl_entry *e) 2064 { 2065 if (!ubi_dbg_chk_gen(ubi)) 2066 return 0; 2067 2068 if (in_pq(ubi, e)) 2069 return 0; 2070 2071 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2072 e->pnum, e->ec); 2073 dump_stack(); 2074 return -EINVAL; 2075 } 2076 #ifndef CONFIG_MTD_UBI_FASTMAP 2077 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2078 { 2079 struct ubi_wl_entry *e; 2080 2081 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2082 self_check_in_wl_tree(ubi, e, &ubi->free); 2083 ubi->free_count--; 2084 ubi_assert(ubi->free_count >= 0); 2085 rb_erase(&e->u.rb, &ubi->free); 2086 2087 return e; 2088 } 2089 2090 /** 2091 * produce_free_peb - produce a free physical eraseblock. 2092 * @ubi: UBI device description object 2093 * 2094 * This function tries to make a free PEB by means of synchronous execution of 2095 * pending works. This may be needed if, for example the background thread is 2096 * disabled. Returns zero in case of success and a negative error code in case 2097 * of failure. 2098 */ 2099 static int produce_free_peb(struct ubi_device *ubi) 2100 { 2101 int err; 2102 2103 while (!ubi->free.rb_node && ubi->works_count) { 2104 spin_unlock(&ubi->wl_lock); 2105 2106 dbg_wl("do one work synchronously"); 2107 err = do_work(ubi); 2108 2109 spin_lock(&ubi->wl_lock); 2110 if (err) 2111 return err; 2112 } 2113 2114 return 0; 2115 } 2116 2117 /** 2118 * ubi_wl_get_peb - get a physical eraseblock. 2119 * @ubi: UBI device description object 2120 * 2121 * This function returns a physical eraseblock in case of success and a 2122 * negative error code in case of failure. 2123 * Returns with ubi->fm_eba_sem held in read mode! 2124 */ 2125 int ubi_wl_get_peb(struct ubi_device *ubi) 2126 { 2127 int err; 2128 struct ubi_wl_entry *e; 2129 2130 retry: 2131 down_read(&ubi->fm_eba_sem); 2132 spin_lock(&ubi->wl_lock); 2133 if (!ubi->free.rb_node) { 2134 if (ubi->works_count == 0) { 2135 ubi_err(ubi, "no free eraseblocks"); 2136 ubi_assert(list_empty(&ubi->works)); 2137 spin_unlock(&ubi->wl_lock); 2138 return -ENOSPC; 2139 } 2140 2141 err = produce_free_peb(ubi); 2142 if (err < 0) { 2143 spin_unlock(&ubi->wl_lock); 2144 return err; 2145 } 2146 spin_unlock(&ubi->wl_lock); 2147 up_read(&ubi->fm_eba_sem); 2148 goto retry; 2149 2150 } 2151 e = wl_get_wle(ubi); 2152 prot_queue_add(ubi, e); 2153 spin_unlock(&ubi->wl_lock); 2154 2155 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2156 ubi->peb_size - ubi->vid_hdr_aloffset); 2157 if (err) { 2158 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2159 return err; 2160 } 2161 2162 return e->pnum; 2163 } 2164 #else 2165 #include "fastmap-wl.c" 2166 #endif 2167