1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 107 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 108 #define WL_RESERVED_PEBS 1 109 110 /* 111 * Maximum difference between two erase counters. If this threshold is 112 * exceeded, the WL sub-system starts moving data from used physical 113 * eraseblocks with low erase counter to free physical eraseblocks with high 114 * erase counter. 115 */ 116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 117 118 /* 119 * When a physical eraseblock is moved, the WL sub-system has to pick the target 120 * physical eraseblock to move to. The simplest way would be just to pick the 121 * one with the highest erase counter. But in certain workloads this could lead 122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 123 * situation when the picked physical eraseblock is constantly erased after the 124 * data is written to it. So, we have a constant which limits the highest erase 125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 126 * does not pick eraseblocks with erase counter greater than the lowest erase 127 * counter plus %WL_FREE_MAX_DIFF. 128 */ 129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 130 131 /* 132 * Maximum number of consecutive background thread failures which is enough to 133 * switch to read-only mode. 134 */ 135 #define WL_MAX_FAILURES 32 136 137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 138 static int self_check_in_wl_tree(const struct ubi_device *ubi, 139 struct ubi_wl_entry *e, struct rb_root *root); 140 static int self_check_in_pq(const struct ubi_device *ubi, 141 struct ubi_wl_entry *e); 142 143 #ifdef CONFIG_MTD_UBI_FASTMAP 144 /** 145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue 146 * @wrk: the work description object 147 */ 148 static void update_fastmap_work_fn(struct work_struct *wrk) 149 { 150 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); 151 ubi_update_fastmap(ubi); 152 } 153 154 /** 155 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. 156 * @ubi: UBI device description object 157 * @pnum: the to be checked PEB 158 */ 159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 160 { 161 int i; 162 163 if (!ubi->fm) 164 return 0; 165 166 for (i = 0; i < ubi->fm->used_blocks; i++) 167 if (ubi->fm->e[i]->pnum == pnum) 168 return 1; 169 170 return 0; 171 } 172 #else 173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 174 { 175 return 0; 176 } 177 #endif 178 179 /** 180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 181 * @e: the wear-leveling entry to add 182 * @root: the root of the tree 183 * 184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 185 * the @ubi->used and @ubi->free RB-trees. 186 */ 187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 188 { 189 struct rb_node **p, *parent = NULL; 190 191 p = &root->rb_node; 192 while (*p) { 193 struct ubi_wl_entry *e1; 194 195 parent = *p; 196 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 197 198 if (e->ec < e1->ec) 199 p = &(*p)->rb_left; 200 else if (e->ec > e1->ec) 201 p = &(*p)->rb_right; 202 else { 203 ubi_assert(e->pnum != e1->pnum); 204 if (e->pnum < e1->pnum) 205 p = &(*p)->rb_left; 206 else 207 p = &(*p)->rb_right; 208 } 209 } 210 211 rb_link_node(&e->u.rb, parent, p); 212 rb_insert_color(&e->u.rb, root); 213 } 214 215 /** 216 * do_work - do one pending work. 217 * @ubi: UBI device description object 218 * 219 * This function returns zero in case of success and a negative error code in 220 * case of failure. 221 */ 222 static int do_work(struct ubi_device *ubi) 223 { 224 int err; 225 struct ubi_work *wrk; 226 227 cond_resched(); 228 229 /* 230 * @ubi->work_sem is used to synchronize with the workers. Workers take 231 * it in read mode, so many of them may be doing works at a time. But 232 * the queue flush code has to be sure the whole queue of works is 233 * done, and it takes the mutex in write mode. 234 */ 235 down_read(&ubi->work_sem); 236 spin_lock(&ubi->wl_lock); 237 if (list_empty(&ubi->works)) { 238 spin_unlock(&ubi->wl_lock); 239 up_read(&ubi->work_sem); 240 return 0; 241 } 242 243 wrk = list_entry(ubi->works.next, struct ubi_work, list); 244 list_del(&wrk->list); 245 ubi->works_count -= 1; 246 ubi_assert(ubi->works_count >= 0); 247 spin_unlock(&ubi->wl_lock); 248 249 /* 250 * Call the worker function. Do not touch the work structure 251 * after this call as it will have been freed or reused by that 252 * time by the worker function. 253 */ 254 err = wrk->func(ubi, wrk, 0); 255 if (err) 256 ubi_err("work failed with error code %d", err); 257 up_read(&ubi->work_sem); 258 259 return err; 260 } 261 262 /** 263 * produce_free_peb - produce a free physical eraseblock. 264 * @ubi: UBI device description object 265 * 266 * This function tries to make a free PEB by means of synchronous execution of 267 * pending works. This may be needed if, for example the background thread is 268 * disabled. Returns zero in case of success and a negative error code in case 269 * of failure. 270 */ 271 static int produce_free_peb(struct ubi_device *ubi) 272 { 273 int err; 274 275 while (!ubi->free.rb_node) { 276 spin_unlock(&ubi->wl_lock); 277 278 dbg_wl("do one work synchronously"); 279 err = do_work(ubi); 280 281 spin_lock(&ubi->wl_lock); 282 if (err) 283 return err; 284 } 285 286 return 0; 287 } 288 289 /** 290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 291 * @e: the wear-leveling entry to check 292 * @root: the root of the tree 293 * 294 * This function returns non-zero if @e is in the @root RB-tree and zero if it 295 * is not. 296 */ 297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 298 { 299 struct rb_node *p; 300 301 p = root->rb_node; 302 while (p) { 303 struct ubi_wl_entry *e1; 304 305 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 306 307 if (e->pnum == e1->pnum) { 308 ubi_assert(e == e1); 309 return 1; 310 } 311 312 if (e->ec < e1->ec) 313 p = p->rb_left; 314 else if (e->ec > e1->ec) 315 p = p->rb_right; 316 else { 317 ubi_assert(e->pnum != e1->pnum); 318 if (e->pnum < e1->pnum) 319 p = p->rb_left; 320 else 321 p = p->rb_right; 322 } 323 } 324 325 return 0; 326 } 327 328 /** 329 * prot_queue_add - add physical eraseblock to the protection queue. 330 * @ubi: UBI device description object 331 * @e: the physical eraseblock to add 332 * 333 * This function adds @e to the tail of the protection queue @ubi->pq, where 334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 336 * be locked. 337 */ 338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 339 { 340 int pq_tail = ubi->pq_head - 1; 341 342 if (pq_tail < 0) 343 pq_tail = UBI_PROT_QUEUE_LEN - 1; 344 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 345 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 346 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 347 } 348 349 /** 350 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 351 * @ubi: UBI device description object 352 * @root: the RB-tree where to look for 353 * @diff: maximum possible difference from the smallest erase counter 354 * 355 * This function looks for a wear leveling entry with erase counter closest to 356 * min + @diff, where min is the smallest erase counter. 357 */ 358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 359 struct rb_root *root, int diff) 360 { 361 struct rb_node *p; 362 struct ubi_wl_entry *e, *prev_e = NULL; 363 int max; 364 365 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 366 max = e->ec + diff; 367 368 p = root->rb_node; 369 while (p) { 370 struct ubi_wl_entry *e1; 371 372 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 373 if (e1->ec >= max) 374 p = p->rb_left; 375 else { 376 p = p->rb_right; 377 prev_e = e; 378 e = e1; 379 } 380 } 381 382 /* If no fastmap has been written and this WL entry can be used 383 * as anchor PEB, hold it back and return the second best WL entry 384 * such that fastmap can use the anchor PEB later. */ 385 if (prev_e && !ubi->fm_disabled && 386 !ubi->fm && e->pnum < UBI_FM_MAX_START) 387 return prev_e; 388 389 return e; 390 } 391 392 /** 393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 394 * @ubi: UBI device description object 395 * @root: the RB-tree where to look for 396 * 397 * This function looks for a wear leveling entry with medium erase counter, 398 * but not greater or equivalent than the lowest erase counter plus 399 * %WL_FREE_MAX_DIFF/2. 400 */ 401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 402 struct rb_root *root) 403 { 404 struct ubi_wl_entry *e, *first, *last; 405 406 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 407 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 408 409 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 410 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 411 412 #ifdef CONFIG_MTD_UBI_FASTMAP 413 /* If no fastmap has been written and this WL entry can be used 414 * as anchor PEB, hold it back and return the second best 415 * WL entry such that fastmap can use the anchor PEB later. */ 416 if (e && !ubi->fm_disabled && !ubi->fm && 417 e->pnum < UBI_FM_MAX_START) 418 e = rb_entry(rb_next(root->rb_node), 419 struct ubi_wl_entry, u.rb); 420 #endif 421 } else 422 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 423 424 return e; 425 } 426 427 #ifdef CONFIG_MTD_UBI_FASTMAP 428 /** 429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. 430 * @root: the RB-tree where to look for 431 */ 432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) 433 { 434 struct rb_node *p; 435 struct ubi_wl_entry *e, *victim = NULL; 436 int max_ec = UBI_MAX_ERASECOUNTER; 437 438 ubi_rb_for_each_entry(p, e, root, u.rb) { 439 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { 440 victim = e; 441 max_ec = e->ec; 442 } 443 } 444 445 return victim; 446 } 447 448 static int anchor_pebs_avalible(struct rb_root *root) 449 { 450 struct rb_node *p; 451 struct ubi_wl_entry *e; 452 453 ubi_rb_for_each_entry(p, e, root, u.rb) 454 if (e->pnum < UBI_FM_MAX_START) 455 return 1; 456 457 return 0; 458 } 459 460 /** 461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. 462 * @ubi: UBI device description object 463 * @anchor: This PEB will be used as anchor PEB by fastmap 464 * 465 * The function returns a physical erase block with a given maximal number 466 * and removes it from the wl subsystem. 467 * Must be called with wl_lock held! 468 */ 469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) 470 { 471 struct ubi_wl_entry *e = NULL; 472 473 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 474 goto out; 475 476 if (anchor) 477 e = find_anchor_wl_entry(&ubi->free); 478 else 479 e = find_mean_wl_entry(ubi, &ubi->free); 480 481 if (!e) 482 goto out; 483 484 self_check_in_wl_tree(ubi, e, &ubi->free); 485 486 /* remove it from the free list, 487 * the wl subsystem does no longer know this erase block */ 488 rb_erase(&e->u.rb, &ubi->free); 489 ubi->free_count--; 490 out: 491 return e; 492 } 493 #endif 494 495 /** 496 * __wl_get_peb - get a physical eraseblock. 497 * @ubi: UBI device description object 498 * 499 * This function returns a physical eraseblock in case of success and a 500 * negative error code in case of failure. 501 */ 502 static int __wl_get_peb(struct ubi_device *ubi) 503 { 504 int err; 505 struct ubi_wl_entry *e; 506 507 retry: 508 if (!ubi->free.rb_node) { 509 if (ubi->works_count == 0) { 510 ubi_err("no free eraseblocks"); 511 ubi_assert(list_empty(&ubi->works)); 512 return -ENOSPC; 513 } 514 515 err = produce_free_peb(ubi); 516 if (err < 0) 517 return err; 518 goto retry; 519 } 520 521 e = find_mean_wl_entry(ubi, &ubi->free); 522 if (!e) { 523 ubi_err("no free eraseblocks"); 524 return -ENOSPC; 525 } 526 527 self_check_in_wl_tree(ubi, e, &ubi->free); 528 529 /* 530 * Move the physical eraseblock to the protection queue where it will 531 * be protected from being moved for some time. 532 */ 533 rb_erase(&e->u.rb, &ubi->free); 534 ubi->free_count--; 535 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 536 #ifndef CONFIG_MTD_UBI_FASTMAP 537 /* We have to enqueue e only if fastmap is disabled, 538 * is fastmap enabled prot_queue_add() will be called by 539 * ubi_wl_get_peb() after removing e from the pool. */ 540 prot_queue_add(ubi, e); 541 #endif 542 return e->pnum; 543 } 544 545 #ifdef CONFIG_MTD_UBI_FASTMAP 546 /** 547 * return_unused_pool_pebs - returns unused PEB to the free tree. 548 * @ubi: UBI device description object 549 * @pool: fastmap pool description object 550 */ 551 static void return_unused_pool_pebs(struct ubi_device *ubi, 552 struct ubi_fm_pool *pool) 553 { 554 int i; 555 struct ubi_wl_entry *e; 556 557 for (i = pool->used; i < pool->size; i++) { 558 e = ubi->lookuptbl[pool->pebs[i]]; 559 wl_tree_add(e, &ubi->free); 560 ubi->free_count++; 561 } 562 } 563 564 /** 565 * refill_wl_pool - refills all the fastmap pool used by the 566 * WL sub-system. 567 * @ubi: UBI device description object 568 */ 569 static void refill_wl_pool(struct ubi_device *ubi) 570 { 571 struct ubi_wl_entry *e; 572 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 573 574 return_unused_pool_pebs(ubi, pool); 575 576 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 577 if (!ubi->free.rb_node || 578 (ubi->free_count - ubi->beb_rsvd_pebs < 5)) 579 break; 580 581 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 582 self_check_in_wl_tree(ubi, e, &ubi->free); 583 rb_erase(&e->u.rb, &ubi->free); 584 ubi->free_count--; 585 586 pool->pebs[pool->size] = e->pnum; 587 } 588 pool->used = 0; 589 } 590 591 /** 592 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. 593 * @ubi: UBI device description object 594 */ 595 static void refill_wl_user_pool(struct ubi_device *ubi) 596 { 597 struct ubi_fm_pool *pool = &ubi->fm_pool; 598 599 return_unused_pool_pebs(ubi, pool); 600 601 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 602 pool->pebs[pool->size] = __wl_get_peb(ubi); 603 if (pool->pebs[pool->size] < 0) 604 break; 605 } 606 pool->used = 0; 607 } 608 609 /** 610 * ubi_refill_pools - refills all fastmap PEB pools. 611 * @ubi: UBI device description object 612 */ 613 void ubi_refill_pools(struct ubi_device *ubi) 614 { 615 spin_lock(&ubi->wl_lock); 616 refill_wl_pool(ubi); 617 refill_wl_user_pool(ubi); 618 spin_unlock(&ubi->wl_lock); 619 } 620 621 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of 622 * the fastmap pool. 623 */ 624 int ubi_wl_get_peb(struct ubi_device *ubi) 625 { 626 int ret; 627 struct ubi_fm_pool *pool = &ubi->fm_pool; 628 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; 629 630 if (!pool->size || !wl_pool->size || pool->used == pool->size || 631 wl_pool->used == wl_pool->size) 632 ubi_update_fastmap(ubi); 633 634 /* we got not a single free PEB */ 635 if (!pool->size) 636 ret = -ENOSPC; 637 else { 638 spin_lock(&ubi->wl_lock); 639 ret = pool->pebs[pool->used++]; 640 prot_queue_add(ubi, ubi->lookuptbl[ret]); 641 spin_unlock(&ubi->wl_lock); 642 } 643 644 return ret; 645 } 646 647 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. 648 * 649 * @ubi: UBI device description object 650 */ 651 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 652 { 653 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 654 int pnum; 655 656 if (pool->used == pool->size || !pool->size) { 657 /* We cannot update the fastmap here because this 658 * function is called in atomic context. 659 * Let's fail here and refill/update it as soon as possible. */ 660 schedule_work(&ubi->fm_work); 661 return NULL; 662 } else { 663 pnum = pool->pebs[pool->used++]; 664 return ubi->lookuptbl[pnum]; 665 } 666 } 667 #else 668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 669 { 670 struct ubi_wl_entry *e; 671 672 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 673 self_check_in_wl_tree(ubi, e, &ubi->free); 674 rb_erase(&e->u.rb, &ubi->free); 675 676 return e; 677 } 678 679 int ubi_wl_get_peb(struct ubi_device *ubi) 680 { 681 int peb, err; 682 683 spin_lock(&ubi->wl_lock); 684 peb = __wl_get_peb(ubi); 685 spin_unlock(&ubi->wl_lock); 686 687 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, 688 ubi->peb_size - ubi->vid_hdr_aloffset); 689 if (err) { 690 ubi_err("new PEB %d does not contain all 0xFF bytes", peb); 691 return err; 692 } 693 694 return peb; 695 } 696 #endif 697 698 /** 699 * prot_queue_del - remove a physical eraseblock from the protection queue. 700 * @ubi: UBI device description object 701 * @pnum: the physical eraseblock to remove 702 * 703 * This function deletes PEB @pnum from the protection queue and returns zero 704 * in case of success and %-ENODEV if the PEB was not found. 705 */ 706 static int prot_queue_del(struct ubi_device *ubi, int pnum) 707 { 708 struct ubi_wl_entry *e; 709 710 e = ubi->lookuptbl[pnum]; 711 if (!e) 712 return -ENODEV; 713 714 if (self_check_in_pq(ubi, e)) 715 return -ENODEV; 716 717 list_del(&e->u.list); 718 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 719 return 0; 720 } 721 722 /** 723 * sync_erase - synchronously erase a physical eraseblock. 724 * @ubi: UBI device description object 725 * @e: the the physical eraseblock to erase 726 * @torture: if the physical eraseblock has to be tortured 727 * 728 * This function returns zero in case of success and a negative error code in 729 * case of failure. 730 */ 731 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 732 int torture) 733 { 734 int err; 735 struct ubi_ec_hdr *ec_hdr; 736 unsigned long long ec = e->ec; 737 738 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 739 740 err = self_check_ec(ubi, e->pnum, e->ec); 741 if (err) 742 return -EINVAL; 743 744 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 745 if (!ec_hdr) 746 return -ENOMEM; 747 748 err = ubi_io_sync_erase(ubi, e->pnum, torture); 749 if (err < 0) 750 goto out_free; 751 752 ec += err; 753 if (ec > UBI_MAX_ERASECOUNTER) { 754 /* 755 * Erase counter overflow. Upgrade UBI and use 64-bit 756 * erase counters internally. 757 */ 758 ubi_err("erase counter overflow at PEB %d, EC %llu", 759 e->pnum, ec); 760 err = -EINVAL; 761 goto out_free; 762 } 763 764 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 765 766 ec_hdr->ec = cpu_to_be64(ec); 767 768 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 769 if (err) 770 goto out_free; 771 772 e->ec = ec; 773 spin_lock(&ubi->wl_lock); 774 if (e->ec > ubi->max_ec) 775 ubi->max_ec = e->ec; 776 spin_unlock(&ubi->wl_lock); 777 778 out_free: 779 kfree(ec_hdr); 780 return err; 781 } 782 783 /** 784 * serve_prot_queue - check if it is time to stop protecting PEBs. 785 * @ubi: UBI device description object 786 * 787 * This function is called after each erase operation and removes PEBs from the 788 * tail of the protection queue. These PEBs have been protected for long enough 789 * and should be moved to the used tree. 790 */ 791 static void serve_prot_queue(struct ubi_device *ubi) 792 { 793 struct ubi_wl_entry *e, *tmp; 794 int count; 795 796 /* 797 * There may be several protected physical eraseblock to remove, 798 * process them all. 799 */ 800 repeat: 801 count = 0; 802 spin_lock(&ubi->wl_lock); 803 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 804 dbg_wl("PEB %d EC %d protection over, move to used tree", 805 e->pnum, e->ec); 806 807 list_del(&e->u.list); 808 wl_tree_add(e, &ubi->used); 809 if (count++ > 32) { 810 /* 811 * Let's be nice and avoid holding the spinlock for 812 * too long. 813 */ 814 spin_unlock(&ubi->wl_lock); 815 cond_resched(); 816 goto repeat; 817 } 818 } 819 820 ubi->pq_head += 1; 821 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 822 ubi->pq_head = 0; 823 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 824 spin_unlock(&ubi->wl_lock); 825 } 826 827 /** 828 * __schedule_ubi_work - schedule a work. 829 * @ubi: UBI device description object 830 * @wrk: the work to schedule 831 * 832 * This function adds a work defined by @wrk to the tail of the pending works 833 * list. Can only be used of ubi->work_sem is already held in read mode! 834 */ 835 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 836 { 837 spin_lock(&ubi->wl_lock); 838 list_add_tail(&wrk->list, &ubi->works); 839 ubi_assert(ubi->works_count >= 0); 840 ubi->works_count += 1; 841 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 842 wake_up_process(ubi->bgt_thread); 843 spin_unlock(&ubi->wl_lock); 844 } 845 846 /** 847 * schedule_ubi_work - schedule a work. 848 * @ubi: UBI device description object 849 * @wrk: the work to schedule 850 * 851 * This function adds a work defined by @wrk to the tail of the pending works 852 * list. 853 */ 854 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 855 { 856 down_read(&ubi->work_sem); 857 __schedule_ubi_work(ubi, wrk); 858 up_read(&ubi->work_sem); 859 } 860 861 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 862 int cancel); 863 864 #ifdef CONFIG_MTD_UBI_FASTMAP 865 /** 866 * ubi_is_erase_work - checks whether a work is erase work. 867 * @wrk: The work object to be checked 868 */ 869 int ubi_is_erase_work(struct ubi_work *wrk) 870 { 871 return wrk->func == erase_worker; 872 } 873 #endif 874 875 /** 876 * schedule_erase - schedule an erase work. 877 * @ubi: UBI device description object 878 * @e: the WL entry of the physical eraseblock to erase 879 * @vol_id: the volume ID that last used this PEB 880 * @lnum: the last used logical eraseblock number for the PEB 881 * @torture: if the physical eraseblock has to be tortured 882 * 883 * This function returns zero in case of success and a %-ENOMEM in case of 884 * failure. 885 */ 886 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 887 int vol_id, int lnum, int torture) 888 { 889 struct ubi_work *wl_wrk; 890 891 ubi_assert(e); 892 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 893 894 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 895 e->pnum, e->ec, torture); 896 897 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 898 if (!wl_wrk) 899 return -ENOMEM; 900 901 wl_wrk->func = &erase_worker; 902 wl_wrk->e = e; 903 wl_wrk->vol_id = vol_id; 904 wl_wrk->lnum = lnum; 905 wl_wrk->torture = torture; 906 907 schedule_ubi_work(ubi, wl_wrk); 908 return 0; 909 } 910 911 /** 912 * do_sync_erase - run the erase worker synchronously. 913 * @ubi: UBI device description object 914 * @e: the WL entry of the physical eraseblock to erase 915 * @vol_id: the volume ID that last used this PEB 916 * @lnum: the last used logical eraseblock number for the PEB 917 * @torture: if the physical eraseblock has to be tortured 918 * 919 */ 920 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 921 int vol_id, int lnum, int torture) 922 { 923 struct ubi_work *wl_wrk; 924 925 dbg_wl("sync erase of PEB %i", e->pnum); 926 927 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 928 if (!wl_wrk) 929 return -ENOMEM; 930 931 wl_wrk->e = e; 932 wl_wrk->vol_id = vol_id; 933 wl_wrk->lnum = lnum; 934 wl_wrk->torture = torture; 935 936 return erase_worker(ubi, wl_wrk, 0); 937 } 938 939 #ifdef CONFIG_MTD_UBI_FASTMAP 940 /** 941 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling 942 * sub-system. 943 * see: ubi_wl_put_peb() 944 * 945 * @ubi: UBI device description object 946 * @fm_e: physical eraseblock to return 947 * @lnum: the last used logical eraseblock number for the PEB 948 * @torture: if this physical eraseblock has to be tortured 949 */ 950 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, 951 int lnum, int torture) 952 { 953 struct ubi_wl_entry *e; 954 int vol_id, pnum = fm_e->pnum; 955 956 dbg_wl("PEB %d", pnum); 957 958 ubi_assert(pnum >= 0); 959 ubi_assert(pnum < ubi->peb_count); 960 961 spin_lock(&ubi->wl_lock); 962 e = ubi->lookuptbl[pnum]; 963 964 /* This can happen if we recovered from a fastmap the very 965 * first time and writing now a new one. In this case the wl system 966 * has never seen any PEB used by the original fastmap. 967 */ 968 if (!e) { 969 e = fm_e; 970 ubi_assert(e->ec >= 0); 971 ubi->lookuptbl[pnum] = e; 972 } else { 973 e->ec = fm_e->ec; 974 kfree(fm_e); 975 } 976 977 spin_unlock(&ubi->wl_lock); 978 979 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; 980 return schedule_erase(ubi, e, vol_id, lnum, torture); 981 } 982 #endif 983 984 /** 985 * wear_leveling_worker - wear-leveling worker function. 986 * @ubi: UBI device description object 987 * @wrk: the work object 988 * @cancel: non-zero if the worker has to free memory and exit 989 * 990 * This function copies a more worn out physical eraseblock to a less worn out 991 * one. Returns zero in case of success and a negative error code in case of 992 * failure. 993 */ 994 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 995 int cancel) 996 { 997 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 998 int vol_id = -1, uninitialized_var(lnum); 999 #ifdef CONFIG_MTD_UBI_FASTMAP 1000 int anchor = wrk->anchor; 1001 #endif 1002 struct ubi_wl_entry *e1, *e2; 1003 struct ubi_vid_hdr *vid_hdr; 1004 1005 kfree(wrk); 1006 if (cancel) 1007 return 0; 1008 1009 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1010 if (!vid_hdr) 1011 return -ENOMEM; 1012 1013 mutex_lock(&ubi->move_mutex); 1014 spin_lock(&ubi->wl_lock); 1015 ubi_assert(!ubi->move_from && !ubi->move_to); 1016 ubi_assert(!ubi->move_to_put); 1017 1018 if (!ubi->free.rb_node || 1019 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 1020 /* 1021 * No free physical eraseblocks? Well, they must be waiting in 1022 * the queue to be erased. Cancel movement - it will be 1023 * triggered again when a free physical eraseblock appears. 1024 * 1025 * No used physical eraseblocks? They must be temporarily 1026 * protected from being moved. They will be moved to the 1027 * @ubi->used tree later and the wear-leveling will be 1028 * triggered again. 1029 */ 1030 dbg_wl("cancel WL, a list is empty: free %d, used %d", 1031 !ubi->free.rb_node, !ubi->used.rb_node); 1032 goto out_cancel; 1033 } 1034 1035 #ifdef CONFIG_MTD_UBI_FASTMAP 1036 /* Check whether we need to produce an anchor PEB */ 1037 if (!anchor) 1038 anchor = !anchor_pebs_avalible(&ubi->free); 1039 1040 if (anchor) { 1041 e1 = find_anchor_wl_entry(&ubi->used); 1042 if (!e1) 1043 goto out_cancel; 1044 e2 = get_peb_for_wl(ubi); 1045 if (!e2) 1046 goto out_cancel; 1047 1048 self_check_in_wl_tree(ubi, e1, &ubi->used); 1049 rb_erase(&e1->u.rb, &ubi->used); 1050 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 1051 } else if (!ubi->scrub.rb_node) { 1052 #else 1053 if (!ubi->scrub.rb_node) { 1054 #endif 1055 /* 1056 * Now pick the least worn-out used physical eraseblock and a 1057 * highly worn-out free physical eraseblock. If the erase 1058 * counters differ much enough, start wear-leveling. 1059 */ 1060 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1061 e2 = get_peb_for_wl(ubi); 1062 if (!e2) 1063 goto out_cancel; 1064 1065 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 1066 dbg_wl("no WL needed: min used EC %d, max free EC %d", 1067 e1->ec, e2->ec); 1068 1069 /* Give the unused PEB back */ 1070 wl_tree_add(e2, &ubi->free); 1071 goto out_cancel; 1072 } 1073 self_check_in_wl_tree(ubi, e1, &ubi->used); 1074 rb_erase(&e1->u.rb, &ubi->used); 1075 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 1076 e1->pnum, e1->ec, e2->pnum, e2->ec); 1077 } else { 1078 /* Perform scrubbing */ 1079 scrubbing = 1; 1080 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 1081 e2 = get_peb_for_wl(ubi); 1082 if (!e2) 1083 goto out_cancel; 1084 1085 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 1086 rb_erase(&e1->u.rb, &ubi->scrub); 1087 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 1088 } 1089 1090 ubi->move_from = e1; 1091 ubi->move_to = e2; 1092 spin_unlock(&ubi->wl_lock); 1093 1094 /* 1095 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 1096 * We so far do not know which logical eraseblock our physical 1097 * eraseblock (@e1) belongs to. We have to read the volume identifier 1098 * header first. 1099 * 1100 * Note, we are protected from this PEB being unmapped and erased. The 1101 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 1102 * which is being moved was unmapped. 1103 */ 1104 1105 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 1106 if (err && err != UBI_IO_BITFLIPS) { 1107 if (err == UBI_IO_FF) { 1108 /* 1109 * We are trying to move PEB without a VID header. UBI 1110 * always write VID headers shortly after the PEB was 1111 * given, so we have a situation when it has not yet 1112 * had a chance to write it, because it was preempted. 1113 * So add this PEB to the protection queue so far, 1114 * because presumably more data will be written there 1115 * (including the missing VID header), and then we'll 1116 * move it. 1117 */ 1118 dbg_wl("PEB %d has no VID header", e1->pnum); 1119 protect = 1; 1120 goto out_not_moved; 1121 } else if (err == UBI_IO_FF_BITFLIPS) { 1122 /* 1123 * The same situation as %UBI_IO_FF, but bit-flips were 1124 * detected. It is better to schedule this PEB for 1125 * scrubbing. 1126 */ 1127 dbg_wl("PEB %d has no VID header but has bit-flips", 1128 e1->pnum); 1129 scrubbing = 1; 1130 goto out_not_moved; 1131 } 1132 1133 ubi_err("error %d while reading VID header from PEB %d", 1134 err, e1->pnum); 1135 goto out_error; 1136 } 1137 1138 vol_id = be32_to_cpu(vid_hdr->vol_id); 1139 lnum = be32_to_cpu(vid_hdr->lnum); 1140 1141 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 1142 if (err) { 1143 if (err == MOVE_CANCEL_RACE) { 1144 /* 1145 * The LEB has not been moved because the volume is 1146 * being deleted or the PEB has been put meanwhile. We 1147 * should prevent this PEB from being selected for 1148 * wear-leveling movement again, so put it to the 1149 * protection queue. 1150 */ 1151 protect = 1; 1152 goto out_not_moved; 1153 } 1154 if (err == MOVE_RETRY) { 1155 scrubbing = 1; 1156 goto out_not_moved; 1157 } 1158 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 1159 err == MOVE_TARGET_RD_ERR) { 1160 /* 1161 * Target PEB had bit-flips or write error - torture it. 1162 */ 1163 torture = 1; 1164 goto out_not_moved; 1165 } 1166 1167 if (err == MOVE_SOURCE_RD_ERR) { 1168 /* 1169 * An error happened while reading the source PEB. Do 1170 * not switch to R/O mode in this case, and give the 1171 * upper layers a possibility to recover from this, 1172 * e.g. by unmapping corresponding LEB. Instead, just 1173 * put this PEB to the @ubi->erroneous list to prevent 1174 * UBI from trying to move it over and over again. 1175 */ 1176 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 1177 ubi_err("too many erroneous eraseblocks (%d)", 1178 ubi->erroneous_peb_count); 1179 goto out_error; 1180 } 1181 erroneous = 1; 1182 goto out_not_moved; 1183 } 1184 1185 if (err < 0) 1186 goto out_error; 1187 1188 ubi_assert(0); 1189 } 1190 1191 /* The PEB has been successfully moved */ 1192 if (scrubbing) 1193 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 1194 e1->pnum, vol_id, lnum, e2->pnum); 1195 ubi_free_vid_hdr(ubi, vid_hdr); 1196 1197 spin_lock(&ubi->wl_lock); 1198 if (!ubi->move_to_put) { 1199 wl_tree_add(e2, &ubi->used); 1200 e2 = NULL; 1201 } 1202 ubi->move_from = ubi->move_to = NULL; 1203 ubi->move_to_put = ubi->wl_scheduled = 0; 1204 spin_unlock(&ubi->wl_lock); 1205 1206 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 1207 if (err) { 1208 kmem_cache_free(ubi_wl_entry_slab, e1); 1209 if (e2) 1210 kmem_cache_free(ubi_wl_entry_slab, e2); 1211 goto out_ro; 1212 } 1213 1214 if (e2) { 1215 /* 1216 * Well, the target PEB was put meanwhile, schedule it for 1217 * erasure. 1218 */ 1219 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 1220 e2->pnum, vol_id, lnum); 1221 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 1222 if (err) { 1223 kmem_cache_free(ubi_wl_entry_slab, e2); 1224 goto out_ro; 1225 } 1226 } 1227 1228 dbg_wl("done"); 1229 mutex_unlock(&ubi->move_mutex); 1230 return 0; 1231 1232 /* 1233 * For some reasons the LEB was not moved, might be an error, might be 1234 * something else. @e1 was not changed, so return it back. @e2 might 1235 * have been changed, schedule it for erasure. 1236 */ 1237 out_not_moved: 1238 if (vol_id != -1) 1239 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 1240 e1->pnum, vol_id, lnum, e2->pnum, err); 1241 else 1242 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 1243 e1->pnum, e2->pnum, err); 1244 spin_lock(&ubi->wl_lock); 1245 if (protect) 1246 prot_queue_add(ubi, e1); 1247 else if (erroneous) { 1248 wl_tree_add(e1, &ubi->erroneous); 1249 ubi->erroneous_peb_count += 1; 1250 } else if (scrubbing) 1251 wl_tree_add(e1, &ubi->scrub); 1252 else 1253 wl_tree_add(e1, &ubi->used); 1254 ubi_assert(!ubi->move_to_put); 1255 ubi->move_from = ubi->move_to = NULL; 1256 ubi->wl_scheduled = 0; 1257 spin_unlock(&ubi->wl_lock); 1258 1259 ubi_free_vid_hdr(ubi, vid_hdr); 1260 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 1261 if (err) { 1262 kmem_cache_free(ubi_wl_entry_slab, e2); 1263 goto out_ro; 1264 } 1265 mutex_unlock(&ubi->move_mutex); 1266 return 0; 1267 1268 out_error: 1269 if (vol_id != -1) 1270 ubi_err("error %d while moving PEB %d to PEB %d", 1271 err, e1->pnum, e2->pnum); 1272 else 1273 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 1274 err, e1->pnum, vol_id, lnum, e2->pnum); 1275 spin_lock(&ubi->wl_lock); 1276 ubi->move_from = ubi->move_to = NULL; 1277 ubi->move_to_put = ubi->wl_scheduled = 0; 1278 spin_unlock(&ubi->wl_lock); 1279 1280 ubi_free_vid_hdr(ubi, vid_hdr); 1281 kmem_cache_free(ubi_wl_entry_slab, e1); 1282 kmem_cache_free(ubi_wl_entry_slab, e2); 1283 1284 out_ro: 1285 ubi_ro_mode(ubi); 1286 mutex_unlock(&ubi->move_mutex); 1287 ubi_assert(err != 0); 1288 return err < 0 ? err : -EIO; 1289 1290 out_cancel: 1291 ubi->wl_scheduled = 0; 1292 spin_unlock(&ubi->wl_lock); 1293 mutex_unlock(&ubi->move_mutex); 1294 ubi_free_vid_hdr(ubi, vid_hdr); 1295 return 0; 1296 } 1297 1298 /** 1299 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1300 * @ubi: UBI device description object 1301 * @nested: set to non-zero if this function is called from UBI worker 1302 * 1303 * This function checks if it is time to start wear-leveling and schedules it 1304 * if yes. This function returns zero in case of success and a negative error 1305 * code in case of failure. 1306 */ 1307 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1308 { 1309 int err = 0; 1310 struct ubi_wl_entry *e1; 1311 struct ubi_wl_entry *e2; 1312 struct ubi_work *wrk; 1313 1314 spin_lock(&ubi->wl_lock); 1315 if (ubi->wl_scheduled) 1316 /* Wear-leveling is already in the work queue */ 1317 goto out_unlock; 1318 1319 /* 1320 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1321 * the WL worker has to be scheduled anyway. 1322 */ 1323 if (!ubi->scrub.rb_node) { 1324 if (!ubi->used.rb_node || !ubi->free.rb_node) 1325 /* No physical eraseblocks - no deal */ 1326 goto out_unlock; 1327 1328 /* 1329 * We schedule wear-leveling only if the difference between the 1330 * lowest erase counter of used physical eraseblocks and a high 1331 * erase counter of free physical eraseblocks is greater than 1332 * %UBI_WL_THRESHOLD. 1333 */ 1334 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1335 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1336 1337 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1338 goto out_unlock; 1339 dbg_wl("schedule wear-leveling"); 1340 } else 1341 dbg_wl("schedule scrubbing"); 1342 1343 ubi->wl_scheduled = 1; 1344 spin_unlock(&ubi->wl_lock); 1345 1346 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1347 if (!wrk) { 1348 err = -ENOMEM; 1349 goto out_cancel; 1350 } 1351 1352 wrk->anchor = 0; 1353 wrk->func = &wear_leveling_worker; 1354 if (nested) 1355 __schedule_ubi_work(ubi, wrk); 1356 else 1357 schedule_ubi_work(ubi, wrk); 1358 return err; 1359 1360 out_cancel: 1361 spin_lock(&ubi->wl_lock); 1362 ubi->wl_scheduled = 0; 1363 out_unlock: 1364 spin_unlock(&ubi->wl_lock); 1365 return err; 1366 } 1367 1368 #ifdef CONFIG_MTD_UBI_FASTMAP 1369 /** 1370 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. 1371 * @ubi: UBI device description object 1372 */ 1373 int ubi_ensure_anchor_pebs(struct ubi_device *ubi) 1374 { 1375 struct ubi_work *wrk; 1376 1377 spin_lock(&ubi->wl_lock); 1378 if (ubi->wl_scheduled) { 1379 spin_unlock(&ubi->wl_lock); 1380 return 0; 1381 } 1382 ubi->wl_scheduled = 1; 1383 spin_unlock(&ubi->wl_lock); 1384 1385 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1386 if (!wrk) { 1387 spin_lock(&ubi->wl_lock); 1388 ubi->wl_scheduled = 0; 1389 spin_unlock(&ubi->wl_lock); 1390 return -ENOMEM; 1391 } 1392 1393 wrk->anchor = 1; 1394 wrk->func = &wear_leveling_worker; 1395 schedule_ubi_work(ubi, wrk); 1396 return 0; 1397 } 1398 #endif 1399 1400 /** 1401 * erase_worker - physical eraseblock erase worker function. 1402 * @ubi: UBI device description object 1403 * @wl_wrk: the work object 1404 * @cancel: non-zero if the worker has to free memory and exit 1405 * 1406 * This function erases a physical eraseblock and perform torture testing if 1407 * needed. It also takes care about marking the physical eraseblock bad if 1408 * needed. Returns zero in case of success and a negative error code in case of 1409 * failure. 1410 */ 1411 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1412 int cancel) 1413 { 1414 struct ubi_wl_entry *e = wl_wrk->e; 1415 int pnum = e->pnum; 1416 int vol_id = wl_wrk->vol_id; 1417 int lnum = wl_wrk->lnum; 1418 int err, available_consumed = 0; 1419 1420 if (cancel) { 1421 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1422 kfree(wl_wrk); 1423 kmem_cache_free(ubi_wl_entry_slab, e); 1424 return 0; 1425 } 1426 1427 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1428 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1429 1430 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1431 1432 err = sync_erase(ubi, e, wl_wrk->torture); 1433 if (!err) { 1434 /* Fine, we've erased it successfully */ 1435 kfree(wl_wrk); 1436 1437 spin_lock(&ubi->wl_lock); 1438 wl_tree_add(e, &ubi->free); 1439 ubi->free_count++; 1440 spin_unlock(&ubi->wl_lock); 1441 1442 /* 1443 * One more erase operation has happened, take care about 1444 * protected physical eraseblocks. 1445 */ 1446 serve_prot_queue(ubi); 1447 1448 /* And take care about wear-leveling */ 1449 err = ensure_wear_leveling(ubi, 1); 1450 return err; 1451 } 1452 1453 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1454 kfree(wl_wrk); 1455 1456 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1457 err == -EBUSY) { 1458 int err1; 1459 1460 /* Re-schedule the LEB for erasure */ 1461 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1462 if (err1) { 1463 err = err1; 1464 goto out_ro; 1465 } 1466 return err; 1467 } 1468 1469 kmem_cache_free(ubi_wl_entry_slab, e); 1470 if (err != -EIO) 1471 /* 1472 * If this is not %-EIO, we have no idea what to do. Scheduling 1473 * this physical eraseblock for erasure again would cause 1474 * errors again and again. Well, lets switch to R/O mode. 1475 */ 1476 goto out_ro; 1477 1478 /* It is %-EIO, the PEB went bad */ 1479 1480 if (!ubi->bad_allowed) { 1481 ubi_err("bad physical eraseblock %d detected", pnum); 1482 goto out_ro; 1483 } 1484 1485 spin_lock(&ubi->volumes_lock); 1486 if (ubi->beb_rsvd_pebs == 0) { 1487 if (ubi->avail_pebs == 0) { 1488 spin_unlock(&ubi->volumes_lock); 1489 ubi_err("no reserved/available physical eraseblocks"); 1490 goto out_ro; 1491 } 1492 ubi->avail_pebs -= 1; 1493 available_consumed = 1; 1494 } 1495 spin_unlock(&ubi->volumes_lock); 1496 1497 ubi_msg("mark PEB %d as bad", pnum); 1498 err = ubi_io_mark_bad(ubi, pnum); 1499 if (err) 1500 goto out_ro; 1501 1502 spin_lock(&ubi->volumes_lock); 1503 if (ubi->beb_rsvd_pebs > 0) { 1504 if (available_consumed) { 1505 /* 1506 * The amount of reserved PEBs increased since we last 1507 * checked. 1508 */ 1509 ubi->avail_pebs += 1; 1510 available_consumed = 0; 1511 } 1512 ubi->beb_rsvd_pebs -= 1; 1513 } 1514 ubi->bad_peb_count += 1; 1515 ubi->good_peb_count -= 1; 1516 ubi_calculate_reserved(ubi); 1517 if (available_consumed) 1518 ubi_warn("no PEBs in the reserved pool, used an available PEB"); 1519 else if (ubi->beb_rsvd_pebs) 1520 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1521 else 1522 ubi_warn("last PEB from the reserve was used"); 1523 spin_unlock(&ubi->volumes_lock); 1524 1525 return err; 1526 1527 out_ro: 1528 if (available_consumed) { 1529 spin_lock(&ubi->volumes_lock); 1530 ubi->avail_pebs += 1; 1531 spin_unlock(&ubi->volumes_lock); 1532 } 1533 ubi_ro_mode(ubi); 1534 return err; 1535 } 1536 1537 /** 1538 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1539 * @ubi: UBI device description object 1540 * @vol_id: the volume ID that last used this PEB 1541 * @lnum: the last used logical eraseblock number for the PEB 1542 * @pnum: physical eraseblock to return 1543 * @torture: if this physical eraseblock has to be tortured 1544 * 1545 * This function is called to return physical eraseblock @pnum to the pool of 1546 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1547 * occurred to this @pnum and it has to be tested. This function returns zero 1548 * in case of success, and a negative error code in case of failure. 1549 */ 1550 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1551 int pnum, int torture) 1552 { 1553 int err; 1554 struct ubi_wl_entry *e; 1555 1556 dbg_wl("PEB %d", pnum); 1557 ubi_assert(pnum >= 0); 1558 ubi_assert(pnum < ubi->peb_count); 1559 1560 retry: 1561 spin_lock(&ubi->wl_lock); 1562 e = ubi->lookuptbl[pnum]; 1563 if (e == ubi->move_from) { 1564 /* 1565 * User is putting the physical eraseblock which was selected to 1566 * be moved. It will be scheduled for erasure in the 1567 * wear-leveling worker. 1568 */ 1569 dbg_wl("PEB %d is being moved, wait", pnum); 1570 spin_unlock(&ubi->wl_lock); 1571 1572 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1573 mutex_lock(&ubi->move_mutex); 1574 mutex_unlock(&ubi->move_mutex); 1575 goto retry; 1576 } else if (e == ubi->move_to) { 1577 /* 1578 * User is putting the physical eraseblock which was selected 1579 * as the target the data is moved to. It may happen if the EBA 1580 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1581 * but the WL sub-system has not put the PEB to the "used" tree 1582 * yet, but it is about to do this. So we just set a flag which 1583 * will tell the WL worker that the PEB is not needed anymore 1584 * and should be scheduled for erasure. 1585 */ 1586 dbg_wl("PEB %d is the target of data moving", pnum); 1587 ubi_assert(!ubi->move_to_put); 1588 ubi->move_to_put = 1; 1589 spin_unlock(&ubi->wl_lock); 1590 return 0; 1591 } else { 1592 if (in_wl_tree(e, &ubi->used)) { 1593 self_check_in_wl_tree(ubi, e, &ubi->used); 1594 rb_erase(&e->u.rb, &ubi->used); 1595 } else if (in_wl_tree(e, &ubi->scrub)) { 1596 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1597 rb_erase(&e->u.rb, &ubi->scrub); 1598 } else if (in_wl_tree(e, &ubi->erroneous)) { 1599 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1600 rb_erase(&e->u.rb, &ubi->erroneous); 1601 ubi->erroneous_peb_count -= 1; 1602 ubi_assert(ubi->erroneous_peb_count >= 0); 1603 /* Erroneous PEBs should be tortured */ 1604 torture = 1; 1605 } else { 1606 err = prot_queue_del(ubi, e->pnum); 1607 if (err) { 1608 ubi_err("PEB %d not found", pnum); 1609 ubi_ro_mode(ubi); 1610 spin_unlock(&ubi->wl_lock); 1611 return err; 1612 } 1613 } 1614 } 1615 spin_unlock(&ubi->wl_lock); 1616 1617 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1618 if (err) { 1619 spin_lock(&ubi->wl_lock); 1620 wl_tree_add(e, &ubi->used); 1621 spin_unlock(&ubi->wl_lock); 1622 } 1623 1624 return err; 1625 } 1626 1627 /** 1628 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1629 * @ubi: UBI device description object 1630 * @pnum: the physical eraseblock to schedule 1631 * 1632 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1633 * needs scrubbing. This function schedules a physical eraseblock for 1634 * scrubbing which is done in background. This function returns zero in case of 1635 * success and a negative error code in case of failure. 1636 */ 1637 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1638 { 1639 struct ubi_wl_entry *e; 1640 1641 ubi_msg("schedule PEB %d for scrubbing", pnum); 1642 1643 retry: 1644 spin_lock(&ubi->wl_lock); 1645 e = ubi->lookuptbl[pnum]; 1646 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1647 in_wl_tree(e, &ubi->erroneous)) { 1648 spin_unlock(&ubi->wl_lock); 1649 return 0; 1650 } 1651 1652 if (e == ubi->move_to) { 1653 /* 1654 * This physical eraseblock was used to move data to. The data 1655 * was moved but the PEB was not yet inserted to the proper 1656 * tree. We should just wait a little and let the WL worker 1657 * proceed. 1658 */ 1659 spin_unlock(&ubi->wl_lock); 1660 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1661 yield(); 1662 goto retry; 1663 } 1664 1665 if (in_wl_tree(e, &ubi->used)) { 1666 self_check_in_wl_tree(ubi, e, &ubi->used); 1667 rb_erase(&e->u.rb, &ubi->used); 1668 } else { 1669 int err; 1670 1671 err = prot_queue_del(ubi, e->pnum); 1672 if (err) { 1673 ubi_err("PEB %d not found", pnum); 1674 ubi_ro_mode(ubi); 1675 spin_unlock(&ubi->wl_lock); 1676 return err; 1677 } 1678 } 1679 1680 wl_tree_add(e, &ubi->scrub); 1681 spin_unlock(&ubi->wl_lock); 1682 1683 /* 1684 * Technically scrubbing is the same as wear-leveling, so it is done 1685 * by the WL worker. 1686 */ 1687 return ensure_wear_leveling(ubi, 0); 1688 } 1689 1690 /** 1691 * ubi_wl_flush - flush all pending works. 1692 * @ubi: UBI device description object 1693 * @vol_id: the volume id to flush for 1694 * @lnum: the logical eraseblock number to flush for 1695 * 1696 * This function executes all pending works for a particular volume id / 1697 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1698 * acts as a wildcard for all of the corresponding volume numbers or logical 1699 * eraseblock numbers. It returns zero in case of success and a negative error 1700 * code in case of failure. 1701 */ 1702 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1703 { 1704 int err = 0; 1705 int found = 1; 1706 1707 /* 1708 * Erase while the pending works queue is not empty, but not more than 1709 * the number of currently pending works. 1710 */ 1711 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1712 vol_id, lnum, ubi->works_count); 1713 1714 while (found) { 1715 struct ubi_work *wrk; 1716 found = 0; 1717 1718 down_read(&ubi->work_sem); 1719 spin_lock(&ubi->wl_lock); 1720 list_for_each_entry(wrk, &ubi->works, list) { 1721 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1722 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1723 list_del(&wrk->list); 1724 ubi->works_count -= 1; 1725 ubi_assert(ubi->works_count >= 0); 1726 spin_unlock(&ubi->wl_lock); 1727 1728 err = wrk->func(ubi, wrk, 0); 1729 if (err) { 1730 up_read(&ubi->work_sem); 1731 return err; 1732 } 1733 1734 spin_lock(&ubi->wl_lock); 1735 found = 1; 1736 break; 1737 } 1738 } 1739 spin_unlock(&ubi->wl_lock); 1740 up_read(&ubi->work_sem); 1741 } 1742 1743 /* 1744 * Make sure all the works which have been done in parallel are 1745 * finished. 1746 */ 1747 down_write(&ubi->work_sem); 1748 up_write(&ubi->work_sem); 1749 1750 return err; 1751 } 1752 1753 /** 1754 * tree_destroy - destroy an RB-tree. 1755 * @root: the root of the tree to destroy 1756 */ 1757 static void tree_destroy(struct rb_root *root) 1758 { 1759 struct rb_node *rb; 1760 struct ubi_wl_entry *e; 1761 1762 rb = root->rb_node; 1763 while (rb) { 1764 if (rb->rb_left) 1765 rb = rb->rb_left; 1766 else if (rb->rb_right) 1767 rb = rb->rb_right; 1768 else { 1769 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1770 1771 rb = rb_parent(rb); 1772 if (rb) { 1773 if (rb->rb_left == &e->u.rb) 1774 rb->rb_left = NULL; 1775 else 1776 rb->rb_right = NULL; 1777 } 1778 1779 kmem_cache_free(ubi_wl_entry_slab, e); 1780 } 1781 } 1782 } 1783 1784 /** 1785 * ubi_thread - UBI background thread. 1786 * @u: the UBI device description object pointer 1787 */ 1788 int ubi_thread(void *u) 1789 { 1790 int failures = 0; 1791 struct ubi_device *ubi = u; 1792 1793 ubi_msg("background thread \"%s\" started, PID %d", 1794 ubi->bgt_name, task_pid_nr(current)); 1795 1796 set_freezable(); 1797 for (;;) { 1798 int err; 1799 1800 if (kthread_should_stop()) 1801 break; 1802 1803 if (try_to_freeze()) 1804 continue; 1805 1806 spin_lock(&ubi->wl_lock); 1807 if (list_empty(&ubi->works) || ubi->ro_mode || 1808 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1809 set_current_state(TASK_INTERRUPTIBLE); 1810 spin_unlock(&ubi->wl_lock); 1811 schedule(); 1812 continue; 1813 } 1814 spin_unlock(&ubi->wl_lock); 1815 1816 err = do_work(ubi); 1817 if (err) { 1818 ubi_err("%s: work failed with error code %d", 1819 ubi->bgt_name, err); 1820 if (failures++ > WL_MAX_FAILURES) { 1821 /* 1822 * Too many failures, disable the thread and 1823 * switch to read-only mode. 1824 */ 1825 ubi_msg("%s: %d consecutive failures", 1826 ubi->bgt_name, WL_MAX_FAILURES); 1827 ubi_ro_mode(ubi); 1828 ubi->thread_enabled = 0; 1829 continue; 1830 } 1831 } else 1832 failures = 0; 1833 1834 cond_resched(); 1835 } 1836 1837 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1838 return 0; 1839 } 1840 1841 /** 1842 * cancel_pending - cancel all pending works. 1843 * @ubi: UBI device description object 1844 */ 1845 static void cancel_pending(struct ubi_device *ubi) 1846 { 1847 while (!list_empty(&ubi->works)) { 1848 struct ubi_work *wrk; 1849 1850 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1851 list_del(&wrk->list); 1852 wrk->func(ubi, wrk, 1); 1853 ubi->works_count -= 1; 1854 ubi_assert(ubi->works_count >= 0); 1855 } 1856 } 1857 1858 /** 1859 * ubi_wl_init - initialize the WL sub-system using attaching information. 1860 * @ubi: UBI device description object 1861 * @ai: attaching information 1862 * 1863 * This function returns zero in case of success, and a negative error code in 1864 * case of failure. 1865 */ 1866 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1867 { 1868 int err, i, reserved_pebs, found_pebs = 0; 1869 struct rb_node *rb1, *rb2; 1870 struct ubi_ainf_volume *av; 1871 struct ubi_ainf_peb *aeb, *tmp; 1872 struct ubi_wl_entry *e; 1873 1874 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1875 spin_lock_init(&ubi->wl_lock); 1876 mutex_init(&ubi->move_mutex); 1877 init_rwsem(&ubi->work_sem); 1878 ubi->max_ec = ai->max_ec; 1879 INIT_LIST_HEAD(&ubi->works); 1880 #ifdef CONFIG_MTD_UBI_FASTMAP 1881 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); 1882 #endif 1883 1884 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1885 1886 err = -ENOMEM; 1887 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1888 if (!ubi->lookuptbl) 1889 return err; 1890 1891 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1892 INIT_LIST_HEAD(&ubi->pq[i]); 1893 ubi->pq_head = 0; 1894 1895 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1896 cond_resched(); 1897 1898 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1899 if (!e) 1900 goto out_free; 1901 1902 e->pnum = aeb->pnum; 1903 e->ec = aeb->ec; 1904 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1905 ubi->lookuptbl[e->pnum] = e; 1906 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1907 kmem_cache_free(ubi_wl_entry_slab, e); 1908 goto out_free; 1909 } 1910 1911 found_pebs++; 1912 } 1913 1914 ubi->free_count = 0; 1915 list_for_each_entry(aeb, &ai->free, u.list) { 1916 cond_resched(); 1917 1918 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1919 if (!e) 1920 goto out_free; 1921 1922 e->pnum = aeb->pnum; 1923 e->ec = aeb->ec; 1924 ubi_assert(e->ec >= 0); 1925 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1926 1927 wl_tree_add(e, &ubi->free); 1928 ubi->free_count++; 1929 1930 ubi->lookuptbl[e->pnum] = e; 1931 1932 found_pebs++; 1933 } 1934 1935 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1936 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1937 cond_resched(); 1938 1939 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1940 if (!e) 1941 goto out_free; 1942 1943 e->pnum = aeb->pnum; 1944 e->ec = aeb->ec; 1945 ubi->lookuptbl[e->pnum] = e; 1946 1947 if (!aeb->scrub) { 1948 dbg_wl("add PEB %d EC %d to the used tree", 1949 e->pnum, e->ec); 1950 wl_tree_add(e, &ubi->used); 1951 } else { 1952 dbg_wl("add PEB %d EC %d to the scrub tree", 1953 e->pnum, e->ec); 1954 wl_tree_add(e, &ubi->scrub); 1955 } 1956 1957 found_pebs++; 1958 } 1959 } 1960 1961 dbg_wl("found %i PEBs", found_pebs); 1962 1963 if (ubi->fm) 1964 ubi_assert(ubi->good_peb_count == \ 1965 found_pebs + ubi->fm->used_blocks); 1966 else 1967 ubi_assert(ubi->good_peb_count == found_pebs); 1968 1969 reserved_pebs = WL_RESERVED_PEBS; 1970 #ifdef CONFIG_MTD_UBI_FASTMAP 1971 /* Reserve enough LEBs to store two fastmaps. */ 1972 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; 1973 #endif 1974 1975 if (ubi->avail_pebs < reserved_pebs) { 1976 ubi_err("no enough physical eraseblocks (%d, need %d)", 1977 ubi->avail_pebs, reserved_pebs); 1978 if (ubi->corr_peb_count) 1979 ubi_err("%d PEBs are corrupted and not used", 1980 ubi->corr_peb_count); 1981 goto out_free; 1982 } 1983 ubi->avail_pebs -= reserved_pebs; 1984 ubi->rsvd_pebs += reserved_pebs; 1985 1986 /* Schedule wear-leveling if needed */ 1987 err = ensure_wear_leveling(ubi, 0); 1988 if (err) 1989 goto out_free; 1990 1991 return 0; 1992 1993 out_free: 1994 cancel_pending(ubi); 1995 tree_destroy(&ubi->used); 1996 tree_destroy(&ubi->free); 1997 tree_destroy(&ubi->scrub); 1998 kfree(ubi->lookuptbl); 1999 return err; 2000 } 2001 2002 /** 2003 * protection_queue_destroy - destroy the protection queue. 2004 * @ubi: UBI device description object 2005 */ 2006 static void protection_queue_destroy(struct ubi_device *ubi) 2007 { 2008 int i; 2009 struct ubi_wl_entry *e, *tmp; 2010 2011 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 2012 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 2013 list_del(&e->u.list); 2014 kmem_cache_free(ubi_wl_entry_slab, e); 2015 } 2016 } 2017 } 2018 2019 /** 2020 * ubi_wl_close - close the wear-leveling sub-system. 2021 * @ubi: UBI device description object 2022 */ 2023 void ubi_wl_close(struct ubi_device *ubi) 2024 { 2025 dbg_wl("close the WL sub-system"); 2026 cancel_pending(ubi); 2027 protection_queue_destroy(ubi); 2028 tree_destroy(&ubi->used); 2029 tree_destroy(&ubi->erroneous); 2030 tree_destroy(&ubi->free); 2031 tree_destroy(&ubi->scrub); 2032 kfree(ubi->lookuptbl); 2033 } 2034 2035 /** 2036 * self_check_ec - make sure that the erase counter of a PEB is correct. 2037 * @ubi: UBI device description object 2038 * @pnum: the physical eraseblock number to check 2039 * @ec: the erase counter to check 2040 * 2041 * This function returns zero if the erase counter of physical eraseblock @pnum 2042 * is equivalent to @ec, and a negative error code if not or if an error 2043 * occurred. 2044 */ 2045 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2046 { 2047 int err; 2048 long long read_ec; 2049 struct ubi_ec_hdr *ec_hdr; 2050 2051 if (!ubi_dbg_chk_gen(ubi)) 2052 return 0; 2053 2054 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2055 if (!ec_hdr) 2056 return -ENOMEM; 2057 2058 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2059 if (err && err != UBI_IO_BITFLIPS) { 2060 /* The header does not have to exist */ 2061 err = 0; 2062 goto out_free; 2063 } 2064 2065 read_ec = be64_to_cpu(ec_hdr->ec); 2066 if (ec != read_ec && read_ec - ec > 1) { 2067 ubi_err("self-check failed for PEB %d", pnum); 2068 ubi_err("read EC is %lld, should be %d", read_ec, ec); 2069 dump_stack(); 2070 err = 1; 2071 } else 2072 err = 0; 2073 2074 out_free: 2075 kfree(ec_hdr); 2076 return err; 2077 } 2078 2079 /** 2080 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2081 * @ubi: UBI device description object 2082 * @e: the wear-leveling entry to check 2083 * @root: the root of the tree 2084 * 2085 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2086 * is not. 2087 */ 2088 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2089 struct ubi_wl_entry *e, struct rb_root *root) 2090 { 2091 if (!ubi_dbg_chk_gen(ubi)) 2092 return 0; 2093 2094 if (in_wl_tree(e, root)) 2095 return 0; 2096 2097 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", 2098 e->pnum, e->ec, root); 2099 dump_stack(); 2100 return -EINVAL; 2101 } 2102 2103 /** 2104 * self_check_in_pq - check if wear-leveling entry is in the protection 2105 * queue. 2106 * @ubi: UBI device description object 2107 * @e: the wear-leveling entry to check 2108 * 2109 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2110 */ 2111 static int self_check_in_pq(const struct ubi_device *ubi, 2112 struct ubi_wl_entry *e) 2113 { 2114 struct ubi_wl_entry *p; 2115 int i; 2116 2117 if (!ubi_dbg_chk_gen(ubi)) 2118 return 0; 2119 2120 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 2121 list_for_each_entry(p, &ubi->pq[i], u.list) 2122 if (p == e) 2123 return 0; 2124 2125 ubi_err("self-check failed for PEB %d, EC %d, Protect queue", 2126 e->pnum, e->ec); 2127 dump_stack(); 2128 return -EINVAL; 2129 } 2130