xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 3c6a73cc)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109 
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117 
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130 
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136 
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 				 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 			    struct ubi_wl_entry *e);
142 
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 	struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 	ubi_update_fastmap(ubi);
152 }
153 
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161 	int i;
162 
163 	if (!ubi->fm)
164 		return 0;
165 
166 	for (i = 0; i < ubi->fm->used_blocks; i++)
167 		if (ubi->fm->e[i]->pnum == pnum)
168 			return 1;
169 
170 	return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175 	return 0;
176 }
177 #endif
178 
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189 	struct rb_node **p, *parent = NULL;
190 
191 	p = &root->rb_node;
192 	while (*p) {
193 		struct ubi_wl_entry *e1;
194 
195 		parent = *p;
196 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197 
198 		if (e->ec < e1->ec)
199 			p = &(*p)->rb_left;
200 		else if (e->ec > e1->ec)
201 			p = &(*p)->rb_right;
202 		else {
203 			ubi_assert(e->pnum != e1->pnum);
204 			if (e->pnum < e1->pnum)
205 				p = &(*p)->rb_left;
206 			else
207 				p = &(*p)->rb_right;
208 		}
209 	}
210 
211 	rb_link_node(&e->u.rb, parent, p);
212 	rb_insert_color(&e->u.rb, root);
213 }
214 
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224 	int err;
225 	struct ubi_work *wrk;
226 
227 	cond_resched();
228 
229 	/*
230 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 	 * it in read mode, so many of them may be doing works at a time. But
232 	 * the queue flush code has to be sure the whole queue of works is
233 	 * done, and it takes the mutex in write mode.
234 	 */
235 	down_read(&ubi->work_sem);
236 	spin_lock(&ubi->wl_lock);
237 	if (list_empty(&ubi->works)) {
238 		spin_unlock(&ubi->wl_lock);
239 		up_read(&ubi->work_sem);
240 		return 0;
241 	}
242 
243 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 	list_del(&wrk->list);
245 	ubi->works_count -= 1;
246 	ubi_assert(ubi->works_count >= 0);
247 	spin_unlock(&ubi->wl_lock);
248 
249 	/*
250 	 * Call the worker function. Do not touch the work structure
251 	 * after this call as it will have been freed or reused by that
252 	 * time by the worker function.
253 	 */
254 	err = wrk->func(ubi, wrk, 0);
255 	if (err)
256 		ubi_err("work failed with error code %d", err);
257 	up_read(&ubi->work_sem);
258 
259 	return err;
260 }
261 
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273 	int err;
274 
275 	while (!ubi->free.rb_node && ubi->works_count) {
276 		spin_unlock(&ubi->wl_lock);
277 
278 		dbg_wl("do one work synchronously");
279 		err = do_work(ubi);
280 
281 		spin_lock(&ubi->wl_lock);
282 		if (err)
283 			return err;
284 	}
285 
286 	return 0;
287 }
288 
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299 	struct rb_node *p;
300 
301 	p = root->rb_node;
302 	while (p) {
303 		struct ubi_wl_entry *e1;
304 
305 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306 
307 		if (e->pnum == e1->pnum) {
308 			ubi_assert(e == e1);
309 			return 1;
310 		}
311 
312 		if (e->ec < e1->ec)
313 			p = p->rb_left;
314 		else if (e->ec > e1->ec)
315 			p = p->rb_right;
316 		else {
317 			ubi_assert(e->pnum != e1->pnum);
318 			if (e->pnum < e1->pnum)
319 				p = p->rb_left;
320 			else
321 				p = p->rb_right;
322 		}
323 	}
324 
325 	return 0;
326 }
327 
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340 	int pq_tail = ubi->pq_head - 1;
341 
342 	if (pq_tail < 0)
343 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348 
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 					  struct rb_root *root, int diff)
360 {
361 	struct rb_node *p;
362 	struct ubi_wl_entry *e, *prev_e = NULL;
363 	int max;
364 
365 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366 	max = e->ec + diff;
367 
368 	p = root->rb_node;
369 	while (p) {
370 		struct ubi_wl_entry *e1;
371 
372 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373 		if (e1->ec >= max)
374 			p = p->rb_left;
375 		else {
376 			p = p->rb_right;
377 			prev_e = e;
378 			e = e1;
379 		}
380 	}
381 
382 	/* If no fastmap has been written and this WL entry can be used
383 	 * as anchor PEB, hold it back and return the second best WL entry
384 	 * such that fastmap can use the anchor PEB later. */
385 	if (prev_e && !ubi->fm_disabled &&
386 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
387 		return prev_e;
388 
389 	return e;
390 }
391 
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 					       struct rb_root *root)
403 {
404 	struct ubi_wl_entry *e, *first, *last;
405 
406 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408 
409 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411 
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 		/* If no fastmap has been written and this WL entry can be used
414 		 * as anchor PEB, hold it back and return the second best
415 		 * WL entry such that fastmap can use the anchor PEB later. */
416 		if (e && !ubi->fm_disabled && !ubi->fm &&
417 		    e->pnum < UBI_FM_MAX_START)
418 			e = rb_entry(rb_next(root->rb_node),
419 				     struct ubi_wl_entry, u.rb);
420 #endif
421 	} else
422 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423 
424 	return e;
425 }
426 
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434 	struct rb_node *p;
435 	struct ubi_wl_entry *e, *victim = NULL;
436 	int max_ec = UBI_MAX_ERASECOUNTER;
437 
438 	ubi_rb_for_each_entry(p, e, root, u.rb) {
439 		if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440 			victim = e;
441 			max_ec = e->ec;
442 		}
443 	}
444 
445 	return victim;
446 }
447 
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450 	struct rb_node *p;
451 	struct ubi_wl_entry *e;
452 
453 	ubi_rb_for_each_entry(p, e, root, u.rb)
454 		if (e->pnum < UBI_FM_MAX_START)
455 			return 1;
456 
457 	return 0;
458 }
459 
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471 	struct ubi_wl_entry *e = NULL;
472 
473 	if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474 		goto out;
475 
476 	if (anchor)
477 		e = find_anchor_wl_entry(&ubi->free);
478 	else
479 		e = find_mean_wl_entry(ubi, &ubi->free);
480 
481 	if (!e)
482 		goto out;
483 
484 	self_check_in_wl_tree(ubi, e, &ubi->free);
485 
486 	/* remove it from the free list,
487 	 * the wl subsystem does no longer know this erase block */
488 	rb_erase(&e->u.rb, &ubi->free);
489 	ubi->free_count--;
490 out:
491 	return e;
492 }
493 #endif
494 
495 /**
496  * __wl_get_peb - get a physical eraseblock.
497  * @ubi: UBI device description object
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure.
501  */
502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504 	int err;
505 	struct ubi_wl_entry *e;
506 
507 retry:
508 	if (!ubi->free.rb_node) {
509 		if (ubi->works_count == 0) {
510 			ubi_err("no free eraseblocks");
511 			ubi_assert(list_empty(&ubi->works));
512 			return -ENOSPC;
513 		}
514 
515 		err = produce_free_peb(ubi);
516 		if (err < 0)
517 			return err;
518 		goto retry;
519 	}
520 
521 	e = find_mean_wl_entry(ubi, &ubi->free);
522 	if (!e) {
523 		ubi_err("no free eraseblocks");
524 		return -ENOSPC;
525 	}
526 
527 	self_check_in_wl_tree(ubi, e, &ubi->free);
528 
529 	/*
530 	 * Move the physical eraseblock to the protection queue where it will
531 	 * be protected from being moved for some time.
532 	 */
533 	rb_erase(&e->u.rb, &ubi->free);
534 	ubi->free_count--;
535 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537 	/* We have to enqueue e only if fastmap is disabled,
538 	 * is fastmap enabled prot_queue_add() will be called by
539 	 * ubi_wl_get_peb() after removing e from the pool. */
540 	prot_queue_add(ubi, e);
541 #endif
542 	return e->pnum;
543 }
544 
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547  * return_unused_pool_pebs - returns unused PEB to the free tree.
548  * @ubi: UBI device description object
549  * @pool: fastmap pool description object
550  */
551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552 				    struct ubi_fm_pool *pool)
553 {
554 	int i;
555 	struct ubi_wl_entry *e;
556 
557 	for (i = pool->used; i < pool->size; i++) {
558 		e = ubi->lookuptbl[pool->pebs[i]];
559 		wl_tree_add(e, &ubi->free);
560 		ubi->free_count++;
561 	}
562 }
563 
564 /**
565  * refill_wl_pool - refills all the fastmap pool used by the
566  * WL sub-system.
567  * @ubi: UBI device description object
568  */
569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571 	struct ubi_wl_entry *e;
572 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573 
574 	return_unused_pool_pebs(ubi, pool);
575 
576 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577 		if (!ubi->free.rb_node ||
578 		   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579 			break;
580 
581 		e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582 		self_check_in_wl_tree(ubi, e, &ubi->free);
583 		rb_erase(&e->u.rb, &ubi->free);
584 		ubi->free_count--;
585 
586 		pool->pebs[pool->size] = e->pnum;
587 	}
588 	pool->used = 0;
589 }
590 
591 /**
592  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593  * @ubi: UBI device description object
594  */
595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597 	struct ubi_fm_pool *pool = &ubi->fm_pool;
598 
599 	return_unused_pool_pebs(ubi, pool);
600 
601 	for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602 		pool->pebs[pool->size] = __wl_get_peb(ubi);
603 		if (pool->pebs[pool->size] < 0)
604 			break;
605 	}
606 	pool->used = 0;
607 }
608 
609 /**
610  * ubi_refill_pools - refills all fastmap PEB pools.
611  * @ubi: UBI device description object
612  */
613 void ubi_refill_pools(struct ubi_device *ubi)
614 {
615 	spin_lock(&ubi->wl_lock);
616 	refill_wl_pool(ubi);
617 	refill_wl_user_pool(ubi);
618 	spin_unlock(&ubi->wl_lock);
619 }
620 
621 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
622  * the fastmap pool.
623  */
624 int ubi_wl_get_peb(struct ubi_device *ubi)
625 {
626 	int ret;
627 	struct ubi_fm_pool *pool = &ubi->fm_pool;
628 	struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
629 
630 	if (!pool->size || !wl_pool->size || pool->used == pool->size ||
631 	    wl_pool->used == wl_pool->size)
632 		ubi_update_fastmap(ubi);
633 
634 	/* we got not a single free PEB */
635 	if (!pool->size)
636 		ret = -ENOSPC;
637 	else {
638 		spin_lock(&ubi->wl_lock);
639 		ret = pool->pebs[pool->used++];
640 		prot_queue_add(ubi, ubi->lookuptbl[ret]);
641 		spin_unlock(&ubi->wl_lock);
642 	}
643 
644 	return ret;
645 }
646 
647 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
648  *
649  * @ubi: UBI device description object
650  */
651 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
652 {
653 	struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
654 	int pnum;
655 
656 	if (pool->used == pool->size || !pool->size) {
657 		/* We cannot update the fastmap here because this
658 		 * function is called in atomic context.
659 		 * Let's fail here and refill/update it as soon as possible. */
660 		schedule_work(&ubi->fm_work);
661 		return NULL;
662 	} else {
663 		pnum = pool->pebs[pool->used++];
664 		return ubi->lookuptbl[pnum];
665 	}
666 }
667 #else
668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
669 {
670 	struct ubi_wl_entry *e;
671 
672 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
673 	self_check_in_wl_tree(ubi, e, &ubi->free);
674 	ubi->free_count--;
675 	ubi_assert(ubi->free_count >= 0);
676 	rb_erase(&e->u.rb, &ubi->free);
677 
678 	return e;
679 }
680 
681 int ubi_wl_get_peb(struct ubi_device *ubi)
682 {
683 	int peb, err;
684 
685 	spin_lock(&ubi->wl_lock);
686 	peb = __wl_get_peb(ubi);
687 	spin_unlock(&ubi->wl_lock);
688 
689 	if (peb < 0)
690 		return peb;
691 
692 	err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
693 				    ubi->peb_size - ubi->vid_hdr_aloffset);
694 	if (err) {
695 		ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
696 		return err;
697 	}
698 
699 	return peb;
700 }
701 #endif
702 
703 /**
704  * prot_queue_del - remove a physical eraseblock from the protection queue.
705  * @ubi: UBI device description object
706  * @pnum: the physical eraseblock to remove
707  *
708  * This function deletes PEB @pnum from the protection queue and returns zero
709  * in case of success and %-ENODEV if the PEB was not found.
710  */
711 static int prot_queue_del(struct ubi_device *ubi, int pnum)
712 {
713 	struct ubi_wl_entry *e;
714 
715 	e = ubi->lookuptbl[pnum];
716 	if (!e)
717 		return -ENODEV;
718 
719 	if (self_check_in_pq(ubi, e))
720 		return -ENODEV;
721 
722 	list_del(&e->u.list);
723 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
724 	return 0;
725 }
726 
727 /**
728  * sync_erase - synchronously erase a physical eraseblock.
729  * @ubi: UBI device description object
730  * @e: the the physical eraseblock to erase
731  * @torture: if the physical eraseblock has to be tortured
732  *
733  * This function returns zero in case of success and a negative error code in
734  * case of failure.
735  */
736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
737 		      int torture)
738 {
739 	int err;
740 	struct ubi_ec_hdr *ec_hdr;
741 	unsigned long long ec = e->ec;
742 
743 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
744 
745 	err = self_check_ec(ubi, e->pnum, e->ec);
746 	if (err)
747 		return -EINVAL;
748 
749 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
750 	if (!ec_hdr)
751 		return -ENOMEM;
752 
753 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
754 	if (err < 0)
755 		goto out_free;
756 
757 	ec += err;
758 	if (ec > UBI_MAX_ERASECOUNTER) {
759 		/*
760 		 * Erase counter overflow. Upgrade UBI and use 64-bit
761 		 * erase counters internally.
762 		 */
763 		ubi_err("erase counter overflow at PEB %d, EC %llu",
764 			e->pnum, ec);
765 		err = -EINVAL;
766 		goto out_free;
767 	}
768 
769 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
770 
771 	ec_hdr->ec = cpu_to_be64(ec);
772 
773 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
774 	if (err)
775 		goto out_free;
776 
777 	e->ec = ec;
778 	spin_lock(&ubi->wl_lock);
779 	if (e->ec > ubi->max_ec)
780 		ubi->max_ec = e->ec;
781 	spin_unlock(&ubi->wl_lock);
782 
783 out_free:
784 	kfree(ec_hdr);
785 	return err;
786 }
787 
788 /**
789  * serve_prot_queue - check if it is time to stop protecting PEBs.
790  * @ubi: UBI device description object
791  *
792  * This function is called after each erase operation and removes PEBs from the
793  * tail of the protection queue. These PEBs have been protected for long enough
794  * and should be moved to the used tree.
795  */
796 static void serve_prot_queue(struct ubi_device *ubi)
797 {
798 	struct ubi_wl_entry *e, *tmp;
799 	int count;
800 
801 	/*
802 	 * There may be several protected physical eraseblock to remove,
803 	 * process them all.
804 	 */
805 repeat:
806 	count = 0;
807 	spin_lock(&ubi->wl_lock);
808 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
809 		dbg_wl("PEB %d EC %d protection over, move to used tree",
810 			e->pnum, e->ec);
811 
812 		list_del(&e->u.list);
813 		wl_tree_add(e, &ubi->used);
814 		if (count++ > 32) {
815 			/*
816 			 * Let's be nice and avoid holding the spinlock for
817 			 * too long.
818 			 */
819 			spin_unlock(&ubi->wl_lock);
820 			cond_resched();
821 			goto repeat;
822 		}
823 	}
824 
825 	ubi->pq_head += 1;
826 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
827 		ubi->pq_head = 0;
828 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
829 	spin_unlock(&ubi->wl_lock);
830 }
831 
832 /**
833  * __schedule_ubi_work - schedule a work.
834  * @ubi: UBI device description object
835  * @wrk: the work to schedule
836  *
837  * This function adds a work defined by @wrk to the tail of the pending works
838  * list. Can only be used if ubi->work_sem is already held in read mode!
839  */
840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
841 {
842 	spin_lock(&ubi->wl_lock);
843 	list_add_tail(&wrk->list, &ubi->works);
844 	ubi_assert(ubi->works_count >= 0);
845 	ubi->works_count += 1;
846 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
847 		wake_up_process(ubi->bgt_thread);
848 	spin_unlock(&ubi->wl_lock);
849 }
850 
851 /**
852  * schedule_ubi_work - schedule a work.
853  * @ubi: UBI device description object
854  * @wrk: the work to schedule
855  *
856  * This function adds a work defined by @wrk to the tail of the pending works
857  * list.
858  */
859 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
860 {
861 	down_read(&ubi->work_sem);
862 	__schedule_ubi_work(ubi, wrk);
863 	up_read(&ubi->work_sem);
864 }
865 
866 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
867 			int shutdown);
868 
869 #ifdef CONFIG_MTD_UBI_FASTMAP
870 /**
871  * ubi_is_erase_work - checks whether a work is erase work.
872  * @wrk: The work object to be checked
873  */
874 int ubi_is_erase_work(struct ubi_work *wrk)
875 {
876 	return wrk->func == erase_worker;
877 }
878 #endif
879 
880 /**
881  * schedule_erase - schedule an erase work.
882  * @ubi: UBI device description object
883  * @e: the WL entry of the physical eraseblock to erase
884  * @vol_id: the volume ID that last used this PEB
885  * @lnum: the last used logical eraseblock number for the PEB
886  * @torture: if the physical eraseblock has to be tortured
887  *
888  * This function returns zero in case of success and a %-ENOMEM in case of
889  * failure.
890  */
891 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
892 			  int vol_id, int lnum, int torture)
893 {
894 	struct ubi_work *wl_wrk;
895 
896 	ubi_assert(e);
897 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
898 
899 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
900 	       e->pnum, e->ec, torture);
901 
902 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
903 	if (!wl_wrk)
904 		return -ENOMEM;
905 
906 	wl_wrk->func = &erase_worker;
907 	wl_wrk->e = e;
908 	wl_wrk->vol_id = vol_id;
909 	wl_wrk->lnum = lnum;
910 	wl_wrk->torture = torture;
911 
912 	schedule_ubi_work(ubi, wl_wrk);
913 	return 0;
914 }
915 
916 /**
917  * do_sync_erase - run the erase worker synchronously.
918  * @ubi: UBI device description object
919  * @e: the WL entry of the physical eraseblock to erase
920  * @vol_id: the volume ID that last used this PEB
921  * @lnum: the last used logical eraseblock number for the PEB
922  * @torture: if the physical eraseblock has to be tortured
923  *
924  */
925 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
926 			 int vol_id, int lnum, int torture)
927 {
928 	struct ubi_work *wl_wrk;
929 
930 	dbg_wl("sync erase of PEB %i", e->pnum);
931 
932 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
933 	if (!wl_wrk)
934 		return -ENOMEM;
935 
936 	wl_wrk->e = e;
937 	wl_wrk->vol_id = vol_id;
938 	wl_wrk->lnum = lnum;
939 	wl_wrk->torture = torture;
940 
941 	return erase_worker(ubi, wl_wrk, 0);
942 }
943 
944 #ifdef CONFIG_MTD_UBI_FASTMAP
945 /**
946  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
947  * sub-system.
948  * see: ubi_wl_put_peb()
949  *
950  * @ubi: UBI device description object
951  * @fm_e: physical eraseblock to return
952  * @lnum: the last used logical eraseblock number for the PEB
953  * @torture: if this physical eraseblock has to be tortured
954  */
955 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
956 		      int lnum, int torture)
957 {
958 	struct ubi_wl_entry *e;
959 	int vol_id, pnum = fm_e->pnum;
960 
961 	dbg_wl("PEB %d", pnum);
962 
963 	ubi_assert(pnum >= 0);
964 	ubi_assert(pnum < ubi->peb_count);
965 
966 	spin_lock(&ubi->wl_lock);
967 	e = ubi->lookuptbl[pnum];
968 
969 	/* This can happen if we recovered from a fastmap the very
970 	 * first time and writing now a new one. In this case the wl system
971 	 * has never seen any PEB used by the original fastmap.
972 	 */
973 	if (!e) {
974 		e = fm_e;
975 		ubi_assert(e->ec >= 0);
976 		ubi->lookuptbl[pnum] = e;
977 	} else {
978 		e->ec = fm_e->ec;
979 		kfree(fm_e);
980 	}
981 
982 	spin_unlock(&ubi->wl_lock);
983 
984 	vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
985 	return schedule_erase(ubi, e, vol_id, lnum, torture);
986 }
987 #endif
988 
989 /**
990  * wear_leveling_worker - wear-leveling worker function.
991  * @ubi: UBI device description object
992  * @wrk: the work object
993  * @shutdown: non-zero if the worker has to free memory and exit
994  * because the WL-subsystem is shutting down
995  *
996  * This function copies a more worn out physical eraseblock to a less worn out
997  * one. Returns zero in case of success and a negative error code in case of
998  * failure.
999  */
1000 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1001 				int shutdown)
1002 {
1003 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1004 	int vol_id = -1, uninitialized_var(lnum);
1005 #ifdef CONFIG_MTD_UBI_FASTMAP
1006 	int anchor = wrk->anchor;
1007 #endif
1008 	struct ubi_wl_entry *e1, *e2;
1009 	struct ubi_vid_hdr *vid_hdr;
1010 
1011 	kfree(wrk);
1012 	if (shutdown)
1013 		return 0;
1014 
1015 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1016 	if (!vid_hdr)
1017 		return -ENOMEM;
1018 
1019 	mutex_lock(&ubi->move_mutex);
1020 	spin_lock(&ubi->wl_lock);
1021 	ubi_assert(!ubi->move_from && !ubi->move_to);
1022 	ubi_assert(!ubi->move_to_put);
1023 
1024 	if (!ubi->free.rb_node ||
1025 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1026 		/*
1027 		 * No free physical eraseblocks? Well, they must be waiting in
1028 		 * the queue to be erased. Cancel movement - it will be
1029 		 * triggered again when a free physical eraseblock appears.
1030 		 *
1031 		 * No used physical eraseblocks? They must be temporarily
1032 		 * protected from being moved. They will be moved to the
1033 		 * @ubi->used tree later and the wear-leveling will be
1034 		 * triggered again.
1035 		 */
1036 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
1037 		       !ubi->free.rb_node, !ubi->used.rb_node);
1038 		goto out_cancel;
1039 	}
1040 
1041 #ifdef CONFIG_MTD_UBI_FASTMAP
1042 	/* Check whether we need to produce an anchor PEB */
1043 	if (!anchor)
1044 		anchor = !anchor_pebs_avalible(&ubi->free);
1045 
1046 	if (anchor) {
1047 		e1 = find_anchor_wl_entry(&ubi->used);
1048 		if (!e1)
1049 			goto out_cancel;
1050 		e2 = get_peb_for_wl(ubi);
1051 		if (!e2)
1052 			goto out_cancel;
1053 
1054 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1055 		rb_erase(&e1->u.rb, &ubi->used);
1056 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1057 	} else if (!ubi->scrub.rb_node) {
1058 #else
1059 	if (!ubi->scrub.rb_node) {
1060 #endif
1061 		/*
1062 		 * Now pick the least worn-out used physical eraseblock and a
1063 		 * highly worn-out free physical eraseblock. If the erase
1064 		 * counters differ much enough, start wear-leveling.
1065 		 */
1066 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1067 		e2 = get_peb_for_wl(ubi);
1068 		if (!e2)
1069 			goto out_cancel;
1070 
1071 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1072 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
1073 			       e1->ec, e2->ec);
1074 
1075 			/* Give the unused PEB back */
1076 			wl_tree_add(e2, &ubi->free);
1077 			ubi->free_count++;
1078 			goto out_cancel;
1079 		}
1080 		self_check_in_wl_tree(ubi, e1, &ubi->used);
1081 		rb_erase(&e1->u.rb, &ubi->used);
1082 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1083 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
1084 	} else {
1085 		/* Perform scrubbing */
1086 		scrubbing = 1;
1087 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1088 		e2 = get_peb_for_wl(ubi);
1089 		if (!e2)
1090 			goto out_cancel;
1091 
1092 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1093 		rb_erase(&e1->u.rb, &ubi->scrub);
1094 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1095 	}
1096 
1097 	ubi->move_from = e1;
1098 	ubi->move_to = e2;
1099 	spin_unlock(&ubi->wl_lock);
1100 
1101 	/*
1102 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1103 	 * We so far do not know which logical eraseblock our physical
1104 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
1105 	 * header first.
1106 	 *
1107 	 * Note, we are protected from this PEB being unmapped and erased. The
1108 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1109 	 * which is being moved was unmapped.
1110 	 */
1111 
1112 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1113 	if (err && err != UBI_IO_BITFLIPS) {
1114 		if (err == UBI_IO_FF) {
1115 			/*
1116 			 * We are trying to move PEB without a VID header. UBI
1117 			 * always write VID headers shortly after the PEB was
1118 			 * given, so we have a situation when it has not yet
1119 			 * had a chance to write it, because it was preempted.
1120 			 * So add this PEB to the protection queue so far,
1121 			 * because presumably more data will be written there
1122 			 * (including the missing VID header), and then we'll
1123 			 * move it.
1124 			 */
1125 			dbg_wl("PEB %d has no VID header", e1->pnum);
1126 			protect = 1;
1127 			goto out_not_moved;
1128 		} else if (err == UBI_IO_FF_BITFLIPS) {
1129 			/*
1130 			 * The same situation as %UBI_IO_FF, but bit-flips were
1131 			 * detected. It is better to schedule this PEB for
1132 			 * scrubbing.
1133 			 */
1134 			dbg_wl("PEB %d has no VID header but has bit-flips",
1135 			       e1->pnum);
1136 			scrubbing = 1;
1137 			goto out_not_moved;
1138 		}
1139 
1140 		ubi_err("error %d while reading VID header from PEB %d",
1141 			err, e1->pnum);
1142 		goto out_error;
1143 	}
1144 
1145 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1146 	lnum = be32_to_cpu(vid_hdr->lnum);
1147 
1148 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1149 	if (err) {
1150 		if (err == MOVE_CANCEL_RACE) {
1151 			/*
1152 			 * The LEB has not been moved because the volume is
1153 			 * being deleted or the PEB has been put meanwhile. We
1154 			 * should prevent this PEB from being selected for
1155 			 * wear-leveling movement again, so put it to the
1156 			 * protection queue.
1157 			 */
1158 			protect = 1;
1159 			goto out_not_moved;
1160 		}
1161 		if (err == MOVE_RETRY) {
1162 			scrubbing = 1;
1163 			goto out_not_moved;
1164 		}
1165 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1166 		    err == MOVE_TARGET_RD_ERR) {
1167 			/*
1168 			 * Target PEB had bit-flips or write error - torture it.
1169 			 */
1170 			torture = 1;
1171 			goto out_not_moved;
1172 		}
1173 
1174 		if (err == MOVE_SOURCE_RD_ERR) {
1175 			/*
1176 			 * An error happened while reading the source PEB. Do
1177 			 * not switch to R/O mode in this case, and give the
1178 			 * upper layers a possibility to recover from this,
1179 			 * e.g. by unmapping corresponding LEB. Instead, just
1180 			 * put this PEB to the @ubi->erroneous list to prevent
1181 			 * UBI from trying to move it over and over again.
1182 			 */
1183 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1184 				ubi_err("too many erroneous eraseblocks (%d)",
1185 					ubi->erroneous_peb_count);
1186 				goto out_error;
1187 			}
1188 			erroneous = 1;
1189 			goto out_not_moved;
1190 		}
1191 
1192 		if (err < 0)
1193 			goto out_error;
1194 
1195 		ubi_assert(0);
1196 	}
1197 
1198 	/* The PEB has been successfully moved */
1199 	if (scrubbing)
1200 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1201 			e1->pnum, vol_id, lnum, e2->pnum);
1202 	ubi_free_vid_hdr(ubi, vid_hdr);
1203 
1204 	spin_lock(&ubi->wl_lock);
1205 	if (!ubi->move_to_put) {
1206 		wl_tree_add(e2, &ubi->used);
1207 		e2 = NULL;
1208 	}
1209 	ubi->move_from = ubi->move_to = NULL;
1210 	ubi->move_to_put = ubi->wl_scheduled = 0;
1211 	spin_unlock(&ubi->wl_lock);
1212 
1213 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1214 	if (err) {
1215 		kmem_cache_free(ubi_wl_entry_slab, e1);
1216 		if (e2)
1217 			kmem_cache_free(ubi_wl_entry_slab, e2);
1218 		goto out_ro;
1219 	}
1220 
1221 	if (e2) {
1222 		/*
1223 		 * Well, the target PEB was put meanwhile, schedule it for
1224 		 * erasure.
1225 		 */
1226 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1227 		       e2->pnum, vol_id, lnum);
1228 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1229 		if (err) {
1230 			kmem_cache_free(ubi_wl_entry_slab, e2);
1231 			goto out_ro;
1232 		}
1233 	}
1234 
1235 	dbg_wl("done");
1236 	mutex_unlock(&ubi->move_mutex);
1237 	return 0;
1238 
1239 	/*
1240 	 * For some reasons the LEB was not moved, might be an error, might be
1241 	 * something else. @e1 was not changed, so return it back. @e2 might
1242 	 * have been changed, schedule it for erasure.
1243 	 */
1244 out_not_moved:
1245 	if (vol_id != -1)
1246 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1247 		       e1->pnum, vol_id, lnum, e2->pnum, err);
1248 	else
1249 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1250 		       e1->pnum, e2->pnum, err);
1251 	spin_lock(&ubi->wl_lock);
1252 	if (protect)
1253 		prot_queue_add(ubi, e1);
1254 	else if (erroneous) {
1255 		wl_tree_add(e1, &ubi->erroneous);
1256 		ubi->erroneous_peb_count += 1;
1257 	} else if (scrubbing)
1258 		wl_tree_add(e1, &ubi->scrub);
1259 	else
1260 		wl_tree_add(e1, &ubi->used);
1261 	ubi_assert(!ubi->move_to_put);
1262 	ubi->move_from = ubi->move_to = NULL;
1263 	ubi->wl_scheduled = 0;
1264 	spin_unlock(&ubi->wl_lock);
1265 
1266 	ubi_free_vid_hdr(ubi, vid_hdr);
1267 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1268 	if (err) {
1269 		kmem_cache_free(ubi_wl_entry_slab, e2);
1270 		goto out_ro;
1271 	}
1272 	mutex_unlock(&ubi->move_mutex);
1273 	return 0;
1274 
1275 out_error:
1276 	if (vol_id != -1)
1277 		ubi_err("error %d while moving PEB %d to PEB %d",
1278 			err, e1->pnum, e2->pnum);
1279 	else
1280 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1281 			err, e1->pnum, vol_id, lnum, e2->pnum);
1282 	spin_lock(&ubi->wl_lock);
1283 	ubi->move_from = ubi->move_to = NULL;
1284 	ubi->move_to_put = ubi->wl_scheduled = 0;
1285 	spin_unlock(&ubi->wl_lock);
1286 
1287 	ubi_free_vid_hdr(ubi, vid_hdr);
1288 	kmem_cache_free(ubi_wl_entry_slab, e1);
1289 	kmem_cache_free(ubi_wl_entry_slab, e2);
1290 
1291 out_ro:
1292 	ubi_ro_mode(ubi);
1293 	mutex_unlock(&ubi->move_mutex);
1294 	ubi_assert(err != 0);
1295 	return err < 0 ? err : -EIO;
1296 
1297 out_cancel:
1298 	ubi->wl_scheduled = 0;
1299 	spin_unlock(&ubi->wl_lock);
1300 	mutex_unlock(&ubi->move_mutex);
1301 	ubi_free_vid_hdr(ubi, vid_hdr);
1302 	return 0;
1303 }
1304 
1305 /**
1306  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1307  * @ubi: UBI device description object
1308  * @nested: set to non-zero if this function is called from UBI worker
1309  *
1310  * This function checks if it is time to start wear-leveling and schedules it
1311  * if yes. This function returns zero in case of success and a negative error
1312  * code in case of failure.
1313  */
1314 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1315 {
1316 	int err = 0;
1317 	struct ubi_wl_entry *e1;
1318 	struct ubi_wl_entry *e2;
1319 	struct ubi_work *wrk;
1320 
1321 	spin_lock(&ubi->wl_lock);
1322 	if (ubi->wl_scheduled)
1323 		/* Wear-leveling is already in the work queue */
1324 		goto out_unlock;
1325 
1326 	/*
1327 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1328 	 * the WL worker has to be scheduled anyway.
1329 	 */
1330 	if (!ubi->scrub.rb_node) {
1331 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1332 			/* No physical eraseblocks - no deal */
1333 			goto out_unlock;
1334 
1335 		/*
1336 		 * We schedule wear-leveling only if the difference between the
1337 		 * lowest erase counter of used physical eraseblocks and a high
1338 		 * erase counter of free physical eraseblocks is greater than
1339 		 * %UBI_WL_THRESHOLD.
1340 		 */
1341 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1342 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1343 
1344 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1345 			goto out_unlock;
1346 		dbg_wl("schedule wear-leveling");
1347 	} else
1348 		dbg_wl("schedule scrubbing");
1349 
1350 	ubi->wl_scheduled = 1;
1351 	spin_unlock(&ubi->wl_lock);
1352 
1353 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1354 	if (!wrk) {
1355 		err = -ENOMEM;
1356 		goto out_cancel;
1357 	}
1358 
1359 	wrk->anchor = 0;
1360 	wrk->func = &wear_leveling_worker;
1361 	if (nested)
1362 		__schedule_ubi_work(ubi, wrk);
1363 	else
1364 		schedule_ubi_work(ubi, wrk);
1365 	return err;
1366 
1367 out_cancel:
1368 	spin_lock(&ubi->wl_lock);
1369 	ubi->wl_scheduled = 0;
1370 out_unlock:
1371 	spin_unlock(&ubi->wl_lock);
1372 	return err;
1373 }
1374 
1375 #ifdef CONFIG_MTD_UBI_FASTMAP
1376 /**
1377  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1378  * @ubi: UBI device description object
1379  */
1380 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1381 {
1382 	struct ubi_work *wrk;
1383 
1384 	spin_lock(&ubi->wl_lock);
1385 	if (ubi->wl_scheduled) {
1386 		spin_unlock(&ubi->wl_lock);
1387 		return 0;
1388 	}
1389 	ubi->wl_scheduled = 1;
1390 	spin_unlock(&ubi->wl_lock);
1391 
1392 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1393 	if (!wrk) {
1394 		spin_lock(&ubi->wl_lock);
1395 		ubi->wl_scheduled = 0;
1396 		spin_unlock(&ubi->wl_lock);
1397 		return -ENOMEM;
1398 	}
1399 
1400 	wrk->anchor = 1;
1401 	wrk->func = &wear_leveling_worker;
1402 	schedule_ubi_work(ubi, wrk);
1403 	return 0;
1404 }
1405 #endif
1406 
1407 /**
1408  * erase_worker - physical eraseblock erase worker function.
1409  * @ubi: UBI device description object
1410  * @wl_wrk: the work object
1411  * @shutdown: non-zero if the worker has to free memory and exit
1412  * because the WL sub-system is shutting down
1413  *
1414  * This function erases a physical eraseblock and perform torture testing if
1415  * needed. It also takes care about marking the physical eraseblock bad if
1416  * needed. Returns zero in case of success and a negative error code in case of
1417  * failure.
1418  */
1419 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1420 			int shutdown)
1421 {
1422 	struct ubi_wl_entry *e = wl_wrk->e;
1423 	int pnum = e->pnum;
1424 	int vol_id = wl_wrk->vol_id;
1425 	int lnum = wl_wrk->lnum;
1426 	int err, available_consumed = 0;
1427 
1428 	if (shutdown) {
1429 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1430 		kfree(wl_wrk);
1431 		kmem_cache_free(ubi_wl_entry_slab, e);
1432 		return 0;
1433 	}
1434 
1435 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1436 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1437 
1438 	ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1439 
1440 	err = sync_erase(ubi, e, wl_wrk->torture);
1441 	if (!err) {
1442 		/* Fine, we've erased it successfully */
1443 		kfree(wl_wrk);
1444 
1445 		spin_lock(&ubi->wl_lock);
1446 		wl_tree_add(e, &ubi->free);
1447 		ubi->free_count++;
1448 		spin_unlock(&ubi->wl_lock);
1449 
1450 		/*
1451 		 * One more erase operation has happened, take care about
1452 		 * protected physical eraseblocks.
1453 		 */
1454 		serve_prot_queue(ubi);
1455 
1456 		/* And take care about wear-leveling */
1457 		err = ensure_wear_leveling(ubi, 1);
1458 		return err;
1459 	}
1460 
1461 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1462 	kfree(wl_wrk);
1463 
1464 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1465 	    err == -EBUSY) {
1466 		int err1;
1467 
1468 		/* Re-schedule the LEB for erasure */
1469 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1470 		if (err1) {
1471 			err = err1;
1472 			goto out_ro;
1473 		}
1474 		return err;
1475 	}
1476 
1477 	kmem_cache_free(ubi_wl_entry_slab, e);
1478 	if (err != -EIO)
1479 		/*
1480 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1481 		 * this physical eraseblock for erasure again would cause
1482 		 * errors again and again. Well, lets switch to R/O mode.
1483 		 */
1484 		goto out_ro;
1485 
1486 	/* It is %-EIO, the PEB went bad */
1487 
1488 	if (!ubi->bad_allowed) {
1489 		ubi_err("bad physical eraseblock %d detected", pnum);
1490 		goto out_ro;
1491 	}
1492 
1493 	spin_lock(&ubi->volumes_lock);
1494 	if (ubi->beb_rsvd_pebs == 0) {
1495 		if (ubi->avail_pebs == 0) {
1496 			spin_unlock(&ubi->volumes_lock);
1497 			ubi_err("no reserved/available physical eraseblocks");
1498 			goto out_ro;
1499 		}
1500 		ubi->avail_pebs -= 1;
1501 		available_consumed = 1;
1502 	}
1503 	spin_unlock(&ubi->volumes_lock);
1504 
1505 	ubi_msg("mark PEB %d as bad", pnum);
1506 	err = ubi_io_mark_bad(ubi, pnum);
1507 	if (err)
1508 		goto out_ro;
1509 
1510 	spin_lock(&ubi->volumes_lock);
1511 	if (ubi->beb_rsvd_pebs > 0) {
1512 		if (available_consumed) {
1513 			/*
1514 			 * The amount of reserved PEBs increased since we last
1515 			 * checked.
1516 			 */
1517 			ubi->avail_pebs += 1;
1518 			available_consumed = 0;
1519 		}
1520 		ubi->beb_rsvd_pebs -= 1;
1521 	}
1522 	ubi->bad_peb_count += 1;
1523 	ubi->good_peb_count -= 1;
1524 	ubi_calculate_reserved(ubi);
1525 	if (available_consumed)
1526 		ubi_warn("no PEBs in the reserved pool, used an available PEB");
1527 	else if (ubi->beb_rsvd_pebs)
1528 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1529 	else
1530 		ubi_warn("last PEB from the reserve was used");
1531 	spin_unlock(&ubi->volumes_lock);
1532 
1533 	return err;
1534 
1535 out_ro:
1536 	if (available_consumed) {
1537 		spin_lock(&ubi->volumes_lock);
1538 		ubi->avail_pebs += 1;
1539 		spin_unlock(&ubi->volumes_lock);
1540 	}
1541 	ubi_ro_mode(ubi);
1542 	return err;
1543 }
1544 
1545 /**
1546  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1547  * @ubi: UBI device description object
1548  * @vol_id: the volume ID that last used this PEB
1549  * @lnum: the last used logical eraseblock number for the PEB
1550  * @pnum: physical eraseblock to return
1551  * @torture: if this physical eraseblock has to be tortured
1552  *
1553  * This function is called to return physical eraseblock @pnum to the pool of
1554  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1555  * occurred to this @pnum and it has to be tested. This function returns zero
1556  * in case of success, and a negative error code in case of failure.
1557  */
1558 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1559 		   int pnum, int torture)
1560 {
1561 	int err;
1562 	struct ubi_wl_entry *e;
1563 
1564 	dbg_wl("PEB %d", pnum);
1565 	ubi_assert(pnum >= 0);
1566 	ubi_assert(pnum < ubi->peb_count);
1567 
1568 retry:
1569 	spin_lock(&ubi->wl_lock);
1570 	e = ubi->lookuptbl[pnum];
1571 	if (e == ubi->move_from) {
1572 		/*
1573 		 * User is putting the physical eraseblock which was selected to
1574 		 * be moved. It will be scheduled for erasure in the
1575 		 * wear-leveling worker.
1576 		 */
1577 		dbg_wl("PEB %d is being moved, wait", pnum);
1578 		spin_unlock(&ubi->wl_lock);
1579 
1580 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1581 		mutex_lock(&ubi->move_mutex);
1582 		mutex_unlock(&ubi->move_mutex);
1583 		goto retry;
1584 	} else if (e == ubi->move_to) {
1585 		/*
1586 		 * User is putting the physical eraseblock which was selected
1587 		 * as the target the data is moved to. It may happen if the EBA
1588 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1589 		 * but the WL sub-system has not put the PEB to the "used" tree
1590 		 * yet, but it is about to do this. So we just set a flag which
1591 		 * will tell the WL worker that the PEB is not needed anymore
1592 		 * and should be scheduled for erasure.
1593 		 */
1594 		dbg_wl("PEB %d is the target of data moving", pnum);
1595 		ubi_assert(!ubi->move_to_put);
1596 		ubi->move_to_put = 1;
1597 		spin_unlock(&ubi->wl_lock);
1598 		return 0;
1599 	} else {
1600 		if (in_wl_tree(e, &ubi->used)) {
1601 			self_check_in_wl_tree(ubi, e, &ubi->used);
1602 			rb_erase(&e->u.rb, &ubi->used);
1603 		} else if (in_wl_tree(e, &ubi->scrub)) {
1604 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1605 			rb_erase(&e->u.rb, &ubi->scrub);
1606 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1607 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1608 			rb_erase(&e->u.rb, &ubi->erroneous);
1609 			ubi->erroneous_peb_count -= 1;
1610 			ubi_assert(ubi->erroneous_peb_count >= 0);
1611 			/* Erroneous PEBs should be tortured */
1612 			torture = 1;
1613 		} else {
1614 			err = prot_queue_del(ubi, e->pnum);
1615 			if (err) {
1616 				ubi_err("PEB %d not found", pnum);
1617 				ubi_ro_mode(ubi);
1618 				spin_unlock(&ubi->wl_lock);
1619 				return err;
1620 			}
1621 		}
1622 	}
1623 	spin_unlock(&ubi->wl_lock);
1624 
1625 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1626 	if (err) {
1627 		spin_lock(&ubi->wl_lock);
1628 		wl_tree_add(e, &ubi->used);
1629 		spin_unlock(&ubi->wl_lock);
1630 	}
1631 
1632 	return err;
1633 }
1634 
1635 /**
1636  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1637  * @ubi: UBI device description object
1638  * @pnum: the physical eraseblock to schedule
1639  *
1640  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1641  * needs scrubbing. This function schedules a physical eraseblock for
1642  * scrubbing which is done in background. This function returns zero in case of
1643  * success and a negative error code in case of failure.
1644  */
1645 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1646 {
1647 	struct ubi_wl_entry *e;
1648 
1649 	ubi_msg("schedule PEB %d for scrubbing", pnum);
1650 
1651 retry:
1652 	spin_lock(&ubi->wl_lock);
1653 	e = ubi->lookuptbl[pnum];
1654 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1655 				   in_wl_tree(e, &ubi->erroneous)) {
1656 		spin_unlock(&ubi->wl_lock);
1657 		return 0;
1658 	}
1659 
1660 	if (e == ubi->move_to) {
1661 		/*
1662 		 * This physical eraseblock was used to move data to. The data
1663 		 * was moved but the PEB was not yet inserted to the proper
1664 		 * tree. We should just wait a little and let the WL worker
1665 		 * proceed.
1666 		 */
1667 		spin_unlock(&ubi->wl_lock);
1668 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1669 		yield();
1670 		goto retry;
1671 	}
1672 
1673 	if (in_wl_tree(e, &ubi->used)) {
1674 		self_check_in_wl_tree(ubi, e, &ubi->used);
1675 		rb_erase(&e->u.rb, &ubi->used);
1676 	} else {
1677 		int err;
1678 
1679 		err = prot_queue_del(ubi, e->pnum);
1680 		if (err) {
1681 			ubi_err("PEB %d not found", pnum);
1682 			ubi_ro_mode(ubi);
1683 			spin_unlock(&ubi->wl_lock);
1684 			return err;
1685 		}
1686 	}
1687 
1688 	wl_tree_add(e, &ubi->scrub);
1689 	spin_unlock(&ubi->wl_lock);
1690 
1691 	/*
1692 	 * Technically scrubbing is the same as wear-leveling, so it is done
1693 	 * by the WL worker.
1694 	 */
1695 	return ensure_wear_leveling(ubi, 0);
1696 }
1697 
1698 /**
1699  * ubi_wl_flush - flush all pending works.
1700  * @ubi: UBI device description object
1701  * @vol_id: the volume id to flush for
1702  * @lnum: the logical eraseblock number to flush for
1703  *
1704  * This function executes all pending works for a particular volume id /
1705  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1706  * acts as a wildcard for all of the corresponding volume numbers or logical
1707  * eraseblock numbers. It returns zero in case of success and a negative error
1708  * code in case of failure.
1709  */
1710 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1711 {
1712 	int err = 0;
1713 	int found = 1;
1714 
1715 	/*
1716 	 * Erase while the pending works queue is not empty, but not more than
1717 	 * the number of currently pending works.
1718 	 */
1719 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1720 	       vol_id, lnum, ubi->works_count);
1721 
1722 	while (found) {
1723 		struct ubi_work *wrk, *tmp;
1724 		found = 0;
1725 
1726 		down_read(&ubi->work_sem);
1727 		spin_lock(&ubi->wl_lock);
1728 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1729 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1730 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1731 				list_del(&wrk->list);
1732 				ubi->works_count -= 1;
1733 				ubi_assert(ubi->works_count >= 0);
1734 				spin_unlock(&ubi->wl_lock);
1735 
1736 				err = wrk->func(ubi, wrk, 0);
1737 				if (err) {
1738 					up_read(&ubi->work_sem);
1739 					return err;
1740 				}
1741 
1742 				spin_lock(&ubi->wl_lock);
1743 				found = 1;
1744 				break;
1745 			}
1746 		}
1747 		spin_unlock(&ubi->wl_lock);
1748 		up_read(&ubi->work_sem);
1749 	}
1750 
1751 	/*
1752 	 * Make sure all the works which have been done in parallel are
1753 	 * finished.
1754 	 */
1755 	down_write(&ubi->work_sem);
1756 	up_write(&ubi->work_sem);
1757 
1758 	return err;
1759 }
1760 
1761 /**
1762  * tree_destroy - destroy an RB-tree.
1763  * @root: the root of the tree to destroy
1764  */
1765 static void tree_destroy(struct rb_root *root)
1766 {
1767 	struct rb_node *rb;
1768 	struct ubi_wl_entry *e;
1769 
1770 	rb = root->rb_node;
1771 	while (rb) {
1772 		if (rb->rb_left)
1773 			rb = rb->rb_left;
1774 		else if (rb->rb_right)
1775 			rb = rb->rb_right;
1776 		else {
1777 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1778 
1779 			rb = rb_parent(rb);
1780 			if (rb) {
1781 				if (rb->rb_left == &e->u.rb)
1782 					rb->rb_left = NULL;
1783 				else
1784 					rb->rb_right = NULL;
1785 			}
1786 
1787 			kmem_cache_free(ubi_wl_entry_slab, e);
1788 		}
1789 	}
1790 }
1791 
1792 /**
1793  * ubi_thread - UBI background thread.
1794  * @u: the UBI device description object pointer
1795  */
1796 int ubi_thread(void *u)
1797 {
1798 	int failures = 0;
1799 	struct ubi_device *ubi = u;
1800 
1801 	ubi_msg("background thread \"%s\" started, PID %d",
1802 		ubi->bgt_name, task_pid_nr(current));
1803 
1804 	set_freezable();
1805 	for (;;) {
1806 		int err;
1807 
1808 		if (kthread_should_stop())
1809 			break;
1810 
1811 		if (try_to_freeze())
1812 			continue;
1813 
1814 		spin_lock(&ubi->wl_lock);
1815 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1816 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1817 			set_current_state(TASK_INTERRUPTIBLE);
1818 			spin_unlock(&ubi->wl_lock);
1819 			schedule();
1820 			continue;
1821 		}
1822 		spin_unlock(&ubi->wl_lock);
1823 
1824 		err = do_work(ubi);
1825 		if (err) {
1826 			ubi_err("%s: work failed with error code %d",
1827 				ubi->bgt_name, err);
1828 			if (failures++ > WL_MAX_FAILURES) {
1829 				/*
1830 				 * Too many failures, disable the thread and
1831 				 * switch to read-only mode.
1832 				 */
1833 				ubi_msg("%s: %d consecutive failures",
1834 					ubi->bgt_name, WL_MAX_FAILURES);
1835 				ubi_ro_mode(ubi);
1836 				ubi->thread_enabled = 0;
1837 				continue;
1838 			}
1839 		} else
1840 			failures = 0;
1841 
1842 		cond_resched();
1843 	}
1844 
1845 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1846 	return 0;
1847 }
1848 
1849 /**
1850  * shutdown_work - shutdown all pending works.
1851  * @ubi: UBI device description object
1852  */
1853 static void shutdown_work(struct ubi_device *ubi)
1854 {
1855 	while (!list_empty(&ubi->works)) {
1856 		struct ubi_work *wrk;
1857 
1858 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1859 		list_del(&wrk->list);
1860 		wrk->func(ubi, wrk, 1);
1861 		ubi->works_count -= 1;
1862 		ubi_assert(ubi->works_count >= 0);
1863 	}
1864 }
1865 
1866 /**
1867  * ubi_wl_init - initialize the WL sub-system using attaching information.
1868  * @ubi: UBI device description object
1869  * @ai: attaching information
1870  *
1871  * This function returns zero in case of success, and a negative error code in
1872  * case of failure.
1873  */
1874 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1875 {
1876 	int err, i, reserved_pebs, found_pebs = 0;
1877 	struct rb_node *rb1, *rb2;
1878 	struct ubi_ainf_volume *av;
1879 	struct ubi_ainf_peb *aeb, *tmp;
1880 	struct ubi_wl_entry *e;
1881 
1882 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1883 	spin_lock_init(&ubi->wl_lock);
1884 	mutex_init(&ubi->move_mutex);
1885 	init_rwsem(&ubi->work_sem);
1886 	ubi->max_ec = ai->max_ec;
1887 	INIT_LIST_HEAD(&ubi->works);
1888 #ifdef CONFIG_MTD_UBI_FASTMAP
1889 	INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1890 #endif
1891 
1892 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1893 
1894 	err = -ENOMEM;
1895 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1896 	if (!ubi->lookuptbl)
1897 		return err;
1898 
1899 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1900 		INIT_LIST_HEAD(&ubi->pq[i]);
1901 	ubi->pq_head = 0;
1902 
1903 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1904 		cond_resched();
1905 
1906 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1907 		if (!e)
1908 			goto out_free;
1909 
1910 		e->pnum = aeb->pnum;
1911 		e->ec = aeb->ec;
1912 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1913 		ubi->lookuptbl[e->pnum] = e;
1914 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1915 			kmem_cache_free(ubi_wl_entry_slab, e);
1916 			goto out_free;
1917 		}
1918 
1919 		found_pebs++;
1920 	}
1921 
1922 	ubi->free_count = 0;
1923 	list_for_each_entry(aeb, &ai->free, u.list) {
1924 		cond_resched();
1925 
1926 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1927 		if (!e)
1928 			goto out_free;
1929 
1930 		e->pnum = aeb->pnum;
1931 		e->ec = aeb->ec;
1932 		ubi_assert(e->ec >= 0);
1933 		ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1934 
1935 		wl_tree_add(e, &ubi->free);
1936 		ubi->free_count++;
1937 
1938 		ubi->lookuptbl[e->pnum] = e;
1939 
1940 		found_pebs++;
1941 	}
1942 
1943 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1944 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1945 			cond_resched();
1946 
1947 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1948 			if (!e)
1949 				goto out_free;
1950 
1951 			e->pnum = aeb->pnum;
1952 			e->ec = aeb->ec;
1953 			ubi->lookuptbl[e->pnum] = e;
1954 
1955 			if (!aeb->scrub) {
1956 				dbg_wl("add PEB %d EC %d to the used tree",
1957 				       e->pnum, e->ec);
1958 				wl_tree_add(e, &ubi->used);
1959 			} else {
1960 				dbg_wl("add PEB %d EC %d to the scrub tree",
1961 				       e->pnum, e->ec);
1962 				wl_tree_add(e, &ubi->scrub);
1963 			}
1964 
1965 			found_pebs++;
1966 		}
1967 	}
1968 
1969 	dbg_wl("found %i PEBs", found_pebs);
1970 
1971 	if (ubi->fm)
1972 		ubi_assert(ubi->good_peb_count == \
1973 			   found_pebs + ubi->fm->used_blocks);
1974 	else
1975 		ubi_assert(ubi->good_peb_count == found_pebs);
1976 
1977 	reserved_pebs = WL_RESERVED_PEBS;
1978 #ifdef CONFIG_MTD_UBI_FASTMAP
1979 	/* Reserve enough LEBs to store two fastmaps. */
1980 	reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1981 #endif
1982 
1983 	if (ubi->avail_pebs < reserved_pebs) {
1984 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1985 			ubi->avail_pebs, reserved_pebs);
1986 		if (ubi->corr_peb_count)
1987 			ubi_err("%d PEBs are corrupted and not used",
1988 				ubi->corr_peb_count);
1989 		goto out_free;
1990 	}
1991 	ubi->avail_pebs -= reserved_pebs;
1992 	ubi->rsvd_pebs += reserved_pebs;
1993 
1994 	/* Schedule wear-leveling if needed */
1995 	err = ensure_wear_leveling(ubi, 0);
1996 	if (err)
1997 		goto out_free;
1998 
1999 	return 0;
2000 
2001 out_free:
2002 	shutdown_work(ubi);
2003 	tree_destroy(&ubi->used);
2004 	tree_destroy(&ubi->free);
2005 	tree_destroy(&ubi->scrub);
2006 	kfree(ubi->lookuptbl);
2007 	return err;
2008 }
2009 
2010 /**
2011  * protection_queue_destroy - destroy the protection queue.
2012  * @ubi: UBI device description object
2013  */
2014 static void protection_queue_destroy(struct ubi_device *ubi)
2015 {
2016 	int i;
2017 	struct ubi_wl_entry *e, *tmp;
2018 
2019 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2020 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2021 			list_del(&e->u.list);
2022 			kmem_cache_free(ubi_wl_entry_slab, e);
2023 		}
2024 	}
2025 }
2026 
2027 /**
2028  * ubi_wl_close - close the wear-leveling sub-system.
2029  * @ubi: UBI device description object
2030  */
2031 void ubi_wl_close(struct ubi_device *ubi)
2032 {
2033 	dbg_wl("close the WL sub-system");
2034 	shutdown_work(ubi);
2035 	protection_queue_destroy(ubi);
2036 	tree_destroy(&ubi->used);
2037 	tree_destroy(&ubi->erroneous);
2038 	tree_destroy(&ubi->free);
2039 	tree_destroy(&ubi->scrub);
2040 	kfree(ubi->lookuptbl);
2041 }
2042 
2043 /**
2044  * self_check_ec - make sure that the erase counter of a PEB is correct.
2045  * @ubi: UBI device description object
2046  * @pnum: the physical eraseblock number to check
2047  * @ec: the erase counter to check
2048  *
2049  * This function returns zero if the erase counter of physical eraseblock @pnum
2050  * is equivalent to @ec, and a negative error code if not or if an error
2051  * occurred.
2052  */
2053 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2054 {
2055 	int err;
2056 	long long read_ec;
2057 	struct ubi_ec_hdr *ec_hdr;
2058 
2059 	if (!ubi_dbg_chk_gen(ubi))
2060 		return 0;
2061 
2062 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2063 	if (!ec_hdr)
2064 		return -ENOMEM;
2065 
2066 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2067 	if (err && err != UBI_IO_BITFLIPS) {
2068 		/* The header does not have to exist */
2069 		err = 0;
2070 		goto out_free;
2071 	}
2072 
2073 	read_ec = be64_to_cpu(ec_hdr->ec);
2074 	if (ec != read_ec && read_ec - ec > 1) {
2075 		ubi_err("self-check failed for PEB %d", pnum);
2076 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
2077 		dump_stack();
2078 		err = 1;
2079 	} else
2080 		err = 0;
2081 
2082 out_free:
2083 	kfree(ec_hdr);
2084 	return err;
2085 }
2086 
2087 /**
2088  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2089  * @ubi: UBI device description object
2090  * @e: the wear-leveling entry to check
2091  * @root: the root of the tree
2092  *
2093  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2094  * is not.
2095  */
2096 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2097 				 struct ubi_wl_entry *e, struct rb_root *root)
2098 {
2099 	if (!ubi_dbg_chk_gen(ubi))
2100 		return 0;
2101 
2102 	if (in_wl_tree(e, root))
2103 		return 0;
2104 
2105 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2106 		e->pnum, e->ec, root);
2107 	dump_stack();
2108 	return -EINVAL;
2109 }
2110 
2111 /**
2112  * self_check_in_pq - check if wear-leveling entry is in the protection
2113  *                        queue.
2114  * @ubi: UBI device description object
2115  * @e: the wear-leveling entry to check
2116  *
2117  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2118  */
2119 static int self_check_in_pq(const struct ubi_device *ubi,
2120 			    struct ubi_wl_entry *e)
2121 {
2122 	struct ubi_wl_entry *p;
2123 	int i;
2124 
2125 	if (!ubi_dbg_chk_gen(ubi))
2126 		return 0;
2127 
2128 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2129 		list_for_each_entry(p, &ubi->pq[i], u.list)
2130 			if (p == e)
2131 				return 0;
2132 
2133 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2134 		e->pnum, e->ec);
2135 	dump_stack();
2136 	return -EINVAL;
2137 }
2138