xref: /openbmc/linux/drivers/mtd/ubi/wl.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_tree_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
188 static int do_work(struct ubi_device *ubi)
189 {
190 	int err;
191 	struct ubi_work *wrk;
192 
193 	cond_resched();
194 
195 	/*
196 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 	 * it in read mode, so many of them may be doing works at a time. But
198 	 * the queue flush code has to be sure the whole queue of works is
199 	 * done, and it takes the mutex in write mode.
200 	 */
201 	down_read(&ubi->work_sem);
202 	spin_lock(&ubi->wl_lock);
203 	if (list_empty(&ubi->works)) {
204 		spin_unlock(&ubi->wl_lock);
205 		up_read(&ubi->work_sem);
206 		return 0;
207 	}
208 
209 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 	list_del(&wrk->list);
211 	ubi->works_count -= 1;
212 	ubi_assert(ubi->works_count >= 0);
213 	spin_unlock(&ubi->wl_lock);
214 
215 	/*
216 	 * Call the worker function. Do not touch the work structure
217 	 * after this call as it will have been freed or reused by that
218 	 * time by the worker function.
219 	 */
220 	err = wrk->func(ubi, wrk, 0);
221 	if (err)
222 		ubi_err(ubi, "work failed with error code %d", err);
223 	up_read(&ubi->work_sem);
224 
225 	return err;
226 }
227 
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 	struct rb_node *p;
239 
240 	p = root->rb_node;
241 	while (p) {
242 		struct ubi_wl_entry *e1;
243 
244 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245 
246 		if (e->pnum == e1->pnum) {
247 			ubi_assert(e == e1);
248 			return 1;
249 		}
250 
251 		if (e->ec < e1->ec)
252 			p = p->rb_left;
253 		else if (e->ec > e1->ec)
254 			p = p->rb_right;
255 		else {
256 			ubi_assert(e->pnum != e1->pnum);
257 			if (e->pnum < e1->pnum)
258 				p = p->rb_left;
259 			else
260 				p = p->rb_right;
261 		}
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	struct ubi_wl_entry *p;
278 	int i;
279 
280 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 		list_for_each_entry(p, &ubi->pq[i], u.list)
282 			if (p == e)
283 				return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 	int pq_tail = ubi->pq_head - 1;
301 
302 	if (pq_tail < 0)
303 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308 
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 					  struct rb_root *root, int diff)
320 {
321 	struct rb_node *p;
322 	struct ubi_wl_entry *e, *prev_e = NULL;
323 	int max;
324 
325 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 	max = e->ec + diff;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 		if (e1->ec >= max)
334 			p = p->rb_left;
335 		else {
336 			p = p->rb_right;
337 			prev_e = e;
338 			e = e1;
339 		}
340 	}
341 
342 	/* If no fastmap has been written and this WL entry can be used
343 	 * as anchor PEB, hold it back and return the second best WL entry
344 	 * such that fastmap can use the anchor PEB later. */
345 	if (prev_e && !ubi->fm_disabled &&
346 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
347 		return prev_e;
348 
349 	return e;
350 }
351 
352 /**
353  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
354  * @ubi: UBI device description object
355  * @root: the RB-tree where to look for
356  *
357  * This function looks for a wear leveling entry with medium erase counter,
358  * but not greater or equivalent than the lowest erase counter plus
359  * %WL_FREE_MAX_DIFF/2.
360  */
361 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
362 					       struct rb_root *root)
363 {
364 	struct ubi_wl_entry *e, *first, *last;
365 
366 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
367 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
368 
369 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
370 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
371 
372 		/* If no fastmap has been written and this WL entry can be used
373 		 * as anchor PEB, hold it back and return the second best
374 		 * WL entry such that fastmap can use the anchor PEB later. */
375 		e = may_reserve_for_fm(ubi, e, root);
376 	} else
377 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
378 
379 	return e;
380 }
381 
382 /**
383  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
384  * refill_wl_user_pool().
385  * @ubi: UBI device description object
386  *
387  * This function returns a a wear leveling entry in case of success and
388  * NULL in case of failure.
389  */
390 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
391 {
392 	struct ubi_wl_entry *e;
393 
394 	e = find_mean_wl_entry(ubi, &ubi->free);
395 	if (!e) {
396 		ubi_err(ubi, "no free eraseblocks");
397 		return NULL;
398 	}
399 
400 	self_check_in_wl_tree(ubi, e, &ubi->free);
401 
402 	/*
403 	 * Move the physical eraseblock to the protection queue where it will
404 	 * be protected from being moved for some time.
405 	 */
406 	rb_erase(&e->u.rb, &ubi->free);
407 	ubi->free_count--;
408 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
409 
410 	return e;
411 }
412 
413 /**
414  * prot_queue_del - remove a physical eraseblock from the protection queue.
415  * @ubi: UBI device description object
416  * @pnum: the physical eraseblock to remove
417  *
418  * This function deletes PEB @pnum from the protection queue and returns zero
419  * in case of success and %-ENODEV if the PEB was not found.
420  */
421 static int prot_queue_del(struct ubi_device *ubi, int pnum)
422 {
423 	struct ubi_wl_entry *e;
424 
425 	e = ubi->lookuptbl[pnum];
426 	if (!e)
427 		return -ENODEV;
428 
429 	if (self_check_in_pq(ubi, e))
430 		return -ENODEV;
431 
432 	list_del(&e->u.list);
433 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
434 	return 0;
435 }
436 
437 /**
438  * sync_erase - synchronously erase a physical eraseblock.
439  * @ubi: UBI device description object
440  * @e: the the physical eraseblock to erase
441  * @torture: if the physical eraseblock has to be tortured
442  *
443  * This function returns zero in case of success and a negative error code in
444  * case of failure.
445  */
446 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
447 		      int torture)
448 {
449 	int err;
450 	struct ubi_ec_hdr *ec_hdr;
451 	unsigned long long ec = e->ec;
452 
453 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
454 
455 	err = self_check_ec(ubi, e->pnum, e->ec);
456 	if (err)
457 		return -EINVAL;
458 
459 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
460 	if (!ec_hdr)
461 		return -ENOMEM;
462 
463 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
464 	if (err < 0)
465 		goto out_free;
466 
467 	ec += err;
468 	if (ec > UBI_MAX_ERASECOUNTER) {
469 		/*
470 		 * Erase counter overflow. Upgrade UBI and use 64-bit
471 		 * erase counters internally.
472 		 */
473 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
474 			e->pnum, ec);
475 		err = -EINVAL;
476 		goto out_free;
477 	}
478 
479 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
480 
481 	ec_hdr->ec = cpu_to_be64(ec);
482 
483 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
484 	if (err)
485 		goto out_free;
486 
487 	e->ec = ec;
488 	spin_lock(&ubi->wl_lock);
489 	if (e->ec > ubi->max_ec)
490 		ubi->max_ec = e->ec;
491 	spin_unlock(&ubi->wl_lock);
492 
493 out_free:
494 	kfree(ec_hdr);
495 	return err;
496 }
497 
498 /**
499  * serve_prot_queue - check if it is time to stop protecting PEBs.
500  * @ubi: UBI device description object
501  *
502  * This function is called after each erase operation and removes PEBs from the
503  * tail of the protection queue. These PEBs have been protected for long enough
504  * and should be moved to the used tree.
505  */
506 static void serve_prot_queue(struct ubi_device *ubi)
507 {
508 	struct ubi_wl_entry *e, *tmp;
509 	int count;
510 
511 	/*
512 	 * There may be several protected physical eraseblock to remove,
513 	 * process them all.
514 	 */
515 repeat:
516 	count = 0;
517 	spin_lock(&ubi->wl_lock);
518 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
519 		dbg_wl("PEB %d EC %d protection over, move to used tree",
520 			e->pnum, e->ec);
521 
522 		list_del(&e->u.list);
523 		wl_tree_add(e, &ubi->used);
524 		if (count++ > 32) {
525 			/*
526 			 * Let's be nice and avoid holding the spinlock for
527 			 * too long.
528 			 */
529 			spin_unlock(&ubi->wl_lock);
530 			cond_resched();
531 			goto repeat;
532 		}
533 	}
534 
535 	ubi->pq_head += 1;
536 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
537 		ubi->pq_head = 0;
538 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
539 	spin_unlock(&ubi->wl_lock);
540 }
541 
542 /**
543  * __schedule_ubi_work - schedule a work.
544  * @ubi: UBI device description object
545  * @wrk: the work to schedule
546  *
547  * This function adds a work defined by @wrk to the tail of the pending works
548  * list. Can only be used if ubi->work_sem is already held in read mode!
549  */
550 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
551 {
552 	spin_lock(&ubi->wl_lock);
553 	list_add_tail(&wrk->list, &ubi->works);
554 	ubi_assert(ubi->works_count >= 0);
555 	ubi->works_count += 1;
556 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
557 		wake_up_process(ubi->bgt_thread);
558 	spin_unlock(&ubi->wl_lock);
559 }
560 
561 /**
562  * schedule_ubi_work - schedule a work.
563  * @ubi: UBI device description object
564  * @wrk: the work to schedule
565  *
566  * This function adds a work defined by @wrk to the tail of the pending works
567  * list.
568  */
569 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
570 {
571 	down_read(&ubi->work_sem);
572 	__schedule_ubi_work(ubi, wrk);
573 	up_read(&ubi->work_sem);
574 }
575 
576 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
577 			int shutdown);
578 
579 /**
580  * schedule_erase - schedule an erase work.
581  * @ubi: UBI device description object
582  * @e: the WL entry of the physical eraseblock to erase
583  * @vol_id: the volume ID that last used this PEB
584  * @lnum: the last used logical eraseblock number for the PEB
585  * @torture: if the physical eraseblock has to be tortured
586  *
587  * This function returns zero in case of success and a %-ENOMEM in case of
588  * failure.
589  */
590 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
591 			  int vol_id, int lnum, int torture, bool nested)
592 {
593 	struct ubi_work *wl_wrk;
594 
595 	ubi_assert(e);
596 
597 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
598 	       e->pnum, e->ec, torture);
599 
600 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
601 	if (!wl_wrk)
602 		return -ENOMEM;
603 
604 	wl_wrk->func = &erase_worker;
605 	wl_wrk->e = e;
606 	wl_wrk->vol_id = vol_id;
607 	wl_wrk->lnum = lnum;
608 	wl_wrk->torture = torture;
609 
610 	if (nested)
611 		__schedule_ubi_work(ubi, wl_wrk);
612 	else
613 		schedule_ubi_work(ubi, wl_wrk);
614 	return 0;
615 }
616 
617 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
618 /**
619  * do_sync_erase - run the erase worker synchronously.
620  * @ubi: UBI device description object
621  * @e: the WL entry of the physical eraseblock to erase
622  * @vol_id: the volume ID that last used this PEB
623  * @lnum: the last used logical eraseblock number for the PEB
624  * @torture: if the physical eraseblock has to be tortured
625  *
626  */
627 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
628 			 int vol_id, int lnum, int torture)
629 {
630 	struct ubi_work wl_wrk;
631 
632 	dbg_wl("sync erase of PEB %i", e->pnum);
633 
634 	wl_wrk.e = e;
635 	wl_wrk.vol_id = vol_id;
636 	wl_wrk.lnum = lnum;
637 	wl_wrk.torture = torture;
638 
639 	return __erase_worker(ubi, &wl_wrk);
640 }
641 
642 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
643 /**
644  * wear_leveling_worker - wear-leveling worker function.
645  * @ubi: UBI device description object
646  * @wrk: the work object
647  * @shutdown: non-zero if the worker has to free memory and exit
648  * because the WL-subsystem is shutting down
649  *
650  * This function copies a more worn out physical eraseblock to a less worn out
651  * one. Returns zero in case of success and a negative error code in case of
652  * failure.
653  */
654 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
655 				int shutdown)
656 {
657 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
658 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
659 #ifdef CONFIG_MTD_UBI_FASTMAP
660 	int anchor = wrk->anchor;
661 #endif
662 	struct ubi_wl_entry *e1, *e2;
663 	struct ubi_vid_io_buf *vidb;
664 	struct ubi_vid_hdr *vid_hdr;
665 	int dst_leb_clean = 0;
666 
667 	kfree(wrk);
668 	if (shutdown)
669 		return 0;
670 
671 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
672 	if (!vidb)
673 		return -ENOMEM;
674 
675 	vid_hdr = ubi_get_vid_hdr(vidb);
676 
677 	down_read(&ubi->fm_eba_sem);
678 	mutex_lock(&ubi->move_mutex);
679 	spin_lock(&ubi->wl_lock);
680 	ubi_assert(!ubi->move_from && !ubi->move_to);
681 	ubi_assert(!ubi->move_to_put);
682 
683 	if (!ubi->free.rb_node ||
684 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
685 		/*
686 		 * No free physical eraseblocks? Well, they must be waiting in
687 		 * the queue to be erased. Cancel movement - it will be
688 		 * triggered again when a free physical eraseblock appears.
689 		 *
690 		 * No used physical eraseblocks? They must be temporarily
691 		 * protected from being moved. They will be moved to the
692 		 * @ubi->used tree later and the wear-leveling will be
693 		 * triggered again.
694 		 */
695 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
696 		       !ubi->free.rb_node, !ubi->used.rb_node);
697 		goto out_cancel;
698 	}
699 
700 #ifdef CONFIG_MTD_UBI_FASTMAP
701 	/* Check whether we need to produce an anchor PEB */
702 	if (!anchor)
703 		anchor = !anchor_pebs_available(&ubi->free);
704 
705 	if (anchor) {
706 		e1 = find_anchor_wl_entry(&ubi->used);
707 		if (!e1)
708 			goto out_cancel;
709 		e2 = get_peb_for_wl(ubi);
710 		if (!e2)
711 			goto out_cancel;
712 
713 		/*
714 		 * Anchor move within the anchor area is useless.
715 		 */
716 		if (e2->pnum < UBI_FM_MAX_START)
717 			goto out_cancel;
718 
719 		self_check_in_wl_tree(ubi, e1, &ubi->used);
720 		rb_erase(&e1->u.rb, &ubi->used);
721 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
722 	} else if (!ubi->scrub.rb_node) {
723 #else
724 	if (!ubi->scrub.rb_node) {
725 #endif
726 		/*
727 		 * Now pick the least worn-out used physical eraseblock and a
728 		 * highly worn-out free physical eraseblock. If the erase
729 		 * counters differ much enough, start wear-leveling.
730 		 */
731 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
732 		e2 = get_peb_for_wl(ubi);
733 		if (!e2)
734 			goto out_cancel;
735 
736 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
737 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
738 			       e1->ec, e2->ec);
739 
740 			/* Give the unused PEB back */
741 			wl_tree_add(e2, &ubi->free);
742 			ubi->free_count++;
743 			goto out_cancel;
744 		}
745 		self_check_in_wl_tree(ubi, e1, &ubi->used);
746 		rb_erase(&e1->u.rb, &ubi->used);
747 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
748 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
749 	} else {
750 		/* Perform scrubbing */
751 		scrubbing = 1;
752 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
753 		e2 = get_peb_for_wl(ubi);
754 		if (!e2)
755 			goto out_cancel;
756 
757 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
758 		rb_erase(&e1->u.rb, &ubi->scrub);
759 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
760 	}
761 
762 	ubi->move_from = e1;
763 	ubi->move_to = e2;
764 	spin_unlock(&ubi->wl_lock);
765 
766 	/*
767 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
768 	 * We so far do not know which logical eraseblock our physical
769 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
770 	 * header first.
771 	 *
772 	 * Note, we are protected from this PEB being unmapped and erased. The
773 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
774 	 * which is being moved was unmapped.
775 	 */
776 
777 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
778 	if (err && err != UBI_IO_BITFLIPS) {
779 		dst_leb_clean = 1;
780 		if (err == UBI_IO_FF) {
781 			/*
782 			 * We are trying to move PEB without a VID header. UBI
783 			 * always write VID headers shortly after the PEB was
784 			 * given, so we have a situation when it has not yet
785 			 * had a chance to write it, because it was preempted.
786 			 * So add this PEB to the protection queue so far,
787 			 * because presumably more data will be written there
788 			 * (including the missing VID header), and then we'll
789 			 * move it.
790 			 */
791 			dbg_wl("PEB %d has no VID header", e1->pnum);
792 			protect = 1;
793 			goto out_not_moved;
794 		} else if (err == UBI_IO_FF_BITFLIPS) {
795 			/*
796 			 * The same situation as %UBI_IO_FF, but bit-flips were
797 			 * detected. It is better to schedule this PEB for
798 			 * scrubbing.
799 			 */
800 			dbg_wl("PEB %d has no VID header but has bit-flips",
801 			       e1->pnum);
802 			scrubbing = 1;
803 			goto out_not_moved;
804 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
805 			/*
806 			 * While a full scan would detect interrupted erasures
807 			 * at attach time we can face them here when attached from
808 			 * Fastmap.
809 			 */
810 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
811 			       e1->pnum);
812 			erase = 1;
813 			goto out_not_moved;
814 		}
815 
816 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
817 			err, e1->pnum);
818 		goto out_error;
819 	}
820 
821 	vol_id = be32_to_cpu(vid_hdr->vol_id);
822 	lnum = be32_to_cpu(vid_hdr->lnum);
823 
824 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
825 	if (err) {
826 		if (err == MOVE_CANCEL_RACE) {
827 			/*
828 			 * The LEB has not been moved because the volume is
829 			 * being deleted or the PEB has been put meanwhile. We
830 			 * should prevent this PEB from being selected for
831 			 * wear-leveling movement again, so put it to the
832 			 * protection queue.
833 			 */
834 			protect = 1;
835 			dst_leb_clean = 1;
836 			goto out_not_moved;
837 		}
838 		if (err == MOVE_RETRY) {
839 			scrubbing = 1;
840 			dst_leb_clean = 1;
841 			goto out_not_moved;
842 		}
843 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
844 		    err == MOVE_TARGET_RD_ERR) {
845 			/*
846 			 * Target PEB had bit-flips or write error - torture it.
847 			 */
848 			torture = 1;
849 			keep = 1;
850 			goto out_not_moved;
851 		}
852 
853 		if (err == MOVE_SOURCE_RD_ERR) {
854 			/*
855 			 * An error happened while reading the source PEB. Do
856 			 * not switch to R/O mode in this case, and give the
857 			 * upper layers a possibility to recover from this,
858 			 * e.g. by unmapping corresponding LEB. Instead, just
859 			 * put this PEB to the @ubi->erroneous list to prevent
860 			 * UBI from trying to move it over and over again.
861 			 */
862 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
863 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
864 					ubi->erroneous_peb_count);
865 				goto out_error;
866 			}
867 			dst_leb_clean = 1;
868 			erroneous = 1;
869 			goto out_not_moved;
870 		}
871 
872 		if (err < 0)
873 			goto out_error;
874 
875 		ubi_assert(0);
876 	}
877 
878 	/* The PEB has been successfully moved */
879 	if (scrubbing)
880 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
881 			e1->pnum, vol_id, lnum, e2->pnum);
882 	ubi_free_vid_buf(vidb);
883 
884 	spin_lock(&ubi->wl_lock);
885 	if (!ubi->move_to_put) {
886 		wl_tree_add(e2, &ubi->used);
887 		e2 = NULL;
888 	}
889 	ubi->move_from = ubi->move_to = NULL;
890 	ubi->move_to_put = ubi->wl_scheduled = 0;
891 	spin_unlock(&ubi->wl_lock);
892 
893 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
894 	if (err) {
895 		if (e2)
896 			wl_entry_destroy(ubi, e2);
897 		goto out_ro;
898 	}
899 
900 	if (e2) {
901 		/*
902 		 * Well, the target PEB was put meanwhile, schedule it for
903 		 * erasure.
904 		 */
905 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
906 		       e2->pnum, vol_id, lnum);
907 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
908 		if (err)
909 			goto out_ro;
910 	}
911 
912 	dbg_wl("done");
913 	mutex_unlock(&ubi->move_mutex);
914 	up_read(&ubi->fm_eba_sem);
915 	return 0;
916 
917 	/*
918 	 * For some reasons the LEB was not moved, might be an error, might be
919 	 * something else. @e1 was not changed, so return it back. @e2 might
920 	 * have been changed, schedule it for erasure.
921 	 */
922 out_not_moved:
923 	if (vol_id != -1)
924 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
925 		       e1->pnum, vol_id, lnum, e2->pnum, err);
926 	else
927 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
928 		       e1->pnum, e2->pnum, err);
929 	spin_lock(&ubi->wl_lock);
930 	if (protect)
931 		prot_queue_add(ubi, e1);
932 	else if (erroneous) {
933 		wl_tree_add(e1, &ubi->erroneous);
934 		ubi->erroneous_peb_count += 1;
935 	} else if (scrubbing)
936 		wl_tree_add(e1, &ubi->scrub);
937 	else if (keep)
938 		wl_tree_add(e1, &ubi->used);
939 	if (dst_leb_clean) {
940 		wl_tree_add(e2, &ubi->free);
941 		ubi->free_count++;
942 	}
943 
944 	ubi_assert(!ubi->move_to_put);
945 	ubi->move_from = ubi->move_to = NULL;
946 	ubi->wl_scheduled = 0;
947 	spin_unlock(&ubi->wl_lock);
948 
949 	ubi_free_vid_buf(vidb);
950 	if (dst_leb_clean) {
951 		ensure_wear_leveling(ubi, 1);
952 	} else {
953 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
954 		if (err)
955 			goto out_ro;
956 	}
957 
958 	if (erase) {
959 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
960 		if (err)
961 			goto out_ro;
962 	}
963 
964 	mutex_unlock(&ubi->move_mutex);
965 	up_read(&ubi->fm_eba_sem);
966 	return 0;
967 
968 out_error:
969 	if (vol_id != -1)
970 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
971 			err, e1->pnum, e2->pnum);
972 	else
973 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
974 			err, e1->pnum, vol_id, lnum, e2->pnum);
975 	spin_lock(&ubi->wl_lock);
976 	ubi->move_from = ubi->move_to = NULL;
977 	ubi->move_to_put = ubi->wl_scheduled = 0;
978 	spin_unlock(&ubi->wl_lock);
979 
980 	ubi_free_vid_buf(vidb);
981 	wl_entry_destroy(ubi, e1);
982 	wl_entry_destroy(ubi, e2);
983 
984 out_ro:
985 	ubi_ro_mode(ubi);
986 	mutex_unlock(&ubi->move_mutex);
987 	up_read(&ubi->fm_eba_sem);
988 	ubi_assert(err != 0);
989 	return err < 0 ? err : -EIO;
990 
991 out_cancel:
992 	ubi->wl_scheduled = 0;
993 	spin_unlock(&ubi->wl_lock);
994 	mutex_unlock(&ubi->move_mutex);
995 	up_read(&ubi->fm_eba_sem);
996 	ubi_free_vid_buf(vidb);
997 	return 0;
998 }
999 
1000 /**
1001  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1002  * @ubi: UBI device description object
1003  * @nested: set to non-zero if this function is called from UBI worker
1004  *
1005  * This function checks if it is time to start wear-leveling and schedules it
1006  * if yes. This function returns zero in case of success and a negative error
1007  * code in case of failure.
1008  */
1009 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1010 {
1011 	int err = 0;
1012 	struct ubi_wl_entry *e1;
1013 	struct ubi_wl_entry *e2;
1014 	struct ubi_work *wrk;
1015 
1016 	spin_lock(&ubi->wl_lock);
1017 	if (ubi->wl_scheduled)
1018 		/* Wear-leveling is already in the work queue */
1019 		goto out_unlock;
1020 
1021 	/*
1022 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1023 	 * the WL worker has to be scheduled anyway.
1024 	 */
1025 	if (!ubi->scrub.rb_node) {
1026 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1027 			/* No physical eraseblocks - no deal */
1028 			goto out_unlock;
1029 
1030 		/*
1031 		 * We schedule wear-leveling only if the difference between the
1032 		 * lowest erase counter of used physical eraseblocks and a high
1033 		 * erase counter of free physical eraseblocks is greater than
1034 		 * %UBI_WL_THRESHOLD.
1035 		 */
1036 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1037 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1038 
1039 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1040 			goto out_unlock;
1041 		dbg_wl("schedule wear-leveling");
1042 	} else
1043 		dbg_wl("schedule scrubbing");
1044 
1045 	ubi->wl_scheduled = 1;
1046 	spin_unlock(&ubi->wl_lock);
1047 
1048 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1049 	if (!wrk) {
1050 		err = -ENOMEM;
1051 		goto out_cancel;
1052 	}
1053 
1054 	wrk->anchor = 0;
1055 	wrk->func = &wear_leveling_worker;
1056 	if (nested)
1057 		__schedule_ubi_work(ubi, wrk);
1058 	else
1059 		schedule_ubi_work(ubi, wrk);
1060 	return err;
1061 
1062 out_cancel:
1063 	spin_lock(&ubi->wl_lock);
1064 	ubi->wl_scheduled = 0;
1065 out_unlock:
1066 	spin_unlock(&ubi->wl_lock);
1067 	return err;
1068 }
1069 
1070 /**
1071  * __erase_worker - physical eraseblock erase worker function.
1072  * @ubi: UBI device description object
1073  * @wl_wrk: the work object
1074  * @shutdown: non-zero if the worker has to free memory and exit
1075  * because the WL sub-system is shutting down
1076  *
1077  * This function erases a physical eraseblock and perform torture testing if
1078  * needed. It also takes care about marking the physical eraseblock bad if
1079  * needed. Returns zero in case of success and a negative error code in case of
1080  * failure.
1081  */
1082 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1083 {
1084 	struct ubi_wl_entry *e = wl_wrk->e;
1085 	int pnum = e->pnum;
1086 	int vol_id = wl_wrk->vol_id;
1087 	int lnum = wl_wrk->lnum;
1088 	int err, available_consumed = 0;
1089 
1090 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1091 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1092 
1093 	err = sync_erase(ubi, e, wl_wrk->torture);
1094 	if (!err) {
1095 		spin_lock(&ubi->wl_lock);
1096 		wl_tree_add(e, &ubi->free);
1097 		ubi->free_count++;
1098 		spin_unlock(&ubi->wl_lock);
1099 
1100 		/*
1101 		 * One more erase operation has happened, take care about
1102 		 * protected physical eraseblocks.
1103 		 */
1104 		serve_prot_queue(ubi);
1105 
1106 		/* And take care about wear-leveling */
1107 		err = ensure_wear_leveling(ubi, 1);
1108 		return err;
1109 	}
1110 
1111 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1112 
1113 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1114 	    err == -EBUSY) {
1115 		int err1;
1116 
1117 		/* Re-schedule the LEB for erasure */
1118 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1119 		if (err1) {
1120 			wl_entry_destroy(ubi, e);
1121 			err = err1;
1122 			goto out_ro;
1123 		}
1124 		return err;
1125 	}
1126 
1127 	wl_entry_destroy(ubi, e);
1128 	if (err != -EIO)
1129 		/*
1130 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1131 		 * this physical eraseblock for erasure again would cause
1132 		 * errors again and again. Well, lets switch to R/O mode.
1133 		 */
1134 		goto out_ro;
1135 
1136 	/* It is %-EIO, the PEB went bad */
1137 
1138 	if (!ubi->bad_allowed) {
1139 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1140 		goto out_ro;
1141 	}
1142 
1143 	spin_lock(&ubi->volumes_lock);
1144 	if (ubi->beb_rsvd_pebs == 0) {
1145 		if (ubi->avail_pebs == 0) {
1146 			spin_unlock(&ubi->volumes_lock);
1147 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1148 			goto out_ro;
1149 		}
1150 		ubi->avail_pebs -= 1;
1151 		available_consumed = 1;
1152 	}
1153 	spin_unlock(&ubi->volumes_lock);
1154 
1155 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1156 	err = ubi_io_mark_bad(ubi, pnum);
1157 	if (err)
1158 		goto out_ro;
1159 
1160 	spin_lock(&ubi->volumes_lock);
1161 	if (ubi->beb_rsvd_pebs > 0) {
1162 		if (available_consumed) {
1163 			/*
1164 			 * The amount of reserved PEBs increased since we last
1165 			 * checked.
1166 			 */
1167 			ubi->avail_pebs += 1;
1168 			available_consumed = 0;
1169 		}
1170 		ubi->beb_rsvd_pebs -= 1;
1171 	}
1172 	ubi->bad_peb_count += 1;
1173 	ubi->good_peb_count -= 1;
1174 	ubi_calculate_reserved(ubi);
1175 	if (available_consumed)
1176 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1177 	else if (ubi->beb_rsvd_pebs)
1178 		ubi_msg(ubi, "%d PEBs left in the reserve",
1179 			ubi->beb_rsvd_pebs);
1180 	else
1181 		ubi_warn(ubi, "last PEB from the reserve was used");
1182 	spin_unlock(&ubi->volumes_lock);
1183 
1184 	return err;
1185 
1186 out_ro:
1187 	if (available_consumed) {
1188 		spin_lock(&ubi->volumes_lock);
1189 		ubi->avail_pebs += 1;
1190 		spin_unlock(&ubi->volumes_lock);
1191 	}
1192 	ubi_ro_mode(ubi);
1193 	return err;
1194 }
1195 
1196 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1197 			  int shutdown)
1198 {
1199 	int ret;
1200 
1201 	if (shutdown) {
1202 		struct ubi_wl_entry *e = wl_wrk->e;
1203 
1204 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1205 		kfree(wl_wrk);
1206 		wl_entry_destroy(ubi, e);
1207 		return 0;
1208 	}
1209 
1210 	ret = __erase_worker(ubi, wl_wrk);
1211 	kfree(wl_wrk);
1212 	return ret;
1213 }
1214 
1215 /**
1216  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1217  * @ubi: UBI device description object
1218  * @vol_id: the volume ID that last used this PEB
1219  * @lnum: the last used logical eraseblock number for the PEB
1220  * @pnum: physical eraseblock to return
1221  * @torture: if this physical eraseblock has to be tortured
1222  *
1223  * This function is called to return physical eraseblock @pnum to the pool of
1224  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1225  * occurred to this @pnum and it has to be tested. This function returns zero
1226  * in case of success, and a negative error code in case of failure.
1227  */
1228 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1229 		   int pnum, int torture)
1230 {
1231 	int err;
1232 	struct ubi_wl_entry *e;
1233 
1234 	dbg_wl("PEB %d", pnum);
1235 	ubi_assert(pnum >= 0);
1236 	ubi_assert(pnum < ubi->peb_count);
1237 
1238 	down_read(&ubi->fm_protect);
1239 
1240 retry:
1241 	spin_lock(&ubi->wl_lock);
1242 	e = ubi->lookuptbl[pnum];
1243 	if (e == ubi->move_from) {
1244 		/*
1245 		 * User is putting the physical eraseblock which was selected to
1246 		 * be moved. It will be scheduled for erasure in the
1247 		 * wear-leveling worker.
1248 		 */
1249 		dbg_wl("PEB %d is being moved, wait", pnum);
1250 		spin_unlock(&ubi->wl_lock);
1251 
1252 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1253 		mutex_lock(&ubi->move_mutex);
1254 		mutex_unlock(&ubi->move_mutex);
1255 		goto retry;
1256 	} else if (e == ubi->move_to) {
1257 		/*
1258 		 * User is putting the physical eraseblock which was selected
1259 		 * as the target the data is moved to. It may happen if the EBA
1260 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1261 		 * but the WL sub-system has not put the PEB to the "used" tree
1262 		 * yet, but it is about to do this. So we just set a flag which
1263 		 * will tell the WL worker that the PEB is not needed anymore
1264 		 * and should be scheduled for erasure.
1265 		 */
1266 		dbg_wl("PEB %d is the target of data moving", pnum);
1267 		ubi_assert(!ubi->move_to_put);
1268 		ubi->move_to_put = 1;
1269 		spin_unlock(&ubi->wl_lock);
1270 		up_read(&ubi->fm_protect);
1271 		return 0;
1272 	} else {
1273 		if (in_wl_tree(e, &ubi->used)) {
1274 			self_check_in_wl_tree(ubi, e, &ubi->used);
1275 			rb_erase(&e->u.rb, &ubi->used);
1276 		} else if (in_wl_tree(e, &ubi->scrub)) {
1277 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1278 			rb_erase(&e->u.rb, &ubi->scrub);
1279 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1280 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1281 			rb_erase(&e->u.rb, &ubi->erroneous);
1282 			ubi->erroneous_peb_count -= 1;
1283 			ubi_assert(ubi->erroneous_peb_count >= 0);
1284 			/* Erroneous PEBs should be tortured */
1285 			torture = 1;
1286 		} else {
1287 			err = prot_queue_del(ubi, e->pnum);
1288 			if (err) {
1289 				ubi_err(ubi, "PEB %d not found", pnum);
1290 				ubi_ro_mode(ubi);
1291 				spin_unlock(&ubi->wl_lock);
1292 				up_read(&ubi->fm_protect);
1293 				return err;
1294 			}
1295 		}
1296 	}
1297 	spin_unlock(&ubi->wl_lock);
1298 
1299 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1300 	if (err) {
1301 		spin_lock(&ubi->wl_lock);
1302 		wl_tree_add(e, &ubi->used);
1303 		spin_unlock(&ubi->wl_lock);
1304 	}
1305 
1306 	up_read(&ubi->fm_protect);
1307 	return err;
1308 }
1309 
1310 /**
1311  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1312  * @ubi: UBI device description object
1313  * @pnum: the physical eraseblock to schedule
1314  *
1315  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1316  * needs scrubbing. This function schedules a physical eraseblock for
1317  * scrubbing which is done in background. This function returns zero in case of
1318  * success and a negative error code in case of failure.
1319  */
1320 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1321 {
1322 	struct ubi_wl_entry *e;
1323 
1324 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1325 
1326 retry:
1327 	spin_lock(&ubi->wl_lock);
1328 	e = ubi->lookuptbl[pnum];
1329 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1330 				   in_wl_tree(e, &ubi->erroneous)) {
1331 		spin_unlock(&ubi->wl_lock);
1332 		return 0;
1333 	}
1334 
1335 	if (e == ubi->move_to) {
1336 		/*
1337 		 * This physical eraseblock was used to move data to. The data
1338 		 * was moved but the PEB was not yet inserted to the proper
1339 		 * tree. We should just wait a little and let the WL worker
1340 		 * proceed.
1341 		 */
1342 		spin_unlock(&ubi->wl_lock);
1343 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1344 		yield();
1345 		goto retry;
1346 	}
1347 
1348 	if (in_wl_tree(e, &ubi->used)) {
1349 		self_check_in_wl_tree(ubi, e, &ubi->used);
1350 		rb_erase(&e->u.rb, &ubi->used);
1351 	} else {
1352 		int err;
1353 
1354 		err = prot_queue_del(ubi, e->pnum);
1355 		if (err) {
1356 			ubi_err(ubi, "PEB %d not found", pnum);
1357 			ubi_ro_mode(ubi);
1358 			spin_unlock(&ubi->wl_lock);
1359 			return err;
1360 		}
1361 	}
1362 
1363 	wl_tree_add(e, &ubi->scrub);
1364 	spin_unlock(&ubi->wl_lock);
1365 
1366 	/*
1367 	 * Technically scrubbing is the same as wear-leveling, so it is done
1368 	 * by the WL worker.
1369 	 */
1370 	return ensure_wear_leveling(ubi, 0);
1371 }
1372 
1373 /**
1374  * ubi_wl_flush - flush all pending works.
1375  * @ubi: UBI device description object
1376  * @vol_id: the volume id to flush for
1377  * @lnum: the logical eraseblock number to flush for
1378  *
1379  * This function executes all pending works for a particular volume id /
1380  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1381  * acts as a wildcard for all of the corresponding volume numbers or logical
1382  * eraseblock numbers. It returns zero in case of success and a negative error
1383  * code in case of failure.
1384  */
1385 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1386 {
1387 	int err = 0;
1388 	int found = 1;
1389 
1390 	/*
1391 	 * Erase while the pending works queue is not empty, but not more than
1392 	 * the number of currently pending works.
1393 	 */
1394 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1395 	       vol_id, lnum, ubi->works_count);
1396 
1397 	while (found) {
1398 		struct ubi_work *wrk, *tmp;
1399 		found = 0;
1400 
1401 		down_read(&ubi->work_sem);
1402 		spin_lock(&ubi->wl_lock);
1403 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1404 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1405 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1406 				list_del(&wrk->list);
1407 				ubi->works_count -= 1;
1408 				ubi_assert(ubi->works_count >= 0);
1409 				spin_unlock(&ubi->wl_lock);
1410 
1411 				err = wrk->func(ubi, wrk, 0);
1412 				if (err) {
1413 					up_read(&ubi->work_sem);
1414 					return err;
1415 				}
1416 
1417 				spin_lock(&ubi->wl_lock);
1418 				found = 1;
1419 				break;
1420 			}
1421 		}
1422 		spin_unlock(&ubi->wl_lock);
1423 		up_read(&ubi->work_sem);
1424 	}
1425 
1426 	/*
1427 	 * Make sure all the works which have been done in parallel are
1428 	 * finished.
1429 	 */
1430 	down_write(&ubi->work_sem);
1431 	up_write(&ubi->work_sem);
1432 
1433 	return err;
1434 }
1435 
1436 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1437 {
1438 	if (in_wl_tree(e, &ubi->scrub))
1439 		return false;
1440 	else if (in_wl_tree(e, &ubi->erroneous))
1441 		return false;
1442 	else if (ubi->move_from == e)
1443 		return false;
1444 	else if (ubi->move_to == e)
1445 		return false;
1446 
1447 	return true;
1448 }
1449 
1450 /**
1451  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1452  * @ubi: UBI device description object
1453  * @pnum: the physical eraseblock to schedule
1454  * @force: dont't read the block, assume bitflips happened and take action.
1455  *
1456  * This function reads the given eraseblock and checks if bitflips occured.
1457  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1458  * If scrubbing is forced with @force, the eraseblock is not read,
1459  * but scheduled for scrubbing right away.
1460  *
1461  * Returns:
1462  * %EINVAL, PEB is out of range
1463  * %ENOENT, PEB is no longer used by UBI
1464  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1465  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1466  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1467  * %0, no bit flips detected
1468  */
1469 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1470 {
1471 	int err = 0;
1472 	struct ubi_wl_entry *e;
1473 
1474 	if (pnum < 0 || pnum >= ubi->peb_count) {
1475 		err = -EINVAL;
1476 		goto out;
1477 	}
1478 
1479 	/*
1480 	 * Pause all parallel work, otherwise it can happen that the
1481 	 * erase worker frees a wl entry under us.
1482 	 */
1483 	down_write(&ubi->work_sem);
1484 
1485 	/*
1486 	 * Make sure that the wl entry does not change state while
1487 	 * inspecting it.
1488 	 */
1489 	spin_lock(&ubi->wl_lock);
1490 	e = ubi->lookuptbl[pnum];
1491 	if (!e) {
1492 		spin_unlock(&ubi->wl_lock);
1493 		err = -ENOENT;
1494 		goto out_resume;
1495 	}
1496 
1497 	/*
1498 	 * Does it make sense to check this PEB?
1499 	 */
1500 	if (!scrub_possible(ubi, e)) {
1501 		spin_unlock(&ubi->wl_lock);
1502 		err = -EBUSY;
1503 		goto out_resume;
1504 	}
1505 	spin_unlock(&ubi->wl_lock);
1506 
1507 	if (!force) {
1508 		mutex_lock(&ubi->buf_mutex);
1509 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1510 		mutex_unlock(&ubi->buf_mutex);
1511 	}
1512 
1513 	if (force || err == UBI_IO_BITFLIPS) {
1514 		/*
1515 		 * Okay, bit flip happened, let's figure out what we can do.
1516 		 */
1517 		spin_lock(&ubi->wl_lock);
1518 
1519 		/*
1520 		 * Recheck. We released wl_lock, UBI might have killed the
1521 		 * wl entry under us.
1522 		 */
1523 		e = ubi->lookuptbl[pnum];
1524 		if (!e) {
1525 			spin_unlock(&ubi->wl_lock);
1526 			err = -ENOENT;
1527 			goto out_resume;
1528 		}
1529 
1530 		/*
1531 		 * Need to re-check state
1532 		 */
1533 		if (!scrub_possible(ubi, e)) {
1534 			spin_unlock(&ubi->wl_lock);
1535 			err = -EBUSY;
1536 			goto out_resume;
1537 		}
1538 
1539 		if (in_pq(ubi, e)) {
1540 			prot_queue_del(ubi, e->pnum);
1541 			wl_tree_add(e, &ubi->scrub);
1542 			spin_unlock(&ubi->wl_lock);
1543 
1544 			err = ensure_wear_leveling(ubi, 1);
1545 		} else if (in_wl_tree(e, &ubi->used)) {
1546 			rb_erase(&e->u.rb, &ubi->used);
1547 			wl_tree_add(e, &ubi->scrub);
1548 			spin_unlock(&ubi->wl_lock);
1549 
1550 			err = ensure_wear_leveling(ubi, 1);
1551 		} else if (in_wl_tree(e, &ubi->free)) {
1552 			rb_erase(&e->u.rb, &ubi->free);
1553 			ubi->free_count--;
1554 			spin_unlock(&ubi->wl_lock);
1555 
1556 			/*
1557 			 * This PEB is empty we can schedule it for
1558 			 * erasure right away. No wear leveling needed.
1559 			 */
1560 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1561 					     force ? 0 : 1, true);
1562 		} else {
1563 			spin_unlock(&ubi->wl_lock);
1564 			err = -EAGAIN;
1565 		}
1566 
1567 		if (!err && !force)
1568 			err = -EUCLEAN;
1569 	} else {
1570 		err = 0;
1571 	}
1572 
1573 out_resume:
1574 	up_write(&ubi->work_sem);
1575 out:
1576 
1577 	return err;
1578 }
1579 
1580 /**
1581  * tree_destroy - destroy an RB-tree.
1582  * @ubi: UBI device description object
1583  * @root: the root of the tree to destroy
1584  */
1585 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1586 {
1587 	struct rb_node *rb;
1588 	struct ubi_wl_entry *e;
1589 
1590 	rb = root->rb_node;
1591 	while (rb) {
1592 		if (rb->rb_left)
1593 			rb = rb->rb_left;
1594 		else if (rb->rb_right)
1595 			rb = rb->rb_right;
1596 		else {
1597 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1598 
1599 			rb = rb_parent(rb);
1600 			if (rb) {
1601 				if (rb->rb_left == &e->u.rb)
1602 					rb->rb_left = NULL;
1603 				else
1604 					rb->rb_right = NULL;
1605 			}
1606 
1607 			wl_entry_destroy(ubi, e);
1608 		}
1609 	}
1610 }
1611 
1612 /**
1613  * ubi_thread - UBI background thread.
1614  * @u: the UBI device description object pointer
1615  */
1616 int ubi_thread(void *u)
1617 {
1618 	int failures = 0;
1619 	struct ubi_device *ubi = u;
1620 
1621 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1622 		ubi->bgt_name, task_pid_nr(current));
1623 
1624 	set_freezable();
1625 	for (;;) {
1626 		int err;
1627 
1628 		if (kthread_should_stop())
1629 			break;
1630 
1631 		if (try_to_freeze())
1632 			continue;
1633 
1634 		spin_lock(&ubi->wl_lock);
1635 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1636 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1637 			set_current_state(TASK_INTERRUPTIBLE);
1638 			spin_unlock(&ubi->wl_lock);
1639 			schedule();
1640 			continue;
1641 		}
1642 		spin_unlock(&ubi->wl_lock);
1643 
1644 		err = do_work(ubi);
1645 		if (err) {
1646 			ubi_err(ubi, "%s: work failed with error code %d",
1647 				ubi->bgt_name, err);
1648 			if (failures++ > WL_MAX_FAILURES) {
1649 				/*
1650 				 * Too many failures, disable the thread and
1651 				 * switch to read-only mode.
1652 				 */
1653 				ubi_msg(ubi, "%s: %d consecutive failures",
1654 					ubi->bgt_name, WL_MAX_FAILURES);
1655 				ubi_ro_mode(ubi);
1656 				ubi->thread_enabled = 0;
1657 				continue;
1658 			}
1659 		} else
1660 			failures = 0;
1661 
1662 		cond_resched();
1663 	}
1664 
1665 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1666 	ubi->thread_enabled = 0;
1667 	return 0;
1668 }
1669 
1670 /**
1671  * shutdown_work - shutdown all pending works.
1672  * @ubi: UBI device description object
1673  */
1674 static void shutdown_work(struct ubi_device *ubi)
1675 {
1676 	while (!list_empty(&ubi->works)) {
1677 		struct ubi_work *wrk;
1678 
1679 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1680 		list_del(&wrk->list);
1681 		wrk->func(ubi, wrk, 1);
1682 		ubi->works_count -= 1;
1683 		ubi_assert(ubi->works_count >= 0);
1684 	}
1685 }
1686 
1687 /**
1688  * erase_aeb - erase a PEB given in UBI attach info PEB
1689  * @ubi: UBI device description object
1690  * @aeb: UBI attach info PEB
1691  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1692  */
1693 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1694 {
1695 	struct ubi_wl_entry *e;
1696 	int err;
1697 
1698 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1699 	if (!e)
1700 		return -ENOMEM;
1701 
1702 	e->pnum = aeb->pnum;
1703 	e->ec = aeb->ec;
1704 	ubi->lookuptbl[e->pnum] = e;
1705 
1706 	if (sync) {
1707 		err = sync_erase(ubi, e, false);
1708 		if (err)
1709 			goto out_free;
1710 
1711 		wl_tree_add(e, &ubi->free);
1712 		ubi->free_count++;
1713 	} else {
1714 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1715 		if (err)
1716 			goto out_free;
1717 	}
1718 
1719 	return 0;
1720 
1721 out_free:
1722 	wl_entry_destroy(ubi, e);
1723 
1724 	return err;
1725 }
1726 
1727 /**
1728  * ubi_wl_init - initialize the WL sub-system using attaching information.
1729  * @ubi: UBI device description object
1730  * @ai: attaching information
1731  *
1732  * This function returns zero in case of success, and a negative error code in
1733  * case of failure.
1734  */
1735 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1736 {
1737 	int err, i, reserved_pebs, found_pebs = 0;
1738 	struct rb_node *rb1, *rb2;
1739 	struct ubi_ainf_volume *av;
1740 	struct ubi_ainf_peb *aeb, *tmp;
1741 	struct ubi_wl_entry *e;
1742 
1743 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1744 	spin_lock_init(&ubi->wl_lock);
1745 	mutex_init(&ubi->move_mutex);
1746 	init_rwsem(&ubi->work_sem);
1747 	ubi->max_ec = ai->max_ec;
1748 	INIT_LIST_HEAD(&ubi->works);
1749 
1750 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1751 
1752 	err = -ENOMEM;
1753 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1754 	if (!ubi->lookuptbl)
1755 		return err;
1756 
1757 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1758 		INIT_LIST_HEAD(&ubi->pq[i]);
1759 	ubi->pq_head = 0;
1760 
1761 	ubi->free_count = 0;
1762 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1763 		cond_resched();
1764 
1765 		err = erase_aeb(ubi, aeb, false);
1766 		if (err)
1767 			goto out_free;
1768 
1769 		found_pebs++;
1770 	}
1771 
1772 	list_for_each_entry(aeb, &ai->free, u.list) {
1773 		cond_resched();
1774 
1775 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1776 		if (!e) {
1777 			err = -ENOMEM;
1778 			goto out_free;
1779 		}
1780 
1781 		e->pnum = aeb->pnum;
1782 		e->ec = aeb->ec;
1783 		ubi_assert(e->ec >= 0);
1784 
1785 		wl_tree_add(e, &ubi->free);
1786 		ubi->free_count++;
1787 
1788 		ubi->lookuptbl[e->pnum] = e;
1789 
1790 		found_pebs++;
1791 	}
1792 
1793 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1794 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1795 			cond_resched();
1796 
1797 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1798 			if (!e) {
1799 				err = -ENOMEM;
1800 				goto out_free;
1801 			}
1802 
1803 			e->pnum = aeb->pnum;
1804 			e->ec = aeb->ec;
1805 			ubi->lookuptbl[e->pnum] = e;
1806 
1807 			if (!aeb->scrub) {
1808 				dbg_wl("add PEB %d EC %d to the used tree",
1809 				       e->pnum, e->ec);
1810 				wl_tree_add(e, &ubi->used);
1811 			} else {
1812 				dbg_wl("add PEB %d EC %d to the scrub tree",
1813 				       e->pnum, e->ec);
1814 				wl_tree_add(e, &ubi->scrub);
1815 			}
1816 
1817 			found_pebs++;
1818 		}
1819 	}
1820 
1821 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1822 		cond_resched();
1823 
1824 		e = ubi_find_fm_block(ubi, aeb->pnum);
1825 
1826 		if (e) {
1827 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1828 			ubi->lookuptbl[e->pnum] = e;
1829 		} else {
1830 			bool sync = false;
1831 
1832 			/*
1833 			 * Usually old Fastmap PEBs are scheduled for erasure
1834 			 * and we don't have to care about them but if we face
1835 			 * an power cut before scheduling them we need to
1836 			 * take care of them here.
1837 			 */
1838 			if (ubi->lookuptbl[aeb->pnum])
1839 				continue;
1840 
1841 			/*
1842 			 * The fastmap update code might not find a free PEB for
1843 			 * writing the fastmap anchor to and then reuses the
1844 			 * current fastmap anchor PEB. When this PEB gets erased
1845 			 * and a power cut happens before it is written again we
1846 			 * must make sure that the fastmap attach code doesn't
1847 			 * find any outdated fastmap anchors, hence we erase the
1848 			 * outdated fastmap anchor PEBs synchronously here.
1849 			 */
1850 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1851 				sync = true;
1852 
1853 			err = erase_aeb(ubi, aeb, sync);
1854 			if (err)
1855 				goto out_free;
1856 		}
1857 
1858 		found_pebs++;
1859 	}
1860 
1861 	dbg_wl("found %i PEBs", found_pebs);
1862 
1863 	ubi_assert(ubi->good_peb_count == found_pebs);
1864 
1865 	reserved_pebs = WL_RESERVED_PEBS;
1866 	ubi_fastmap_init(ubi, &reserved_pebs);
1867 
1868 	if (ubi->avail_pebs < reserved_pebs) {
1869 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1870 			ubi->avail_pebs, reserved_pebs);
1871 		if (ubi->corr_peb_count)
1872 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1873 				ubi->corr_peb_count);
1874 		err = -ENOSPC;
1875 		goto out_free;
1876 	}
1877 	ubi->avail_pebs -= reserved_pebs;
1878 	ubi->rsvd_pebs += reserved_pebs;
1879 
1880 	/* Schedule wear-leveling if needed */
1881 	err = ensure_wear_leveling(ubi, 0);
1882 	if (err)
1883 		goto out_free;
1884 
1885 	return 0;
1886 
1887 out_free:
1888 	shutdown_work(ubi);
1889 	tree_destroy(ubi, &ubi->used);
1890 	tree_destroy(ubi, &ubi->free);
1891 	tree_destroy(ubi, &ubi->scrub);
1892 	kfree(ubi->lookuptbl);
1893 	return err;
1894 }
1895 
1896 /**
1897  * protection_queue_destroy - destroy the protection queue.
1898  * @ubi: UBI device description object
1899  */
1900 static void protection_queue_destroy(struct ubi_device *ubi)
1901 {
1902 	int i;
1903 	struct ubi_wl_entry *e, *tmp;
1904 
1905 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1906 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1907 			list_del(&e->u.list);
1908 			wl_entry_destroy(ubi, e);
1909 		}
1910 	}
1911 }
1912 
1913 /**
1914  * ubi_wl_close - close the wear-leveling sub-system.
1915  * @ubi: UBI device description object
1916  */
1917 void ubi_wl_close(struct ubi_device *ubi)
1918 {
1919 	dbg_wl("close the WL sub-system");
1920 	ubi_fastmap_close(ubi);
1921 	shutdown_work(ubi);
1922 	protection_queue_destroy(ubi);
1923 	tree_destroy(ubi, &ubi->used);
1924 	tree_destroy(ubi, &ubi->erroneous);
1925 	tree_destroy(ubi, &ubi->free);
1926 	tree_destroy(ubi, &ubi->scrub);
1927 	kfree(ubi->lookuptbl);
1928 }
1929 
1930 /**
1931  * self_check_ec - make sure that the erase counter of a PEB is correct.
1932  * @ubi: UBI device description object
1933  * @pnum: the physical eraseblock number to check
1934  * @ec: the erase counter to check
1935  *
1936  * This function returns zero if the erase counter of physical eraseblock @pnum
1937  * is equivalent to @ec, and a negative error code if not or if an error
1938  * occurred.
1939  */
1940 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1941 {
1942 	int err;
1943 	long long read_ec;
1944 	struct ubi_ec_hdr *ec_hdr;
1945 
1946 	if (!ubi_dbg_chk_gen(ubi))
1947 		return 0;
1948 
1949 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1950 	if (!ec_hdr)
1951 		return -ENOMEM;
1952 
1953 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1954 	if (err && err != UBI_IO_BITFLIPS) {
1955 		/* The header does not have to exist */
1956 		err = 0;
1957 		goto out_free;
1958 	}
1959 
1960 	read_ec = be64_to_cpu(ec_hdr->ec);
1961 	if (ec != read_ec && read_ec - ec > 1) {
1962 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1963 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1964 		dump_stack();
1965 		err = 1;
1966 	} else
1967 		err = 0;
1968 
1969 out_free:
1970 	kfree(ec_hdr);
1971 	return err;
1972 }
1973 
1974 /**
1975  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1976  * @ubi: UBI device description object
1977  * @e: the wear-leveling entry to check
1978  * @root: the root of the tree
1979  *
1980  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1981  * is not.
1982  */
1983 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1984 				 struct ubi_wl_entry *e, struct rb_root *root)
1985 {
1986 	if (!ubi_dbg_chk_gen(ubi))
1987 		return 0;
1988 
1989 	if (in_wl_tree(e, root))
1990 		return 0;
1991 
1992 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1993 		e->pnum, e->ec, root);
1994 	dump_stack();
1995 	return -EINVAL;
1996 }
1997 
1998 /**
1999  * self_check_in_pq - check if wear-leveling entry is in the protection
2000  *                        queue.
2001  * @ubi: UBI device description object
2002  * @e: the wear-leveling entry to check
2003  *
2004  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2005  */
2006 static int self_check_in_pq(const struct ubi_device *ubi,
2007 			    struct ubi_wl_entry *e)
2008 {
2009 	if (!ubi_dbg_chk_gen(ubi))
2010 		return 0;
2011 
2012 	if (in_pq(ubi, e))
2013 		return 0;
2014 
2015 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2016 		e->pnum, e->ec);
2017 	dump_stack();
2018 	return -EINVAL;
2019 }
2020 #ifndef CONFIG_MTD_UBI_FASTMAP
2021 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2022 {
2023 	struct ubi_wl_entry *e;
2024 
2025 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2026 	self_check_in_wl_tree(ubi, e, &ubi->free);
2027 	ubi->free_count--;
2028 	ubi_assert(ubi->free_count >= 0);
2029 	rb_erase(&e->u.rb, &ubi->free);
2030 
2031 	return e;
2032 }
2033 
2034 /**
2035  * produce_free_peb - produce a free physical eraseblock.
2036  * @ubi: UBI device description object
2037  *
2038  * This function tries to make a free PEB by means of synchronous execution of
2039  * pending works. This may be needed if, for example the background thread is
2040  * disabled. Returns zero in case of success and a negative error code in case
2041  * of failure.
2042  */
2043 static int produce_free_peb(struct ubi_device *ubi)
2044 {
2045 	int err;
2046 
2047 	while (!ubi->free.rb_node && ubi->works_count) {
2048 		spin_unlock(&ubi->wl_lock);
2049 
2050 		dbg_wl("do one work synchronously");
2051 		err = do_work(ubi);
2052 
2053 		spin_lock(&ubi->wl_lock);
2054 		if (err)
2055 			return err;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 /**
2062  * ubi_wl_get_peb - get a physical eraseblock.
2063  * @ubi: UBI device description object
2064  *
2065  * This function returns a physical eraseblock in case of success and a
2066  * negative error code in case of failure.
2067  * Returns with ubi->fm_eba_sem held in read mode!
2068  */
2069 int ubi_wl_get_peb(struct ubi_device *ubi)
2070 {
2071 	int err;
2072 	struct ubi_wl_entry *e;
2073 
2074 retry:
2075 	down_read(&ubi->fm_eba_sem);
2076 	spin_lock(&ubi->wl_lock);
2077 	if (!ubi->free.rb_node) {
2078 		if (ubi->works_count == 0) {
2079 			ubi_err(ubi, "no free eraseblocks");
2080 			ubi_assert(list_empty(&ubi->works));
2081 			spin_unlock(&ubi->wl_lock);
2082 			return -ENOSPC;
2083 		}
2084 
2085 		err = produce_free_peb(ubi);
2086 		if (err < 0) {
2087 			spin_unlock(&ubi->wl_lock);
2088 			return err;
2089 		}
2090 		spin_unlock(&ubi->wl_lock);
2091 		up_read(&ubi->fm_eba_sem);
2092 		goto retry;
2093 
2094 	}
2095 	e = wl_get_wle(ubi);
2096 	prot_queue_add(ubi, e);
2097 	spin_unlock(&ubi->wl_lock);
2098 
2099 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2100 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2101 	if (err) {
2102 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2103 		return err;
2104 	}
2105 
2106 	return e->pnum;
2107 }
2108 #else
2109 #include "fastmap-wl.c"
2110 #endif
2111