1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_tree_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * 185 * This function returns zero in case of success and a negative error code in 186 * case of failure. 187 */ 188 static int do_work(struct ubi_device *ubi) 189 { 190 int err; 191 struct ubi_work *wrk; 192 193 cond_resched(); 194 195 /* 196 * @ubi->work_sem is used to synchronize with the workers. Workers take 197 * it in read mode, so many of them may be doing works at a time. But 198 * the queue flush code has to be sure the whole queue of works is 199 * done, and it takes the mutex in write mode. 200 */ 201 down_read(&ubi->work_sem); 202 spin_lock(&ubi->wl_lock); 203 if (list_empty(&ubi->works)) { 204 spin_unlock(&ubi->wl_lock); 205 up_read(&ubi->work_sem); 206 return 0; 207 } 208 209 wrk = list_entry(ubi->works.next, struct ubi_work, list); 210 list_del(&wrk->list); 211 ubi->works_count -= 1; 212 ubi_assert(ubi->works_count >= 0); 213 spin_unlock(&ubi->wl_lock); 214 215 /* 216 * Call the worker function. Do not touch the work structure 217 * after this call as it will have been freed or reused by that 218 * time by the worker function. 219 */ 220 err = wrk->func(ubi, wrk, 0); 221 if (err) 222 ubi_err(ubi, "work failed with error code %d", err); 223 up_read(&ubi->work_sem); 224 225 return err; 226 } 227 228 /** 229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 230 * @e: the wear-leveling entry to check 231 * @root: the root of the tree 232 * 233 * This function returns non-zero if @e is in the @root RB-tree and zero if it 234 * is not. 235 */ 236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 237 { 238 struct rb_node *p; 239 240 p = root->rb_node; 241 while (p) { 242 struct ubi_wl_entry *e1; 243 244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 245 246 if (e->pnum == e1->pnum) { 247 ubi_assert(e == e1); 248 return 1; 249 } 250 251 if (e->ec < e1->ec) 252 p = p->rb_left; 253 else if (e->ec > e1->ec) 254 p = p->rb_right; 255 else { 256 ubi_assert(e->pnum != e1->pnum); 257 if (e->pnum < e1->pnum) 258 p = p->rb_left; 259 else 260 p = p->rb_right; 261 } 262 } 263 264 return 0; 265 } 266 267 /** 268 * in_pq - check if a wear-leveling entry is present in the protection queue. 269 * @ubi: UBI device description object 270 * @e: the wear-leveling entry to check 271 * 272 * This function returns non-zero if @e is in the protection queue and zero 273 * if it is not. 274 */ 275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 276 { 277 struct ubi_wl_entry *p; 278 int i; 279 280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 281 list_for_each_entry(p, &ubi->pq[i], u.list) 282 if (p == e) 283 return 1; 284 285 return 0; 286 } 287 288 /** 289 * prot_queue_add - add physical eraseblock to the protection queue. 290 * @ubi: UBI device description object 291 * @e: the physical eraseblock to add 292 * 293 * This function adds @e to the tail of the protection queue @ubi->pq, where 294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 296 * be locked. 297 */ 298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 299 { 300 int pq_tail = ubi->pq_head - 1; 301 302 if (pq_tail < 0) 303 pq_tail = UBI_PROT_QUEUE_LEN - 1; 304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 307 } 308 309 /** 310 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 311 * @ubi: UBI device description object 312 * @root: the RB-tree where to look for 313 * @diff: maximum possible difference from the smallest erase counter 314 * 315 * This function looks for a wear leveling entry with erase counter closest to 316 * min + @diff, where min is the smallest erase counter. 317 */ 318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 319 struct rb_root *root, int diff) 320 { 321 struct rb_node *p; 322 struct ubi_wl_entry *e, *prev_e = NULL; 323 int max; 324 325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 326 max = e->ec + diff; 327 328 p = root->rb_node; 329 while (p) { 330 struct ubi_wl_entry *e1; 331 332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 333 if (e1->ec >= max) 334 p = p->rb_left; 335 else { 336 p = p->rb_right; 337 prev_e = e; 338 e = e1; 339 } 340 } 341 342 /* If no fastmap has been written and this WL entry can be used 343 * as anchor PEB, hold it back and return the second best WL entry 344 * such that fastmap can use the anchor PEB later. */ 345 if (prev_e && !ubi->fm_disabled && 346 !ubi->fm && e->pnum < UBI_FM_MAX_START) 347 return prev_e; 348 349 return e; 350 } 351 352 /** 353 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 354 * @ubi: UBI device description object 355 * @root: the RB-tree where to look for 356 * 357 * This function looks for a wear leveling entry with medium erase counter, 358 * but not greater or equivalent than the lowest erase counter plus 359 * %WL_FREE_MAX_DIFF/2. 360 */ 361 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 362 struct rb_root *root) 363 { 364 struct ubi_wl_entry *e, *first, *last; 365 366 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 367 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 368 369 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 370 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 371 372 /* If no fastmap has been written and this WL entry can be used 373 * as anchor PEB, hold it back and return the second best 374 * WL entry such that fastmap can use the anchor PEB later. */ 375 e = may_reserve_for_fm(ubi, e, root); 376 } else 377 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 378 379 return e; 380 } 381 382 /** 383 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 384 * refill_wl_user_pool(). 385 * @ubi: UBI device description object 386 * 387 * This function returns a a wear leveling entry in case of success and 388 * NULL in case of failure. 389 */ 390 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 391 { 392 struct ubi_wl_entry *e; 393 394 e = find_mean_wl_entry(ubi, &ubi->free); 395 if (!e) { 396 ubi_err(ubi, "no free eraseblocks"); 397 return NULL; 398 } 399 400 self_check_in_wl_tree(ubi, e, &ubi->free); 401 402 /* 403 * Move the physical eraseblock to the protection queue where it will 404 * be protected from being moved for some time. 405 */ 406 rb_erase(&e->u.rb, &ubi->free); 407 ubi->free_count--; 408 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 409 410 return e; 411 } 412 413 /** 414 * prot_queue_del - remove a physical eraseblock from the protection queue. 415 * @ubi: UBI device description object 416 * @pnum: the physical eraseblock to remove 417 * 418 * This function deletes PEB @pnum from the protection queue and returns zero 419 * in case of success and %-ENODEV if the PEB was not found. 420 */ 421 static int prot_queue_del(struct ubi_device *ubi, int pnum) 422 { 423 struct ubi_wl_entry *e; 424 425 e = ubi->lookuptbl[pnum]; 426 if (!e) 427 return -ENODEV; 428 429 if (self_check_in_pq(ubi, e)) 430 return -ENODEV; 431 432 list_del(&e->u.list); 433 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 434 return 0; 435 } 436 437 /** 438 * sync_erase - synchronously erase a physical eraseblock. 439 * @ubi: UBI device description object 440 * @e: the the physical eraseblock to erase 441 * @torture: if the physical eraseblock has to be tortured 442 * 443 * This function returns zero in case of success and a negative error code in 444 * case of failure. 445 */ 446 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 447 int torture) 448 { 449 int err; 450 struct ubi_ec_hdr *ec_hdr; 451 unsigned long long ec = e->ec; 452 453 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 454 455 err = self_check_ec(ubi, e->pnum, e->ec); 456 if (err) 457 return -EINVAL; 458 459 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 460 if (!ec_hdr) 461 return -ENOMEM; 462 463 err = ubi_io_sync_erase(ubi, e->pnum, torture); 464 if (err < 0) 465 goto out_free; 466 467 ec += err; 468 if (ec > UBI_MAX_ERASECOUNTER) { 469 /* 470 * Erase counter overflow. Upgrade UBI and use 64-bit 471 * erase counters internally. 472 */ 473 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 474 e->pnum, ec); 475 err = -EINVAL; 476 goto out_free; 477 } 478 479 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 480 481 ec_hdr->ec = cpu_to_be64(ec); 482 483 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 484 if (err) 485 goto out_free; 486 487 e->ec = ec; 488 spin_lock(&ubi->wl_lock); 489 if (e->ec > ubi->max_ec) 490 ubi->max_ec = e->ec; 491 spin_unlock(&ubi->wl_lock); 492 493 out_free: 494 kfree(ec_hdr); 495 return err; 496 } 497 498 /** 499 * serve_prot_queue - check if it is time to stop protecting PEBs. 500 * @ubi: UBI device description object 501 * 502 * This function is called after each erase operation and removes PEBs from the 503 * tail of the protection queue. These PEBs have been protected for long enough 504 * and should be moved to the used tree. 505 */ 506 static void serve_prot_queue(struct ubi_device *ubi) 507 { 508 struct ubi_wl_entry *e, *tmp; 509 int count; 510 511 /* 512 * There may be several protected physical eraseblock to remove, 513 * process them all. 514 */ 515 repeat: 516 count = 0; 517 spin_lock(&ubi->wl_lock); 518 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 519 dbg_wl("PEB %d EC %d protection over, move to used tree", 520 e->pnum, e->ec); 521 522 list_del(&e->u.list); 523 wl_tree_add(e, &ubi->used); 524 if (count++ > 32) { 525 /* 526 * Let's be nice and avoid holding the spinlock for 527 * too long. 528 */ 529 spin_unlock(&ubi->wl_lock); 530 cond_resched(); 531 goto repeat; 532 } 533 } 534 535 ubi->pq_head += 1; 536 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 537 ubi->pq_head = 0; 538 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 539 spin_unlock(&ubi->wl_lock); 540 } 541 542 /** 543 * __schedule_ubi_work - schedule a work. 544 * @ubi: UBI device description object 545 * @wrk: the work to schedule 546 * 547 * This function adds a work defined by @wrk to the tail of the pending works 548 * list. Can only be used if ubi->work_sem is already held in read mode! 549 */ 550 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 551 { 552 spin_lock(&ubi->wl_lock); 553 list_add_tail(&wrk->list, &ubi->works); 554 ubi_assert(ubi->works_count >= 0); 555 ubi->works_count += 1; 556 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 557 wake_up_process(ubi->bgt_thread); 558 spin_unlock(&ubi->wl_lock); 559 } 560 561 /** 562 * schedule_ubi_work - schedule a work. 563 * @ubi: UBI device description object 564 * @wrk: the work to schedule 565 * 566 * This function adds a work defined by @wrk to the tail of the pending works 567 * list. 568 */ 569 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 570 { 571 down_read(&ubi->work_sem); 572 __schedule_ubi_work(ubi, wrk); 573 up_read(&ubi->work_sem); 574 } 575 576 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 577 int shutdown); 578 579 /** 580 * schedule_erase - schedule an erase work. 581 * @ubi: UBI device description object 582 * @e: the WL entry of the physical eraseblock to erase 583 * @vol_id: the volume ID that last used this PEB 584 * @lnum: the last used logical eraseblock number for the PEB 585 * @torture: if the physical eraseblock has to be tortured 586 * 587 * This function returns zero in case of success and a %-ENOMEM in case of 588 * failure. 589 */ 590 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 591 int vol_id, int lnum, int torture, bool nested) 592 { 593 struct ubi_work *wl_wrk; 594 595 ubi_assert(e); 596 597 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 598 e->pnum, e->ec, torture); 599 600 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 601 if (!wl_wrk) 602 return -ENOMEM; 603 604 wl_wrk->func = &erase_worker; 605 wl_wrk->e = e; 606 wl_wrk->vol_id = vol_id; 607 wl_wrk->lnum = lnum; 608 wl_wrk->torture = torture; 609 610 if (nested) 611 __schedule_ubi_work(ubi, wl_wrk); 612 else 613 schedule_ubi_work(ubi, wl_wrk); 614 return 0; 615 } 616 617 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 618 /** 619 * do_sync_erase - run the erase worker synchronously. 620 * @ubi: UBI device description object 621 * @e: the WL entry of the physical eraseblock to erase 622 * @vol_id: the volume ID that last used this PEB 623 * @lnum: the last used logical eraseblock number for the PEB 624 * @torture: if the physical eraseblock has to be tortured 625 * 626 */ 627 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 628 int vol_id, int lnum, int torture) 629 { 630 struct ubi_work wl_wrk; 631 632 dbg_wl("sync erase of PEB %i", e->pnum); 633 634 wl_wrk.e = e; 635 wl_wrk.vol_id = vol_id; 636 wl_wrk.lnum = lnum; 637 wl_wrk.torture = torture; 638 639 return __erase_worker(ubi, &wl_wrk); 640 } 641 642 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 643 /** 644 * wear_leveling_worker - wear-leveling worker function. 645 * @ubi: UBI device description object 646 * @wrk: the work object 647 * @shutdown: non-zero if the worker has to free memory and exit 648 * because the WL-subsystem is shutting down 649 * 650 * This function copies a more worn out physical eraseblock to a less worn out 651 * one. Returns zero in case of success and a negative error code in case of 652 * failure. 653 */ 654 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 655 int shutdown) 656 { 657 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 658 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 659 #ifdef CONFIG_MTD_UBI_FASTMAP 660 int anchor = wrk->anchor; 661 #endif 662 struct ubi_wl_entry *e1, *e2; 663 struct ubi_vid_io_buf *vidb; 664 struct ubi_vid_hdr *vid_hdr; 665 int dst_leb_clean = 0; 666 667 kfree(wrk); 668 if (shutdown) 669 return 0; 670 671 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 672 if (!vidb) 673 return -ENOMEM; 674 675 vid_hdr = ubi_get_vid_hdr(vidb); 676 677 down_read(&ubi->fm_eba_sem); 678 mutex_lock(&ubi->move_mutex); 679 spin_lock(&ubi->wl_lock); 680 ubi_assert(!ubi->move_from && !ubi->move_to); 681 ubi_assert(!ubi->move_to_put); 682 683 if (!ubi->free.rb_node || 684 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 685 /* 686 * No free physical eraseblocks? Well, they must be waiting in 687 * the queue to be erased. Cancel movement - it will be 688 * triggered again when a free physical eraseblock appears. 689 * 690 * No used physical eraseblocks? They must be temporarily 691 * protected from being moved. They will be moved to the 692 * @ubi->used tree later and the wear-leveling will be 693 * triggered again. 694 */ 695 dbg_wl("cancel WL, a list is empty: free %d, used %d", 696 !ubi->free.rb_node, !ubi->used.rb_node); 697 goto out_cancel; 698 } 699 700 #ifdef CONFIG_MTD_UBI_FASTMAP 701 /* Check whether we need to produce an anchor PEB */ 702 if (!anchor) 703 anchor = !anchor_pebs_available(&ubi->free); 704 705 if (anchor) { 706 e1 = find_anchor_wl_entry(&ubi->used); 707 if (!e1) 708 goto out_cancel; 709 e2 = get_peb_for_wl(ubi); 710 if (!e2) 711 goto out_cancel; 712 713 /* 714 * Anchor move within the anchor area is useless. 715 */ 716 if (e2->pnum < UBI_FM_MAX_START) 717 goto out_cancel; 718 719 self_check_in_wl_tree(ubi, e1, &ubi->used); 720 rb_erase(&e1->u.rb, &ubi->used); 721 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 722 } else if (!ubi->scrub.rb_node) { 723 #else 724 if (!ubi->scrub.rb_node) { 725 #endif 726 /* 727 * Now pick the least worn-out used physical eraseblock and a 728 * highly worn-out free physical eraseblock. If the erase 729 * counters differ much enough, start wear-leveling. 730 */ 731 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 732 e2 = get_peb_for_wl(ubi); 733 if (!e2) 734 goto out_cancel; 735 736 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 737 dbg_wl("no WL needed: min used EC %d, max free EC %d", 738 e1->ec, e2->ec); 739 740 /* Give the unused PEB back */ 741 wl_tree_add(e2, &ubi->free); 742 ubi->free_count++; 743 goto out_cancel; 744 } 745 self_check_in_wl_tree(ubi, e1, &ubi->used); 746 rb_erase(&e1->u.rb, &ubi->used); 747 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 748 e1->pnum, e1->ec, e2->pnum, e2->ec); 749 } else { 750 /* Perform scrubbing */ 751 scrubbing = 1; 752 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 753 e2 = get_peb_for_wl(ubi); 754 if (!e2) 755 goto out_cancel; 756 757 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 758 rb_erase(&e1->u.rb, &ubi->scrub); 759 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 760 } 761 762 ubi->move_from = e1; 763 ubi->move_to = e2; 764 spin_unlock(&ubi->wl_lock); 765 766 /* 767 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 768 * We so far do not know which logical eraseblock our physical 769 * eraseblock (@e1) belongs to. We have to read the volume identifier 770 * header first. 771 * 772 * Note, we are protected from this PEB being unmapped and erased. The 773 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 774 * which is being moved was unmapped. 775 */ 776 777 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 778 if (err && err != UBI_IO_BITFLIPS) { 779 dst_leb_clean = 1; 780 if (err == UBI_IO_FF) { 781 /* 782 * We are trying to move PEB without a VID header. UBI 783 * always write VID headers shortly after the PEB was 784 * given, so we have a situation when it has not yet 785 * had a chance to write it, because it was preempted. 786 * So add this PEB to the protection queue so far, 787 * because presumably more data will be written there 788 * (including the missing VID header), and then we'll 789 * move it. 790 */ 791 dbg_wl("PEB %d has no VID header", e1->pnum); 792 protect = 1; 793 goto out_not_moved; 794 } else if (err == UBI_IO_FF_BITFLIPS) { 795 /* 796 * The same situation as %UBI_IO_FF, but bit-flips were 797 * detected. It is better to schedule this PEB for 798 * scrubbing. 799 */ 800 dbg_wl("PEB %d has no VID header but has bit-flips", 801 e1->pnum); 802 scrubbing = 1; 803 goto out_not_moved; 804 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 805 /* 806 * While a full scan would detect interrupted erasures 807 * at attach time we can face them here when attached from 808 * Fastmap. 809 */ 810 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 811 e1->pnum); 812 erase = 1; 813 goto out_not_moved; 814 } 815 816 ubi_err(ubi, "error %d while reading VID header from PEB %d", 817 err, e1->pnum); 818 goto out_error; 819 } 820 821 vol_id = be32_to_cpu(vid_hdr->vol_id); 822 lnum = be32_to_cpu(vid_hdr->lnum); 823 824 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 825 if (err) { 826 if (err == MOVE_CANCEL_RACE) { 827 /* 828 * The LEB has not been moved because the volume is 829 * being deleted or the PEB has been put meanwhile. We 830 * should prevent this PEB from being selected for 831 * wear-leveling movement again, so put it to the 832 * protection queue. 833 */ 834 protect = 1; 835 dst_leb_clean = 1; 836 goto out_not_moved; 837 } 838 if (err == MOVE_RETRY) { 839 scrubbing = 1; 840 dst_leb_clean = 1; 841 goto out_not_moved; 842 } 843 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 844 err == MOVE_TARGET_RD_ERR) { 845 /* 846 * Target PEB had bit-flips or write error - torture it. 847 */ 848 torture = 1; 849 keep = 1; 850 goto out_not_moved; 851 } 852 853 if (err == MOVE_SOURCE_RD_ERR) { 854 /* 855 * An error happened while reading the source PEB. Do 856 * not switch to R/O mode in this case, and give the 857 * upper layers a possibility to recover from this, 858 * e.g. by unmapping corresponding LEB. Instead, just 859 * put this PEB to the @ubi->erroneous list to prevent 860 * UBI from trying to move it over and over again. 861 */ 862 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 863 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 864 ubi->erroneous_peb_count); 865 goto out_error; 866 } 867 dst_leb_clean = 1; 868 erroneous = 1; 869 goto out_not_moved; 870 } 871 872 if (err < 0) 873 goto out_error; 874 875 ubi_assert(0); 876 } 877 878 /* The PEB has been successfully moved */ 879 if (scrubbing) 880 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 881 e1->pnum, vol_id, lnum, e2->pnum); 882 ubi_free_vid_buf(vidb); 883 884 spin_lock(&ubi->wl_lock); 885 if (!ubi->move_to_put) { 886 wl_tree_add(e2, &ubi->used); 887 e2 = NULL; 888 } 889 ubi->move_from = ubi->move_to = NULL; 890 ubi->move_to_put = ubi->wl_scheduled = 0; 891 spin_unlock(&ubi->wl_lock); 892 893 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 894 if (err) { 895 if (e2) 896 wl_entry_destroy(ubi, e2); 897 goto out_ro; 898 } 899 900 if (e2) { 901 /* 902 * Well, the target PEB was put meanwhile, schedule it for 903 * erasure. 904 */ 905 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 906 e2->pnum, vol_id, lnum); 907 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 908 if (err) 909 goto out_ro; 910 } 911 912 dbg_wl("done"); 913 mutex_unlock(&ubi->move_mutex); 914 up_read(&ubi->fm_eba_sem); 915 return 0; 916 917 /* 918 * For some reasons the LEB was not moved, might be an error, might be 919 * something else. @e1 was not changed, so return it back. @e2 might 920 * have been changed, schedule it for erasure. 921 */ 922 out_not_moved: 923 if (vol_id != -1) 924 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 925 e1->pnum, vol_id, lnum, e2->pnum, err); 926 else 927 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 928 e1->pnum, e2->pnum, err); 929 spin_lock(&ubi->wl_lock); 930 if (protect) 931 prot_queue_add(ubi, e1); 932 else if (erroneous) { 933 wl_tree_add(e1, &ubi->erroneous); 934 ubi->erroneous_peb_count += 1; 935 } else if (scrubbing) 936 wl_tree_add(e1, &ubi->scrub); 937 else if (keep) 938 wl_tree_add(e1, &ubi->used); 939 if (dst_leb_clean) { 940 wl_tree_add(e2, &ubi->free); 941 ubi->free_count++; 942 } 943 944 ubi_assert(!ubi->move_to_put); 945 ubi->move_from = ubi->move_to = NULL; 946 ubi->wl_scheduled = 0; 947 spin_unlock(&ubi->wl_lock); 948 949 ubi_free_vid_buf(vidb); 950 if (dst_leb_clean) { 951 ensure_wear_leveling(ubi, 1); 952 } else { 953 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 954 if (err) 955 goto out_ro; 956 } 957 958 if (erase) { 959 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 960 if (err) 961 goto out_ro; 962 } 963 964 mutex_unlock(&ubi->move_mutex); 965 up_read(&ubi->fm_eba_sem); 966 return 0; 967 968 out_error: 969 if (vol_id != -1) 970 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 971 err, e1->pnum, e2->pnum); 972 else 973 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 974 err, e1->pnum, vol_id, lnum, e2->pnum); 975 spin_lock(&ubi->wl_lock); 976 ubi->move_from = ubi->move_to = NULL; 977 ubi->move_to_put = ubi->wl_scheduled = 0; 978 spin_unlock(&ubi->wl_lock); 979 980 ubi_free_vid_buf(vidb); 981 wl_entry_destroy(ubi, e1); 982 wl_entry_destroy(ubi, e2); 983 984 out_ro: 985 ubi_ro_mode(ubi); 986 mutex_unlock(&ubi->move_mutex); 987 up_read(&ubi->fm_eba_sem); 988 ubi_assert(err != 0); 989 return err < 0 ? err : -EIO; 990 991 out_cancel: 992 ubi->wl_scheduled = 0; 993 spin_unlock(&ubi->wl_lock); 994 mutex_unlock(&ubi->move_mutex); 995 up_read(&ubi->fm_eba_sem); 996 ubi_free_vid_buf(vidb); 997 return 0; 998 } 999 1000 /** 1001 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1002 * @ubi: UBI device description object 1003 * @nested: set to non-zero if this function is called from UBI worker 1004 * 1005 * This function checks if it is time to start wear-leveling and schedules it 1006 * if yes. This function returns zero in case of success and a negative error 1007 * code in case of failure. 1008 */ 1009 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1010 { 1011 int err = 0; 1012 struct ubi_wl_entry *e1; 1013 struct ubi_wl_entry *e2; 1014 struct ubi_work *wrk; 1015 1016 spin_lock(&ubi->wl_lock); 1017 if (ubi->wl_scheduled) 1018 /* Wear-leveling is already in the work queue */ 1019 goto out_unlock; 1020 1021 /* 1022 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1023 * the WL worker has to be scheduled anyway. 1024 */ 1025 if (!ubi->scrub.rb_node) { 1026 if (!ubi->used.rb_node || !ubi->free.rb_node) 1027 /* No physical eraseblocks - no deal */ 1028 goto out_unlock; 1029 1030 /* 1031 * We schedule wear-leveling only if the difference between the 1032 * lowest erase counter of used physical eraseblocks and a high 1033 * erase counter of free physical eraseblocks is greater than 1034 * %UBI_WL_THRESHOLD. 1035 */ 1036 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1037 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1038 1039 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1040 goto out_unlock; 1041 dbg_wl("schedule wear-leveling"); 1042 } else 1043 dbg_wl("schedule scrubbing"); 1044 1045 ubi->wl_scheduled = 1; 1046 spin_unlock(&ubi->wl_lock); 1047 1048 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1049 if (!wrk) { 1050 err = -ENOMEM; 1051 goto out_cancel; 1052 } 1053 1054 wrk->anchor = 0; 1055 wrk->func = &wear_leveling_worker; 1056 if (nested) 1057 __schedule_ubi_work(ubi, wrk); 1058 else 1059 schedule_ubi_work(ubi, wrk); 1060 return err; 1061 1062 out_cancel: 1063 spin_lock(&ubi->wl_lock); 1064 ubi->wl_scheduled = 0; 1065 out_unlock: 1066 spin_unlock(&ubi->wl_lock); 1067 return err; 1068 } 1069 1070 /** 1071 * __erase_worker - physical eraseblock erase worker function. 1072 * @ubi: UBI device description object 1073 * @wl_wrk: the work object 1074 * @shutdown: non-zero if the worker has to free memory and exit 1075 * because the WL sub-system is shutting down 1076 * 1077 * This function erases a physical eraseblock and perform torture testing if 1078 * needed. It also takes care about marking the physical eraseblock bad if 1079 * needed. Returns zero in case of success and a negative error code in case of 1080 * failure. 1081 */ 1082 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1083 { 1084 struct ubi_wl_entry *e = wl_wrk->e; 1085 int pnum = e->pnum; 1086 int vol_id = wl_wrk->vol_id; 1087 int lnum = wl_wrk->lnum; 1088 int err, available_consumed = 0; 1089 1090 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1091 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1092 1093 err = sync_erase(ubi, e, wl_wrk->torture); 1094 if (!err) { 1095 spin_lock(&ubi->wl_lock); 1096 wl_tree_add(e, &ubi->free); 1097 ubi->free_count++; 1098 spin_unlock(&ubi->wl_lock); 1099 1100 /* 1101 * One more erase operation has happened, take care about 1102 * protected physical eraseblocks. 1103 */ 1104 serve_prot_queue(ubi); 1105 1106 /* And take care about wear-leveling */ 1107 err = ensure_wear_leveling(ubi, 1); 1108 return err; 1109 } 1110 1111 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1112 1113 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1114 err == -EBUSY) { 1115 int err1; 1116 1117 /* Re-schedule the LEB for erasure */ 1118 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1119 if (err1) { 1120 wl_entry_destroy(ubi, e); 1121 err = err1; 1122 goto out_ro; 1123 } 1124 return err; 1125 } 1126 1127 wl_entry_destroy(ubi, e); 1128 if (err != -EIO) 1129 /* 1130 * If this is not %-EIO, we have no idea what to do. Scheduling 1131 * this physical eraseblock for erasure again would cause 1132 * errors again and again. Well, lets switch to R/O mode. 1133 */ 1134 goto out_ro; 1135 1136 /* It is %-EIO, the PEB went bad */ 1137 1138 if (!ubi->bad_allowed) { 1139 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1140 goto out_ro; 1141 } 1142 1143 spin_lock(&ubi->volumes_lock); 1144 if (ubi->beb_rsvd_pebs == 0) { 1145 if (ubi->avail_pebs == 0) { 1146 spin_unlock(&ubi->volumes_lock); 1147 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1148 goto out_ro; 1149 } 1150 ubi->avail_pebs -= 1; 1151 available_consumed = 1; 1152 } 1153 spin_unlock(&ubi->volumes_lock); 1154 1155 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1156 err = ubi_io_mark_bad(ubi, pnum); 1157 if (err) 1158 goto out_ro; 1159 1160 spin_lock(&ubi->volumes_lock); 1161 if (ubi->beb_rsvd_pebs > 0) { 1162 if (available_consumed) { 1163 /* 1164 * The amount of reserved PEBs increased since we last 1165 * checked. 1166 */ 1167 ubi->avail_pebs += 1; 1168 available_consumed = 0; 1169 } 1170 ubi->beb_rsvd_pebs -= 1; 1171 } 1172 ubi->bad_peb_count += 1; 1173 ubi->good_peb_count -= 1; 1174 ubi_calculate_reserved(ubi); 1175 if (available_consumed) 1176 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1177 else if (ubi->beb_rsvd_pebs) 1178 ubi_msg(ubi, "%d PEBs left in the reserve", 1179 ubi->beb_rsvd_pebs); 1180 else 1181 ubi_warn(ubi, "last PEB from the reserve was used"); 1182 spin_unlock(&ubi->volumes_lock); 1183 1184 return err; 1185 1186 out_ro: 1187 if (available_consumed) { 1188 spin_lock(&ubi->volumes_lock); 1189 ubi->avail_pebs += 1; 1190 spin_unlock(&ubi->volumes_lock); 1191 } 1192 ubi_ro_mode(ubi); 1193 return err; 1194 } 1195 1196 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1197 int shutdown) 1198 { 1199 int ret; 1200 1201 if (shutdown) { 1202 struct ubi_wl_entry *e = wl_wrk->e; 1203 1204 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1205 kfree(wl_wrk); 1206 wl_entry_destroy(ubi, e); 1207 return 0; 1208 } 1209 1210 ret = __erase_worker(ubi, wl_wrk); 1211 kfree(wl_wrk); 1212 return ret; 1213 } 1214 1215 /** 1216 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1217 * @ubi: UBI device description object 1218 * @vol_id: the volume ID that last used this PEB 1219 * @lnum: the last used logical eraseblock number for the PEB 1220 * @pnum: physical eraseblock to return 1221 * @torture: if this physical eraseblock has to be tortured 1222 * 1223 * This function is called to return physical eraseblock @pnum to the pool of 1224 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1225 * occurred to this @pnum and it has to be tested. This function returns zero 1226 * in case of success, and a negative error code in case of failure. 1227 */ 1228 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1229 int pnum, int torture) 1230 { 1231 int err; 1232 struct ubi_wl_entry *e; 1233 1234 dbg_wl("PEB %d", pnum); 1235 ubi_assert(pnum >= 0); 1236 ubi_assert(pnum < ubi->peb_count); 1237 1238 down_read(&ubi->fm_protect); 1239 1240 retry: 1241 spin_lock(&ubi->wl_lock); 1242 e = ubi->lookuptbl[pnum]; 1243 if (e == ubi->move_from) { 1244 /* 1245 * User is putting the physical eraseblock which was selected to 1246 * be moved. It will be scheduled for erasure in the 1247 * wear-leveling worker. 1248 */ 1249 dbg_wl("PEB %d is being moved, wait", pnum); 1250 spin_unlock(&ubi->wl_lock); 1251 1252 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1253 mutex_lock(&ubi->move_mutex); 1254 mutex_unlock(&ubi->move_mutex); 1255 goto retry; 1256 } else if (e == ubi->move_to) { 1257 /* 1258 * User is putting the physical eraseblock which was selected 1259 * as the target the data is moved to. It may happen if the EBA 1260 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1261 * but the WL sub-system has not put the PEB to the "used" tree 1262 * yet, but it is about to do this. So we just set a flag which 1263 * will tell the WL worker that the PEB is not needed anymore 1264 * and should be scheduled for erasure. 1265 */ 1266 dbg_wl("PEB %d is the target of data moving", pnum); 1267 ubi_assert(!ubi->move_to_put); 1268 ubi->move_to_put = 1; 1269 spin_unlock(&ubi->wl_lock); 1270 up_read(&ubi->fm_protect); 1271 return 0; 1272 } else { 1273 if (in_wl_tree(e, &ubi->used)) { 1274 self_check_in_wl_tree(ubi, e, &ubi->used); 1275 rb_erase(&e->u.rb, &ubi->used); 1276 } else if (in_wl_tree(e, &ubi->scrub)) { 1277 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1278 rb_erase(&e->u.rb, &ubi->scrub); 1279 } else if (in_wl_tree(e, &ubi->erroneous)) { 1280 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1281 rb_erase(&e->u.rb, &ubi->erroneous); 1282 ubi->erroneous_peb_count -= 1; 1283 ubi_assert(ubi->erroneous_peb_count >= 0); 1284 /* Erroneous PEBs should be tortured */ 1285 torture = 1; 1286 } else { 1287 err = prot_queue_del(ubi, e->pnum); 1288 if (err) { 1289 ubi_err(ubi, "PEB %d not found", pnum); 1290 ubi_ro_mode(ubi); 1291 spin_unlock(&ubi->wl_lock); 1292 up_read(&ubi->fm_protect); 1293 return err; 1294 } 1295 } 1296 } 1297 spin_unlock(&ubi->wl_lock); 1298 1299 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1300 if (err) { 1301 spin_lock(&ubi->wl_lock); 1302 wl_tree_add(e, &ubi->used); 1303 spin_unlock(&ubi->wl_lock); 1304 } 1305 1306 up_read(&ubi->fm_protect); 1307 return err; 1308 } 1309 1310 /** 1311 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1312 * @ubi: UBI device description object 1313 * @pnum: the physical eraseblock to schedule 1314 * 1315 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1316 * needs scrubbing. This function schedules a physical eraseblock for 1317 * scrubbing which is done in background. This function returns zero in case of 1318 * success and a negative error code in case of failure. 1319 */ 1320 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1321 { 1322 struct ubi_wl_entry *e; 1323 1324 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1325 1326 retry: 1327 spin_lock(&ubi->wl_lock); 1328 e = ubi->lookuptbl[pnum]; 1329 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1330 in_wl_tree(e, &ubi->erroneous)) { 1331 spin_unlock(&ubi->wl_lock); 1332 return 0; 1333 } 1334 1335 if (e == ubi->move_to) { 1336 /* 1337 * This physical eraseblock was used to move data to. The data 1338 * was moved but the PEB was not yet inserted to the proper 1339 * tree. We should just wait a little and let the WL worker 1340 * proceed. 1341 */ 1342 spin_unlock(&ubi->wl_lock); 1343 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1344 yield(); 1345 goto retry; 1346 } 1347 1348 if (in_wl_tree(e, &ubi->used)) { 1349 self_check_in_wl_tree(ubi, e, &ubi->used); 1350 rb_erase(&e->u.rb, &ubi->used); 1351 } else { 1352 int err; 1353 1354 err = prot_queue_del(ubi, e->pnum); 1355 if (err) { 1356 ubi_err(ubi, "PEB %d not found", pnum); 1357 ubi_ro_mode(ubi); 1358 spin_unlock(&ubi->wl_lock); 1359 return err; 1360 } 1361 } 1362 1363 wl_tree_add(e, &ubi->scrub); 1364 spin_unlock(&ubi->wl_lock); 1365 1366 /* 1367 * Technically scrubbing is the same as wear-leveling, so it is done 1368 * by the WL worker. 1369 */ 1370 return ensure_wear_leveling(ubi, 0); 1371 } 1372 1373 /** 1374 * ubi_wl_flush - flush all pending works. 1375 * @ubi: UBI device description object 1376 * @vol_id: the volume id to flush for 1377 * @lnum: the logical eraseblock number to flush for 1378 * 1379 * This function executes all pending works for a particular volume id / 1380 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1381 * acts as a wildcard for all of the corresponding volume numbers or logical 1382 * eraseblock numbers. It returns zero in case of success and a negative error 1383 * code in case of failure. 1384 */ 1385 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1386 { 1387 int err = 0; 1388 int found = 1; 1389 1390 /* 1391 * Erase while the pending works queue is not empty, but not more than 1392 * the number of currently pending works. 1393 */ 1394 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1395 vol_id, lnum, ubi->works_count); 1396 1397 while (found) { 1398 struct ubi_work *wrk, *tmp; 1399 found = 0; 1400 1401 down_read(&ubi->work_sem); 1402 spin_lock(&ubi->wl_lock); 1403 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1404 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1405 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1406 list_del(&wrk->list); 1407 ubi->works_count -= 1; 1408 ubi_assert(ubi->works_count >= 0); 1409 spin_unlock(&ubi->wl_lock); 1410 1411 err = wrk->func(ubi, wrk, 0); 1412 if (err) { 1413 up_read(&ubi->work_sem); 1414 return err; 1415 } 1416 1417 spin_lock(&ubi->wl_lock); 1418 found = 1; 1419 break; 1420 } 1421 } 1422 spin_unlock(&ubi->wl_lock); 1423 up_read(&ubi->work_sem); 1424 } 1425 1426 /* 1427 * Make sure all the works which have been done in parallel are 1428 * finished. 1429 */ 1430 down_write(&ubi->work_sem); 1431 up_write(&ubi->work_sem); 1432 1433 return err; 1434 } 1435 1436 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1437 { 1438 if (in_wl_tree(e, &ubi->scrub)) 1439 return false; 1440 else if (in_wl_tree(e, &ubi->erroneous)) 1441 return false; 1442 else if (ubi->move_from == e) 1443 return false; 1444 else if (ubi->move_to == e) 1445 return false; 1446 1447 return true; 1448 } 1449 1450 /** 1451 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1452 * @ubi: UBI device description object 1453 * @pnum: the physical eraseblock to schedule 1454 * @force: dont't read the block, assume bitflips happened and take action. 1455 * 1456 * This function reads the given eraseblock and checks if bitflips occured. 1457 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1458 * If scrubbing is forced with @force, the eraseblock is not read, 1459 * but scheduled for scrubbing right away. 1460 * 1461 * Returns: 1462 * %EINVAL, PEB is out of range 1463 * %ENOENT, PEB is no longer used by UBI 1464 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1465 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1466 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1467 * %0, no bit flips detected 1468 */ 1469 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1470 { 1471 int err = 0; 1472 struct ubi_wl_entry *e; 1473 1474 if (pnum < 0 || pnum >= ubi->peb_count) { 1475 err = -EINVAL; 1476 goto out; 1477 } 1478 1479 /* 1480 * Pause all parallel work, otherwise it can happen that the 1481 * erase worker frees a wl entry under us. 1482 */ 1483 down_write(&ubi->work_sem); 1484 1485 /* 1486 * Make sure that the wl entry does not change state while 1487 * inspecting it. 1488 */ 1489 spin_lock(&ubi->wl_lock); 1490 e = ubi->lookuptbl[pnum]; 1491 if (!e) { 1492 spin_unlock(&ubi->wl_lock); 1493 err = -ENOENT; 1494 goto out_resume; 1495 } 1496 1497 /* 1498 * Does it make sense to check this PEB? 1499 */ 1500 if (!scrub_possible(ubi, e)) { 1501 spin_unlock(&ubi->wl_lock); 1502 err = -EBUSY; 1503 goto out_resume; 1504 } 1505 spin_unlock(&ubi->wl_lock); 1506 1507 if (!force) { 1508 mutex_lock(&ubi->buf_mutex); 1509 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1510 mutex_unlock(&ubi->buf_mutex); 1511 } 1512 1513 if (force || err == UBI_IO_BITFLIPS) { 1514 /* 1515 * Okay, bit flip happened, let's figure out what we can do. 1516 */ 1517 spin_lock(&ubi->wl_lock); 1518 1519 /* 1520 * Recheck. We released wl_lock, UBI might have killed the 1521 * wl entry under us. 1522 */ 1523 e = ubi->lookuptbl[pnum]; 1524 if (!e) { 1525 spin_unlock(&ubi->wl_lock); 1526 err = -ENOENT; 1527 goto out_resume; 1528 } 1529 1530 /* 1531 * Need to re-check state 1532 */ 1533 if (!scrub_possible(ubi, e)) { 1534 spin_unlock(&ubi->wl_lock); 1535 err = -EBUSY; 1536 goto out_resume; 1537 } 1538 1539 if (in_pq(ubi, e)) { 1540 prot_queue_del(ubi, e->pnum); 1541 wl_tree_add(e, &ubi->scrub); 1542 spin_unlock(&ubi->wl_lock); 1543 1544 err = ensure_wear_leveling(ubi, 1); 1545 } else if (in_wl_tree(e, &ubi->used)) { 1546 rb_erase(&e->u.rb, &ubi->used); 1547 wl_tree_add(e, &ubi->scrub); 1548 spin_unlock(&ubi->wl_lock); 1549 1550 err = ensure_wear_leveling(ubi, 1); 1551 } else if (in_wl_tree(e, &ubi->free)) { 1552 rb_erase(&e->u.rb, &ubi->free); 1553 ubi->free_count--; 1554 spin_unlock(&ubi->wl_lock); 1555 1556 /* 1557 * This PEB is empty we can schedule it for 1558 * erasure right away. No wear leveling needed. 1559 */ 1560 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1561 force ? 0 : 1, true); 1562 } else { 1563 spin_unlock(&ubi->wl_lock); 1564 err = -EAGAIN; 1565 } 1566 1567 if (!err && !force) 1568 err = -EUCLEAN; 1569 } else { 1570 err = 0; 1571 } 1572 1573 out_resume: 1574 up_write(&ubi->work_sem); 1575 out: 1576 1577 return err; 1578 } 1579 1580 /** 1581 * tree_destroy - destroy an RB-tree. 1582 * @ubi: UBI device description object 1583 * @root: the root of the tree to destroy 1584 */ 1585 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1586 { 1587 struct rb_node *rb; 1588 struct ubi_wl_entry *e; 1589 1590 rb = root->rb_node; 1591 while (rb) { 1592 if (rb->rb_left) 1593 rb = rb->rb_left; 1594 else if (rb->rb_right) 1595 rb = rb->rb_right; 1596 else { 1597 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1598 1599 rb = rb_parent(rb); 1600 if (rb) { 1601 if (rb->rb_left == &e->u.rb) 1602 rb->rb_left = NULL; 1603 else 1604 rb->rb_right = NULL; 1605 } 1606 1607 wl_entry_destroy(ubi, e); 1608 } 1609 } 1610 } 1611 1612 /** 1613 * ubi_thread - UBI background thread. 1614 * @u: the UBI device description object pointer 1615 */ 1616 int ubi_thread(void *u) 1617 { 1618 int failures = 0; 1619 struct ubi_device *ubi = u; 1620 1621 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1622 ubi->bgt_name, task_pid_nr(current)); 1623 1624 set_freezable(); 1625 for (;;) { 1626 int err; 1627 1628 if (kthread_should_stop()) 1629 break; 1630 1631 if (try_to_freeze()) 1632 continue; 1633 1634 spin_lock(&ubi->wl_lock); 1635 if (list_empty(&ubi->works) || ubi->ro_mode || 1636 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1637 set_current_state(TASK_INTERRUPTIBLE); 1638 spin_unlock(&ubi->wl_lock); 1639 schedule(); 1640 continue; 1641 } 1642 spin_unlock(&ubi->wl_lock); 1643 1644 err = do_work(ubi); 1645 if (err) { 1646 ubi_err(ubi, "%s: work failed with error code %d", 1647 ubi->bgt_name, err); 1648 if (failures++ > WL_MAX_FAILURES) { 1649 /* 1650 * Too many failures, disable the thread and 1651 * switch to read-only mode. 1652 */ 1653 ubi_msg(ubi, "%s: %d consecutive failures", 1654 ubi->bgt_name, WL_MAX_FAILURES); 1655 ubi_ro_mode(ubi); 1656 ubi->thread_enabled = 0; 1657 continue; 1658 } 1659 } else 1660 failures = 0; 1661 1662 cond_resched(); 1663 } 1664 1665 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1666 ubi->thread_enabled = 0; 1667 return 0; 1668 } 1669 1670 /** 1671 * shutdown_work - shutdown all pending works. 1672 * @ubi: UBI device description object 1673 */ 1674 static void shutdown_work(struct ubi_device *ubi) 1675 { 1676 while (!list_empty(&ubi->works)) { 1677 struct ubi_work *wrk; 1678 1679 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1680 list_del(&wrk->list); 1681 wrk->func(ubi, wrk, 1); 1682 ubi->works_count -= 1; 1683 ubi_assert(ubi->works_count >= 0); 1684 } 1685 } 1686 1687 /** 1688 * erase_aeb - erase a PEB given in UBI attach info PEB 1689 * @ubi: UBI device description object 1690 * @aeb: UBI attach info PEB 1691 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1692 */ 1693 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1694 { 1695 struct ubi_wl_entry *e; 1696 int err; 1697 1698 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1699 if (!e) 1700 return -ENOMEM; 1701 1702 e->pnum = aeb->pnum; 1703 e->ec = aeb->ec; 1704 ubi->lookuptbl[e->pnum] = e; 1705 1706 if (sync) { 1707 err = sync_erase(ubi, e, false); 1708 if (err) 1709 goto out_free; 1710 1711 wl_tree_add(e, &ubi->free); 1712 ubi->free_count++; 1713 } else { 1714 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1715 if (err) 1716 goto out_free; 1717 } 1718 1719 return 0; 1720 1721 out_free: 1722 wl_entry_destroy(ubi, e); 1723 1724 return err; 1725 } 1726 1727 /** 1728 * ubi_wl_init - initialize the WL sub-system using attaching information. 1729 * @ubi: UBI device description object 1730 * @ai: attaching information 1731 * 1732 * This function returns zero in case of success, and a negative error code in 1733 * case of failure. 1734 */ 1735 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1736 { 1737 int err, i, reserved_pebs, found_pebs = 0; 1738 struct rb_node *rb1, *rb2; 1739 struct ubi_ainf_volume *av; 1740 struct ubi_ainf_peb *aeb, *tmp; 1741 struct ubi_wl_entry *e; 1742 1743 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1744 spin_lock_init(&ubi->wl_lock); 1745 mutex_init(&ubi->move_mutex); 1746 init_rwsem(&ubi->work_sem); 1747 ubi->max_ec = ai->max_ec; 1748 INIT_LIST_HEAD(&ubi->works); 1749 1750 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1751 1752 err = -ENOMEM; 1753 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1754 if (!ubi->lookuptbl) 1755 return err; 1756 1757 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1758 INIT_LIST_HEAD(&ubi->pq[i]); 1759 ubi->pq_head = 0; 1760 1761 ubi->free_count = 0; 1762 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1763 cond_resched(); 1764 1765 err = erase_aeb(ubi, aeb, false); 1766 if (err) 1767 goto out_free; 1768 1769 found_pebs++; 1770 } 1771 1772 list_for_each_entry(aeb, &ai->free, u.list) { 1773 cond_resched(); 1774 1775 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1776 if (!e) { 1777 err = -ENOMEM; 1778 goto out_free; 1779 } 1780 1781 e->pnum = aeb->pnum; 1782 e->ec = aeb->ec; 1783 ubi_assert(e->ec >= 0); 1784 1785 wl_tree_add(e, &ubi->free); 1786 ubi->free_count++; 1787 1788 ubi->lookuptbl[e->pnum] = e; 1789 1790 found_pebs++; 1791 } 1792 1793 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1794 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1795 cond_resched(); 1796 1797 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1798 if (!e) { 1799 err = -ENOMEM; 1800 goto out_free; 1801 } 1802 1803 e->pnum = aeb->pnum; 1804 e->ec = aeb->ec; 1805 ubi->lookuptbl[e->pnum] = e; 1806 1807 if (!aeb->scrub) { 1808 dbg_wl("add PEB %d EC %d to the used tree", 1809 e->pnum, e->ec); 1810 wl_tree_add(e, &ubi->used); 1811 } else { 1812 dbg_wl("add PEB %d EC %d to the scrub tree", 1813 e->pnum, e->ec); 1814 wl_tree_add(e, &ubi->scrub); 1815 } 1816 1817 found_pebs++; 1818 } 1819 } 1820 1821 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1822 cond_resched(); 1823 1824 e = ubi_find_fm_block(ubi, aeb->pnum); 1825 1826 if (e) { 1827 ubi_assert(!ubi->lookuptbl[e->pnum]); 1828 ubi->lookuptbl[e->pnum] = e; 1829 } else { 1830 bool sync = false; 1831 1832 /* 1833 * Usually old Fastmap PEBs are scheduled for erasure 1834 * and we don't have to care about them but if we face 1835 * an power cut before scheduling them we need to 1836 * take care of them here. 1837 */ 1838 if (ubi->lookuptbl[aeb->pnum]) 1839 continue; 1840 1841 /* 1842 * The fastmap update code might not find a free PEB for 1843 * writing the fastmap anchor to and then reuses the 1844 * current fastmap anchor PEB. When this PEB gets erased 1845 * and a power cut happens before it is written again we 1846 * must make sure that the fastmap attach code doesn't 1847 * find any outdated fastmap anchors, hence we erase the 1848 * outdated fastmap anchor PEBs synchronously here. 1849 */ 1850 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1851 sync = true; 1852 1853 err = erase_aeb(ubi, aeb, sync); 1854 if (err) 1855 goto out_free; 1856 } 1857 1858 found_pebs++; 1859 } 1860 1861 dbg_wl("found %i PEBs", found_pebs); 1862 1863 ubi_assert(ubi->good_peb_count == found_pebs); 1864 1865 reserved_pebs = WL_RESERVED_PEBS; 1866 ubi_fastmap_init(ubi, &reserved_pebs); 1867 1868 if (ubi->avail_pebs < reserved_pebs) { 1869 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1870 ubi->avail_pebs, reserved_pebs); 1871 if (ubi->corr_peb_count) 1872 ubi_err(ubi, "%d PEBs are corrupted and not used", 1873 ubi->corr_peb_count); 1874 err = -ENOSPC; 1875 goto out_free; 1876 } 1877 ubi->avail_pebs -= reserved_pebs; 1878 ubi->rsvd_pebs += reserved_pebs; 1879 1880 /* Schedule wear-leveling if needed */ 1881 err = ensure_wear_leveling(ubi, 0); 1882 if (err) 1883 goto out_free; 1884 1885 return 0; 1886 1887 out_free: 1888 shutdown_work(ubi); 1889 tree_destroy(ubi, &ubi->used); 1890 tree_destroy(ubi, &ubi->free); 1891 tree_destroy(ubi, &ubi->scrub); 1892 kfree(ubi->lookuptbl); 1893 return err; 1894 } 1895 1896 /** 1897 * protection_queue_destroy - destroy the protection queue. 1898 * @ubi: UBI device description object 1899 */ 1900 static void protection_queue_destroy(struct ubi_device *ubi) 1901 { 1902 int i; 1903 struct ubi_wl_entry *e, *tmp; 1904 1905 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1906 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1907 list_del(&e->u.list); 1908 wl_entry_destroy(ubi, e); 1909 } 1910 } 1911 } 1912 1913 /** 1914 * ubi_wl_close - close the wear-leveling sub-system. 1915 * @ubi: UBI device description object 1916 */ 1917 void ubi_wl_close(struct ubi_device *ubi) 1918 { 1919 dbg_wl("close the WL sub-system"); 1920 ubi_fastmap_close(ubi); 1921 shutdown_work(ubi); 1922 protection_queue_destroy(ubi); 1923 tree_destroy(ubi, &ubi->used); 1924 tree_destroy(ubi, &ubi->erroneous); 1925 tree_destroy(ubi, &ubi->free); 1926 tree_destroy(ubi, &ubi->scrub); 1927 kfree(ubi->lookuptbl); 1928 } 1929 1930 /** 1931 * self_check_ec - make sure that the erase counter of a PEB is correct. 1932 * @ubi: UBI device description object 1933 * @pnum: the physical eraseblock number to check 1934 * @ec: the erase counter to check 1935 * 1936 * This function returns zero if the erase counter of physical eraseblock @pnum 1937 * is equivalent to @ec, and a negative error code if not or if an error 1938 * occurred. 1939 */ 1940 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1941 { 1942 int err; 1943 long long read_ec; 1944 struct ubi_ec_hdr *ec_hdr; 1945 1946 if (!ubi_dbg_chk_gen(ubi)) 1947 return 0; 1948 1949 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1950 if (!ec_hdr) 1951 return -ENOMEM; 1952 1953 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1954 if (err && err != UBI_IO_BITFLIPS) { 1955 /* The header does not have to exist */ 1956 err = 0; 1957 goto out_free; 1958 } 1959 1960 read_ec = be64_to_cpu(ec_hdr->ec); 1961 if (ec != read_ec && read_ec - ec > 1) { 1962 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1963 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1964 dump_stack(); 1965 err = 1; 1966 } else 1967 err = 0; 1968 1969 out_free: 1970 kfree(ec_hdr); 1971 return err; 1972 } 1973 1974 /** 1975 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1976 * @ubi: UBI device description object 1977 * @e: the wear-leveling entry to check 1978 * @root: the root of the tree 1979 * 1980 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1981 * is not. 1982 */ 1983 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1984 struct ubi_wl_entry *e, struct rb_root *root) 1985 { 1986 if (!ubi_dbg_chk_gen(ubi)) 1987 return 0; 1988 1989 if (in_wl_tree(e, root)) 1990 return 0; 1991 1992 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1993 e->pnum, e->ec, root); 1994 dump_stack(); 1995 return -EINVAL; 1996 } 1997 1998 /** 1999 * self_check_in_pq - check if wear-leveling entry is in the protection 2000 * queue. 2001 * @ubi: UBI device description object 2002 * @e: the wear-leveling entry to check 2003 * 2004 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2005 */ 2006 static int self_check_in_pq(const struct ubi_device *ubi, 2007 struct ubi_wl_entry *e) 2008 { 2009 if (!ubi_dbg_chk_gen(ubi)) 2010 return 0; 2011 2012 if (in_pq(ubi, e)) 2013 return 0; 2014 2015 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2016 e->pnum, e->ec); 2017 dump_stack(); 2018 return -EINVAL; 2019 } 2020 #ifndef CONFIG_MTD_UBI_FASTMAP 2021 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2022 { 2023 struct ubi_wl_entry *e; 2024 2025 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 2026 self_check_in_wl_tree(ubi, e, &ubi->free); 2027 ubi->free_count--; 2028 ubi_assert(ubi->free_count >= 0); 2029 rb_erase(&e->u.rb, &ubi->free); 2030 2031 return e; 2032 } 2033 2034 /** 2035 * produce_free_peb - produce a free physical eraseblock. 2036 * @ubi: UBI device description object 2037 * 2038 * This function tries to make a free PEB by means of synchronous execution of 2039 * pending works. This may be needed if, for example the background thread is 2040 * disabled. Returns zero in case of success and a negative error code in case 2041 * of failure. 2042 */ 2043 static int produce_free_peb(struct ubi_device *ubi) 2044 { 2045 int err; 2046 2047 while (!ubi->free.rb_node && ubi->works_count) { 2048 spin_unlock(&ubi->wl_lock); 2049 2050 dbg_wl("do one work synchronously"); 2051 err = do_work(ubi); 2052 2053 spin_lock(&ubi->wl_lock); 2054 if (err) 2055 return err; 2056 } 2057 2058 return 0; 2059 } 2060 2061 /** 2062 * ubi_wl_get_peb - get a physical eraseblock. 2063 * @ubi: UBI device description object 2064 * 2065 * This function returns a physical eraseblock in case of success and a 2066 * negative error code in case of failure. 2067 * Returns with ubi->fm_eba_sem held in read mode! 2068 */ 2069 int ubi_wl_get_peb(struct ubi_device *ubi) 2070 { 2071 int err; 2072 struct ubi_wl_entry *e; 2073 2074 retry: 2075 down_read(&ubi->fm_eba_sem); 2076 spin_lock(&ubi->wl_lock); 2077 if (!ubi->free.rb_node) { 2078 if (ubi->works_count == 0) { 2079 ubi_err(ubi, "no free eraseblocks"); 2080 ubi_assert(list_empty(&ubi->works)); 2081 spin_unlock(&ubi->wl_lock); 2082 return -ENOSPC; 2083 } 2084 2085 err = produce_free_peb(ubi); 2086 if (err < 0) { 2087 spin_unlock(&ubi->wl_lock); 2088 return err; 2089 } 2090 spin_unlock(&ubi->wl_lock); 2091 up_read(&ubi->fm_eba_sem); 2092 goto retry; 2093 2094 } 2095 e = wl_get_wle(ubi); 2096 prot_queue_add(ubi, e); 2097 spin_unlock(&ubi->wl_lock); 2098 2099 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2100 ubi->peb_size - ubi->vid_hdr_aloffset); 2101 if (err) { 2102 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2103 return err; 2104 } 2105 2106 return e->pnum; 2107 } 2108 #else 2109 #include "fastmap-wl.c" 2110 #endif 2111