1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. Note, 34 * nowadays we use the atomic LEB change operation when updating the volume 35 * table, so we do not really need 2 LEBs anymore, but we preserve the older 36 * design for the backward compatibility reasons. 37 * 38 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is 39 * erased, and the updated volume table is written back to LEB 0. Then same for 40 * LEB 1. This scheme guarantees recoverability from unclean reboots. 41 * 42 * In this UBI implementation the on-flash volume table does not contain any 43 * information about how much data static volumes contain. 44 * 45 * But it would still be beneficial to store this information in the volume 46 * table. For example, suppose we have a static volume X, and all its physical 47 * eraseblocks became bad for some reasons. Suppose we are attaching the 48 * corresponding MTD device, for some reason we find no logical eraseblocks 49 * corresponding to the volume X. According to the volume table volume X does 50 * exist. So we don't know whether it is just empty or all its physical 51 * eraseblocks went bad. So we cannot alarm the user properly. 52 * 53 * The volume table also stores so-called "update marker", which is used for 54 * volume updates. Before updating the volume, the update marker is set, and 55 * after the update operation is finished, the update marker is cleared. So if 56 * the update operation was interrupted (e.g. by an unclean reboot) - the 57 * update marker is still there and we know that the volume's contents is 58 * damaged. 59 */ 60 61 #include <linux/crc32.h> 62 #include <linux/err.h> 63 #include <linux/slab.h> 64 #include <asm/div64.h> 65 #include "ubi.h" 66 67 static void self_vtbl_check(const struct ubi_device *ubi); 68 69 /* Empty volume table record */ 70 static struct ubi_vtbl_record empty_vtbl_record; 71 72 /** 73 * ubi_update_layout_vol - helper for updatting layout volumes on flash 74 * @ubi: UBI device description object 75 */ 76 static int ubi_update_layout_vol(struct ubi_device *ubi) 77 { 78 struct ubi_volume *layout_vol; 79 int i, err; 80 81 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 82 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 83 err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, 84 ubi->vtbl_size); 85 if (err) 86 return err; 87 } 88 89 return 0; 90 } 91 92 /** 93 * ubi_change_vtbl_record - change volume table record. 94 * @ubi: UBI device description object 95 * @idx: table index to change 96 * @vtbl_rec: new volume table record 97 * 98 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 99 * volume table record is written. The caller does not have to calculate CRC of 100 * the record as it is done by this function. Returns zero in case of success 101 * and a negative error code in case of failure. 102 */ 103 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 104 struct ubi_vtbl_record *vtbl_rec) 105 { 106 int err; 107 uint32_t crc; 108 109 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 110 111 if (!vtbl_rec) 112 vtbl_rec = &empty_vtbl_record; 113 else { 114 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 115 vtbl_rec->crc = cpu_to_be32(crc); 116 } 117 118 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 119 err = ubi_update_layout_vol(ubi); 120 121 self_vtbl_check(ubi); 122 return err ? err : 0; 123 } 124 125 /** 126 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. 127 * @ubi: UBI device description object 128 * @rename_list: list of &struct ubi_rename_entry objects 129 * 130 * This function re-names multiple volumes specified in @req in the volume 131 * table. Returns zero in case of success and a negative error code in case of 132 * failure. 133 */ 134 int ubi_vtbl_rename_volumes(struct ubi_device *ubi, 135 struct list_head *rename_list) 136 { 137 struct ubi_rename_entry *re; 138 139 list_for_each_entry(re, rename_list, list) { 140 uint32_t crc; 141 struct ubi_volume *vol = re->desc->vol; 142 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; 143 144 if (re->remove) { 145 memcpy(vtbl_rec, &empty_vtbl_record, 146 sizeof(struct ubi_vtbl_record)); 147 continue; 148 } 149 150 vtbl_rec->name_len = cpu_to_be16(re->new_name_len); 151 memcpy(vtbl_rec->name, re->new_name, re->new_name_len); 152 memset(vtbl_rec->name + re->new_name_len, 0, 153 UBI_VOL_NAME_MAX + 1 - re->new_name_len); 154 crc = crc32(UBI_CRC32_INIT, vtbl_rec, 155 UBI_VTBL_RECORD_SIZE_CRC); 156 vtbl_rec->crc = cpu_to_be32(crc); 157 } 158 159 return ubi_update_layout_vol(ubi); 160 } 161 162 /** 163 * vtbl_check - check if volume table is not corrupted and sensible. 164 * @ubi: UBI device description object 165 * @vtbl: volume table 166 * 167 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 168 * and %-EINVAL if it contains inconsistent data. 169 */ 170 static int vtbl_check(const struct ubi_device *ubi, 171 const struct ubi_vtbl_record *vtbl) 172 { 173 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 174 int upd_marker, err; 175 uint32_t crc; 176 const char *name; 177 178 for (i = 0; i < ubi->vtbl_slots; i++) { 179 cond_resched(); 180 181 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 182 alignment = be32_to_cpu(vtbl[i].alignment); 183 data_pad = be32_to_cpu(vtbl[i].data_pad); 184 upd_marker = vtbl[i].upd_marker; 185 vol_type = vtbl[i].vol_type; 186 name_len = be16_to_cpu(vtbl[i].name_len); 187 name = &vtbl[i].name[0]; 188 189 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 190 if (be32_to_cpu(vtbl[i].crc) != crc) { 191 ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x", 192 i, crc, be32_to_cpu(vtbl[i].crc)); 193 ubi_dump_vtbl_record(&vtbl[i], i); 194 return 1; 195 } 196 197 if (reserved_pebs == 0) { 198 if (memcmp(&vtbl[i], &empty_vtbl_record, 199 UBI_VTBL_RECORD_SIZE)) { 200 err = 2; 201 goto bad; 202 } 203 continue; 204 } 205 206 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 207 name_len < 0) { 208 err = 3; 209 goto bad; 210 } 211 212 if (alignment > ubi->leb_size || alignment == 0) { 213 err = 4; 214 goto bad; 215 } 216 217 n = alignment & (ubi->min_io_size - 1); 218 if (alignment != 1 && n) { 219 err = 5; 220 goto bad; 221 } 222 223 n = ubi->leb_size % alignment; 224 if (data_pad != n) { 225 ubi_err(ubi, "bad data_pad, has to be %d", n); 226 err = 6; 227 goto bad; 228 } 229 230 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 231 err = 7; 232 goto bad; 233 } 234 235 if (upd_marker != 0 && upd_marker != 1) { 236 err = 8; 237 goto bad; 238 } 239 240 if (reserved_pebs > ubi->good_peb_count) { 241 ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d", 242 reserved_pebs, ubi->good_peb_count); 243 err = 9; 244 goto bad; 245 } 246 247 if (name_len > UBI_VOL_NAME_MAX) { 248 err = 10; 249 goto bad; 250 } 251 252 if (name[0] == '\0') { 253 err = 11; 254 goto bad; 255 } 256 257 if (name_len != strnlen(name, name_len + 1)) { 258 err = 12; 259 goto bad; 260 } 261 } 262 263 /* Checks that all names are unique */ 264 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 265 for (n = i + 1; n < ubi->vtbl_slots; n++) { 266 int len1 = be16_to_cpu(vtbl[i].name_len); 267 int len2 = be16_to_cpu(vtbl[n].name_len); 268 269 if (len1 > 0 && len1 == len2 && 270 !strncmp(vtbl[i].name, vtbl[n].name, len1)) { 271 ubi_err(ubi, "volumes %d and %d have the same name \"%s\"", 272 i, n, vtbl[i].name); 273 ubi_dump_vtbl_record(&vtbl[i], i); 274 ubi_dump_vtbl_record(&vtbl[n], n); 275 return -EINVAL; 276 } 277 } 278 } 279 280 return 0; 281 282 bad: 283 ubi_err(ubi, "volume table check failed: record %d, error %d", i, err); 284 ubi_dump_vtbl_record(&vtbl[i], i); 285 return -EINVAL; 286 } 287 288 /** 289 * create_vtbl - create a copy of volume table. 290 * @ubi: UBI device description object 291 * @ai: attaching information 292 * @copy: number of the volume table copy 293 * @vtbl: contents of the volume table 294 * 295 * This function returns zero in case of success and a negative error code in 296 * case of failure. 297 */ 298 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, 299 int copy, void *vtbl) 300 { 301 int err, tries = 0; 302 struct ubi_vid_io_buf *vidb; 303 struct ubi_vid_hdr *vid_hdr; 304 struct ubi_ainf_peb *new_aeb; 305 306 dbg_gen("create volume table (copy #%d)", copy + 1); 307 308 vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); 309 if (!vidb) 310 return -ENOMEM; 311 312 vid_hdr = ubi_get_vid_hdr(vidb); 313 314 retry: 315 new_aeb = ubi_early_get_peb(ubi, ai); 316 if (IS_ERR(new_aeb)) { 317 err = PTR_ERR(new_aeb); 318 goto out_free; 319 } 320 321 vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; 322 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); 323 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 324 vid_hdr->data_size = vid_hdr->used_ebs = 325 vid_hdr->data_pad = cpu_to_be32(0); 326 vid_hdr->lnum = cpu_to_be32(copy); 327 vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); 328 329 /* The EC header is already there, write the VID header */ 330 err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb); 331 if (err) 332 goto write_error; 333 334 /* Write the layout volume contents */ 335 err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); 336 if (err) 337 goto write_error; 338 339 /* 340 * And add it to the attaching information. Don't delete the old version 341 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. 342 */ 343 err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); 344 ubi_free_aeb(ai, new_aeb); 345 ubi_free_vid_buf(vidb); 346 return err; 347 348 write_error: 349 if (err == -EIO && ++tries <= 5) { 350 /* 351 * Probably this physical eraseblock went bad, try to pick 352 * another one. 353 */ 354 list_add(&new_aeb->u.list, &ai->erase); 355 goto retry; 356 } 357 ubi_free_aeb(ai, new_aeb); 358 out_free: 359 ubi_free_vid_buf(vidb); 360 return err; 361 362 } 363 364 /** 365 * process_lvol - process the layout volume. 366 * @ubi: UBI device description object 367 * @ai: attaching information 368 * @av: layout volume attaching information 369 * 370 * This function is responsible for reading the layout volume, ensuring it is 371 * not corrupted, and recovering from corruptions if needed. Returns volume 372 * table in case of success and a negative error code in case of failure. 373 */ 374 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, 375 struct ubi_attach_info *ai, 376 struct ubi_ainf_volume *av) 377 { 378 int err; 379 struct rb_node *rb; 380 struct ubi_ainf_peb *aeb; 381 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 382 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 383 384 /* 385 * UBI goes through the following steps when it changes the layout 386 * volume: 387 * a. erase LEB 0; 388 * b. write new data to LEB 0; 389 * c. erase LEB 1; 390 * d. write new data to LEB 1. 391 * 392 * Before the change, both LEBs contain the same data. 393 * 394 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 395 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 396 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 397 * finally, unclean reboots may result in a situation when neither LEB 398 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 399 * 0 contains more recent information. 400 * 401 * So the plan is to first check LEB 0. Then 402 * a. if LEB 0 is OK, it must be containing the most recent data; then 403 * we compare it with LEB 1, and if they are different, we copy LEB 404 * 0 to LEB 1; 405 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 406 * to LEB 0. 407 */ 408 409 dbg_gen("check layout volume"); 410 411 /* Read both LEB 0 and LEB 1 into memory */ 412 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 413 leb[aeb->lnum] = vzalloc(ubi->vtbl_size); 414 if (!leb[aeb->lnum]) { 415 err = -ENOMEM; 416 goto out_free; 417 } 418 419 err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, 420 ubi->vtbl_size); 421 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) 422 /* 423 * Scrub the PEB later. Note, -EBADMSG indicates an 424 * uncorrectable ECC error, but we have our own CRC and 425 * the data will be checked later. If the data is OK, 426 * the PEB will be scrubbed (because we set 427 * aeb->scrub). If the data is not OK, the contents of 428 * the PEB will be recovered from the second copy, and 429 * aeb->scrub will be cleared in 430 * 'ubi_add_to_av()'. 431 */ 432 aeb->scrub = 1; 433 else if (err) 434 goto out_free; 435 } 436 437 err = -EINVAL; 438 if (leb[0]) { 439 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 440 if (leb_corrupted[0] < 0) 441 goto out_free; 442 } 443 444 if (!leb_corrupted[0]) { 445 /* LEB 0 is OK */ 446 if (leb[1]) 447 leb_corrupted[1] = memcmp(leb[0], leb[1], 448 ubi->vtbl_size); 449 if (leb_corrupted[1]) { 450 ubi_warn(ubi, "volume table copy #2 is corrupted"); 451 err = create_vtbl(ubi, ai, 1, leb[0]); 452 if (err) 453 goto out_free; 454 ubi_msg(ubi, "volume table was restored"); 455 } 456 457 /* Both LEB 1 and LEB 2 are OK and consistent */ 458 vfree(leb[1]); 459 return leb[0]; 460 } else { 461 /* LEB 0 is corrupted or does not exist */ 462 if (leb[1]) { 463 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 464 if (leb_corrupted[1] < 0) 465 goto out_free; 466 } 467 if (leb_corrupted[1]) { 468 /* Both LEB 0 and LEB 1 are corrupted */ 469 ubi_err(ubi, "both volume tables are corrupted"); 470 goto out_free; 471 } 472 473 ubi_warn(ubi, "volume table copy #1 is corrupted"); 474 err = create_vtbl(ubi, ai, 0, leb[1]); 475 if (err) 476 goto out_free; 477 ubi_msg(ubi, "volume table was restored"); 478 479 vfree(leb[0]); 480 return leb[1]; 481 } 482 483 out_free: 484 vfree(leb[0]); 485 vfree(leb[1]); 486 return ERR_PTR(err); 487 } 488 489 /** 490 * create_empty_lvol - create empty layout volume. 491 * @ubi: UBI device description object 492 * @ai: attaching information 493 * 494 * This function returns volume table contents in case of success and a 495 * negative error code in case of failure. 496 */ 497 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, 498 struct ubi_attach_info *ai) 499 { 500 int i; 501 struct ubi_vtbl_record *vtbl; 502 503 vtbl = vzalloc(ubi->vtbl_size); 504 if (!vtbl) 505 return ERR_PTR(-ENOMEM); 506 507 for (i = 0; i < ubi->vtbl_slots; i++) 508 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 509 510 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 511 int err; 512 513 err = create_vtbl(ubi, ai, i, vtbl); 514 if (err) { 515 vfree(vtbl); 516 return ERR_PTR(err); 517 } 518 } 519 520 return vtbl; 521 } 522 523 /** 524 * init_volumes - initialize volume information for existing volumes. 525 * @ubi: UBI device description object 526 * @ai: scanning information 527 * @vtbl: volume table 528 * 529 * This function allocates volume description objects for existing volumes. 530 * Returns zero in case of success and a negative error code in case of 531 * failure. 532 */ 533 static int init_volumes(struct ubi_device *ubi, 534 const struct ubi_attach_info *ai, 535 const struct ubi_vtbl_record *vtbl) 536 { 537 int i, err, reserved_pebs = 0; 538 struct ubi_ainf_volume *av; 539 struct ubi_volume *vol; 540 541 for (i = 0; i < ubi->vtbl_slots; i++) { 542 cond_resched(); 543 544 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 545 continue; /* Empty record */ 546 547 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 548 if (!vol) 549 return -ENOMEM; 550 551 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 552 vol->alignment = be32_to_cpu(vtbl[i].alignment); 553 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 554 vol->upd_marker = vtbl[i].upd_marker; 555 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 556 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 557 vol->name_len = be16_to_cpu(vtbl[i].name_len); 558 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 559 memcpy(vol->name, vtbl[i].name, vol->name_len); 560 vol->name[vol->name_len] = '\0'; 561 vol->vol_id = i; 562 563 if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG) 564 vol->skip_check = 1; 565 566 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { 567 /* Auto re-size flag may be set only for one volume */ 568 if (ubi->autoresize_vol_id != -1) { 569 ubi_err(ubi, "more than one auto-resize volume (%d and %d)", 570 ubi->autoresize_vol_id, i); 571 kfree(vol); 572 return -EINVAL; 573 } 574 575 ubi->autoresize_vol_id = i; 576 } 577 578 ubi_assert(!ubi->volumes[i]); 579 ubi->volumes[i] = vol; 580 ubi->vol_count += 1; 581 vol->ubi = ubi; 582 reserved_pebs += vol->reserved_pebs; 583 584 /* 585 * We use ubi->peb_count and not vol->reserved_pebs because 586 * we want to keep the code simple. Otherwise we'd have to 587 * resize/check the bitmap upon volume resize too. 588 * Allocating a few bytes more does not hurt. 589 */ 590 err = ubi_fastmap_init_checkmap(vol, ubi->peb_count); 591 if (err) 592 return err; 593 594 /* 595 * In case of dynamic volume UBI knows nothing about how many 596 * data is stored there. So assume the whole volume is used. 597 */ 598 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 599 vol->used_ebs = vol->reserved_pebs; 600 vol->last_eb_bytes = vol->usable_leb_size; 601 vol->used_bytes = 602 (long long)vol->used_ebs * vol->usable_leb_size; 603 continue; 604 } 605 606 /* Static volumes only */ 607 av = ubi_find_av(ai, i); 608 if (!av || !av->leb_count) { 609 /* 610 * No eraseblocks belonging to this volume found. We 611 * don't actually know whether this static volume is 612 * completely corrupted or just contains no data. And 613 * we cannot know this as long as data size is not 614 * stored on flash. So we just assume the volume is 615 * empty. FIXME: this should be handled. 616 */ 617 continue; 618 } 619 620 if (av->leb_count != av->used_ebs) { 621 /* 622 * We found a static volume which misses several 623 * eraseblocks. Treat it as corrupted. 624 */ 625 ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted", 626 av->vol_id, av->used_ebs - av->leb_count); 627 vol->corrupted = 1; 628 continue; 629 } 630 631 vol->used_ebs = av->used_ebs; 632 vol->used_bytes = 633 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 634 vol->used_bytes += av->last_data_size; 635 vol->last_eb_bytes = av->last_data_size; 636 } 637 638 /* And add the layout volume */ 639 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 640 if (!vol) 641 return -ENOMEM; 642 643 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 644 vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; 645 vol->vol_type = UBI_DYNAMIC_VOLUME; 646 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 647 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 648 vol->usable_leb_size = ubi->leb_size; 649 vol->used_ebs = vol->reserved_pebs; 650 vol->last_eb_bytes = vol->reserved_pebs; 651 vol->used_bytes = 652 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 653 vol->vol_id = UBI_LAYOUT_VOLUME_ID; 654 vol->ref_count = 1; 655 656 ubi_assert(!ubi->volumes[i]); 657 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 658 reserved_pebs += vol->reserved_pebs; 659 ubi->vol_count += 1; 660 vol->ubi = ubi; 661 err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS); 662 if (err) 663 return err; 664 665 if (reserved_pebs > ubi->avail_pebs) { 666 ubi_err(ubi, "not enough PEBs, required %d, available %d", 667 reserved_pebs, ubi->avail_pebs); 668 if (ubi->corr_peb_count) 669 ubi_err(ubi, "%d PEBs are corrupted and not used", 670 ubi->corr_peb_count); 671 return -ENOSPC; 672 } 673 ubi->rsvd_pebs += reserved_pebs; 674 ubi->avail_pebs -= reserved_pebs; 675 676 return 0; 677 } 678 679 /** 680 * check_av - check volume attaching information. 681 * @vol: UBI volume description object 682 * @av: volume attaching information 683 * 684 * This function returns zero if the volume attaching information is consistent 685 * to the data read from the volume tabla, and %-EINVAL if not. 686 */ 687 static int check_av(const struct ubi_volume *vol, 688 const struct ubi_ainf_volume *av) 689 { 690 int err; 691 692 if (av->highest_lnum >= vol->reserved_pebs) { 693 err = 1; 694 goto bad; 695 } 696 if (av->leb_count > vol->reserved_pebs) { 697 err = 2; 698 goto bad; 699 } 700 if (av->vol_type != vol->vol_type) { 701 err = 3; 702 goto bad; 703 } 704 if (av->used_ebs > vol->reserved_pebs) { 705 err = 4; 706 goto bad; 707 } 708 if (av->data_pad != vol->data_pad) { 709 err = 5; 710 goto bad; 711 } 712 return 0; 713 714 bad: 715 ubi_err(vol->ubi, "bad attaching information, error %d", err); 716 ubi_dump_av(av); 717 ubi_dump_vol_info(vol); 718 return -EINVAL; 719 } 720 721 /** 722 * check_attaching_info - check that attaching information. 723 * @ubi: UBI device description object 724 * @ai: attaching information 725 * 726 * Even though we protect on-flash data by CRC checksums, we still don't trust 727 * the media. This function ensures that attaching information is consistent to 728 * the information read from the volume table. Returns zero if the attaching 729 * information is OK and %-EINVAL if it is not. 730 */ 731 static int check_attaching_info(const struct ubi_device *ubi, 732 struct ubi_attach_info *ai) 733 { 734 int err, i; 735 struct ubi_ainf_volume *av; 736 struct ubi_volume *vol; 737 738 if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 739 ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d", 740 ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 741 return -EINVAL; 742 } 743 744 if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && 745 ai->highest_vol_id < UBI_INTERNAL_VOL_START) { 746 ubi_err(ubi, "too large volume ID %d found", 747 ai->highest_vol_id); 748 return -EINVAL; 749 } 750 751 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 752 cond_resched(); 753 754 av = ubi_find_av(ai, i); 755 vol = ubi->volumes[i]; 756 if (!vol) { 757 if (av) 758 ubi_remove_av(ai, av); 759 continue; 760 } 761 762 if (vol->reserved_pebs == 0) { 763 ubi_assert(i < ubi->vtbl_slots); 764 765 if (!av) 766 continue; 767 768 /* 769 * During attaching we found a volume which does not 770 * exist according to the information in the volume 771 * table. This must have happened due to an unclean 772 * reboot while the volume was being removed. Discard 773 * these eraseblocks. 774 */ 775 ubi_msg(ubi, "finish volume %d removal", av->vol_id); 776 ubi_remove_av(ai, av); 777 } else if (av) { 778 err = check_av(vol, av); 779 if (err) 780 return err; 781 } 782 } 783 784 return 0; 785 } 786 787 /** 788 * ubi_read_volume_table - read the volume table. 789 * @ubi: UBI device description object 790 * @ai: attaching information 791 * 792 * This function reads volume table, checks it, recover from errors if needed, 793 * or creates it if needed. Returns zero in case of success and a negative 794 * error code in case of failure. 795 */ 796 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) 797 { 798 int i, err; 799 struct ubi_ainf_volume *av; 800 801 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 802 803 /* 804 * The number of supported volumes is limited by the eraseblock size 805 * and by the UBI_MAX_VOLUMES constant. 806 */ 807 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 808 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 809 ubi->vtbl_slots = UBI_MAX_VOLUMES; 810 811 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 812 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 813 814 av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); 815 if (!av) { 816 /* 817 * No logical eraseblocks belonging to the layout volume were 818 * found. This could mean that the flash is just empty. In 819 * this case we create empty layout volume. 820 * 821 * But if flash is not empty this must be a corruption or the 822 * MTD device just contains garbage. 823 */ 824 if (ai->is_empty) { 825 ubi->vtbl = create_empty_lvol(ubi, ai); 826 if (IS_ERR(ubi->vtbl)) 827 return PTR_ERR(ubi->vtbl); 828 } else { 829 ubi_err(ubi, "the layout volume was not found"); 830 return -EINVAL; 831 } 832 } else { 833 if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { 834 /* This must not happen with proper UBI images */ 835 ubi_err(ubi, "too many LEBs (%d) in layout volume", 836 av->leb_count); 837 return -EINVAL; 838 } 839 840 ubi->vtbl = process_lvol(ubi, ai, av); 841 if (IS_ERR(ubi->vtbl)) 842 return PTR_ERR(ubi->vtbl); 843 } 844 845 ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; 846 847 /* 848 * The layout volume is OK, initialize the corresponding in-RAM data 849 * structures. 850 */ 851 err = init_volumes(ubi, ai, ubi->vtbl); 852 if (err) 853 goto out_free; 854 855 /* 856 * Make sure that the attaching information is consistent to the 857 * information stored in the volume table. 858 */ 859 err = check_attaching_info(ubi, ai); 860 if (err) 861 goto out_free; 862 863 return 0; 864 865 out_free: 866 vfree(ubi->vtbl); 867 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 868 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 869 kfree(ubi->volumes[i]); 870 ubi->volumes[i] = NULL; 871 } 872 return err; 873 } 874 875 /** 876 * self_vtbl_check - check volume table. 877 * @ubi: UBI device description object 878 */ 879 static void self_vtbl_check(const struct ubi_device *ubi) 880 { 881 if (!ubi_dbg_chk_gen(ubi)) 882 return; 883 884 if (vtbl_check(ubi, ubi->vtbl)) { 885 ubi_err(ubi, "self-check failed"); 886 BUG(); 887 } 888 } 889