xref: /openbmc/linux/drivers/mtd/ubi/vtbl.c (revision f42b3800)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * This file includes volume table manipulation code. The volume table is an
24  * on-flash table containing volume meta-data like name, number of reserved
25  * physical eraseblocks, type, etc. The volume table is stored in the so-called
26  * "layout volume".
27  *
28  * The layout volume is an internal volume which is organized as follows. It
29  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31  * other. This redundancy guarantees robustness to unclean reboots. The volume
32  * table is basically an array of volume table records. Each record contains
33  * full information about the volume and protected by a CRC checksum.
34  *
35  * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36  * erased, and the updated volume table is written back to LEB 0. Then same for
37  * LEB 1. This scheme guarantees recoverability from unclean reboots.
38  *
39  * In this UBI implementation the on-flash volume table does not contain any
40  * information about how many data static volumes contain. This information may
41  * be found from the scanning data.
42  *
43  * But it would still be beneficial to store this information in the volume
44  * table. For example, suppose we have a static volume X, and all its physical
45  * eraseblocks became bad for some reasons. Suppose we are attaching the
46  * corresponding MTD device, the scanning has found no logical eraseblocks
47  * corresponding to the volume X. According to the volume table volume X does
48  * exist. So we don't know whether it is just empty or all its physical
49  * eraseblocks went bad. So we cannot alarm the user about this corruption.
50  *
51  * The volume table also stores so-called "update marker", which is used for
52  * volume updates. Before updating the volume, the update marker is set, and
53  * after the update operation is finished, the update marker is cleared. So if
54  * the update operation was interrupted (e.g. by an unclean reboot) - the
55  * update marker is still there and we know that the volume's contents is
56  * damaged.
57  */
58 
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <asm/div64.h>
62 #include "ubi.h"
63 
64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65 static void paranoid_vtbl_check(const struct ubi_device *ubi);
66 #else
67 #define paranoid_vtbl_check(ubi)
68 #endif
69 
70 /* Empty volume table record */
71 static struct ubi_vtbl_record empty_vtbl_record;
72 
73 /**
74  * ubi_change_vtbl_record - change volume table record.
75  * @ubi: UBI device description object
76  * @idx: table index to change
77  * @vtbl_rec: new volume table record
78  *
79  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80  * volume table record is written. The caller does not have to calculate CRC of
81  * the record as it is done by this function. Returns zero in case of success
82  * and a negative error code in case of failure.
83  */
84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
85 			   struct ubi_vtbl_record *vtbl_rec)
86 {
87 	int i, err;
88 	uint32_t crc;
89 	struct ubi_volume *layout_vol;
90 
91 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
92 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
93 
94 	if (!vtbl_rec)
95 		vtbl_rec = &empty_vtbl_record;
96 	else {
97 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
98 		vtbl_rec->crc = cpu_to_be32(crc);
99 	}
100 
101 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
102 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
103 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
104 		if (err)
105 			return err;
106 
107 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
108 					ubi->vtbl_size, UBI_LONGTERM);
109 		if (err)
110 			return err;
111 	}
112 
113 	paranoid_vtbl_check(ubi);
114 	return 0;
115 }
116 
117 /**
118  * vtbl_check - check if volume table is not corrupted and contains sensible
119  *              data.
120  * @ubi: UBI device description object
121  * @vtbl: volume table
122  *
123  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
124  * and %-EINVAL if it contains inconsistent data.
125  */
126 static int vtbl_check(const struct ubi_device *ubi,
127 		      const struct ubi_vtbl_record *vtbl)
128 {
129 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
130 	int upd_marker;
131 	uint32_t crc;
132 	const char *name;
133 
134 	for (i = 0; i < ubi->vtbl_slots; i++) {
135 		cond_resched();
136 
137 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
138 		alignment = be32_to_cpu(vtbl[i].alignment);
139 		data_pad = be32_to_cpu(vtbl[i].data_pad);
140 		upd_marker = vtbl[i].upd_marker;
141 		vol_type = vtbl[i].vol_type;
142 		name_len = be16_to_cpu(vtbl[i].name_len);
143 		name = &vtbl[i].name[0];
144 
145 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
146 		if (be32_to_cpu(vtbl[i].crc) != crc) {
147 			ubi_err("bad CRC at record %u: %#08x, not %#08x",
148 				 i, crc, be32_to_cpu(vtbl[i].crc));
149 			ubi_dbg_dump_vtbl_record(&vtbl[i], i);
150 			return 1;
151 		}
152 
153 		if (reserved_pebs == 0) {
154 			if (memcmp(&vtbl[i], &empty_vtbl_record,
155 						UBI_VTBL_RECORD_SIZE)) {
156 				dbg_err("bad empty record");
157 				goto bad;
158 			}
159 			continue;
160 		}
161 
162 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
163 		    name_len < 0) {
164 			dbg_err("negative values");
165 			goto bad;
166 		}
167 
168 		if (alignment > ubi->leb_size || alignment == 0) {
169 			dbg_err("bad alignment");
170 			goto bad;
171 		}
172 
173 		n = alignment % ubi->min_io_size;
174 		if (alignment != 1 && n) {
175 			dbg_err("alignment is not multiple of min I/O unit");
176 			goto bad;
177 		}
178 
179 		n = ubi->leb_size % alignment;
180 		if (data_pad != n) {
181 			dbg_err("bad data_pad, has to be %d", n);
182 			goto bad;
183 		}
184 
185 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
186 			dbg_err("bad vol_type");
187 			goto bad;
188 		}
189 
190 		if (upd_marker != 0 && upd_marker != 1) {
191 			dbg_err("bad upd_marker");
192 			goto bad;
193 		}
194 
195 		if (reserved_pebs > ubi->good_peb_count) {
196 			dbg_err("too large reserved_pebs, good PEBs %d",
197 				ubi->good_peb_count);
198 			goto bad;
199 		}
200 
201 		if (name_len > UBI_VOL_NAME_MAX) {
202 			dbg_err("too long volume name, max %d",
203 				UBI_VOL_NAME_MAX);
204 			goto bad;
205 		}
206 
207 		if (name[0] == '\0') {
208 			dbg_err("NULL volume name");
209 			goto bad;
210 		}
211 
212 		if (name_len != strnlen(name, name_len + 1)) {
213 			dbg_err("bad name_len");
214 			goto bad;
215 		}
216 	}
217 
218 	/* Checks that all names are unique */
219 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
220 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
221 			int len1 = be16_to_cpu(vtbl[i].name_len);
222 			int len2 = be16_to_cpu(vtbl[n].name_len);
223 
224 			if (len1 > 0 && len1 == len2 &&
225 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
226 				ubi_err("volumes %d and %d have the same name"
227 					" \"%s\"", i, n, vtbl[i].name);
228 				ubi_dbg_dump_vtbl_record(&vtbl[i], i);
229 				ubi_dbg_dump_vtbl_record(&vtbl[n], n);
230 				return -EINVAL;
231 			}
232 		}
233 	}
234 
235 	return 0;
236 
237 bad:
238 	ubi_err("volume table check failed, record %d", i);
239 	ubi_dbg_dump_vtbl_record(&vtbl[i], i);
240 	return -EINVAL;
241 }
242 
243 /**
244  * create_vtbl - create a copy of volume table.
245  * @ubi: UBI device description object
246  * @si: scanning information
247  * @copy: number of the volume table copy
248  * @vtbl: contents of the volume table
249  *
250  * This function returns zero in case of success and a negative error code in
251  * case of failure.
252  */
253 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
254 		       int copy, void *vtbl)
255 {
256 	int err, tries = 0;
257 	static struct ubi_vid_hdr *vid_hdr;
258 	struct ubi_scan_volume *sv;
259 	struct ubi_scan_leb *new_seb, *old_seb = NULL;
260 
261 	ubi_msg("create volume table (copy #%d)", copy + 1);
262 
263 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
264 	if (!vid_hdr)
265 		return -ENOMEM;
266 
267 	/*
268 	 * Check if there is a logical eraseblock which would have to contain
269 	 * this volume table copy was found during scanning. It has to be wiped
270 	 * out.
271 	 */
272 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
273 	if (sv)
274 		old_seb = ubi_scan_find_seb(sv, copy);
275 
276 retry:
277 	new_seb = ubi_scan_get_free_peb(ubi, si);
278 	if (IS_ERR(new_seb)) {
279 		err = PTR_ERR(new_seb);
280 		goto out_free;
281 	}
282 
283 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
284 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
285 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
286 	vid_hdr->data_size = vid_hdr->used_ebs =
287 			     vid_hdr->data_pad = cpu_to_be32(0);
288 	vid_hdr->lnum = cpu_to_be32(copy);
289 	vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
290 	vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
291 
292 	/* The EC header is already there, write the VID header */
293 	err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
294 	if (err)
295 		goto write_error;
296 
297 	/* Write the layout volume contents */
298 	err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
299 	if (err)
300 		goto write_error;
301 
302 	/*
303 	 * And add it to the scanning information. Don't delete the old
304 	 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
305 	 */
306 	err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
307 				vid_hdr, 0);
308 	kfree(new_seb);
309 	ubi_free_vid_hdr(ubi, vid_hdr);
310 	return err;
311 
312 write_error:
313 	if (err == -EIO && ++tries <= 5) {
314 		/*
315 		 * Probably this physical eraseblock went bad, try to pick
316 		 * another one.
317 		 */
318 		list_add_tail(&new_seb->u.list, &si->corr);
319 		goto retry;
320 	}
321 	kfree(new_seb);
322 out_free:
323 	ubi_free_vid_hdr(ubi, vid_hdr);
324 	return err;
325 
326 }
327 
328 /**
329  * process_lvol - process the layout volume.
330  * @ubi: UBI device description object
331  * @si: scanning information
332  * @sv: layout volume scanning information
333  *
334  * This function is responsible for reading the layout volume, ensuring it is
335  * not corrupted, and recovering from corruptions if needed. Returns volume
336  * table in case of success and a negative error code in case of failure.
337  */
338 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
339 					    struct ubi_scan_info *si,
340 					    struct ubi_scan_volume *sv)
341 {
342 	int err;
343 	struct rb_node *rb;
344 	struct ubi_scan_leb *seb;
345 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
346 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
347 
348 	/*
349 	 * UBI goes through the following steps when it changes the layout
350 	 * volume:
351 	 * a. erase LEB 0;
352 	 * b. write new data to LEB 0;
353 	 * c. erase LEB 1;
354 	 * d. write new data to LEB 1.
355 	 *
356 	 * Before the change, both LEBs contain the same data.
357 	 *
358 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
359 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
360 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
361 	 * finally, unclean reboots may result in a situation when neither LEB
362 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
363 	 * 0 contains more recent information.
364 	 *
365 	 * So the plan is to first check LEB 0. Then
366 	 * a. if LEB 0 is OK, it must be containing the most resent data; then
367 	 *    we compare it with LEB 1, and if they are different, we copy LEB
368 	 *    0 to LEB 1;
369 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
370 	 *    to LEB 0.
371 	 */
372 
373 	dbg_msg("check layout volume");
374 
375 	/* Read both LEB 0 and LEB 1 into memory */
376 	ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
377 		leb[seb->lnum] = vmalloc(ubi->vtbl_size);
378 		if (!leb[seb->lnum]) {
379 			err = -ENOMEM;
380 			goto out_free;
381 		}
382 		memset(leb[seb->lnum], 0, ubi->vtbl_size);
383 
384 		err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
385 				       ubi->vtbl_size);
386 		if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
387 			/* Scrub the PEB later */
388 			seb->scrub = 1;
389 		else if (err)
390 			goto out_free;
391 	}
392 
393 	err = -EINVAL;
394 	if (leb[0]) {
395 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
396 		if (leb_corrupted[0] < 0)
397 			goto out_free;
398 	}
399 
400 	if (!leb_corrupted[0]) {
401 		/* LEB 0 is OK */
402 		if (leb[1])
403 			leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
404 		if (leb_corrupted[1]) {
405 			ubi_warn("volume table copy #2 is corrupted");
406 			err = create_vtbl(ubi, si, 1, leb[0]);
407 			if (err)
408 				goto out_free;
409 			ubi_msg("volume table was restored");
410 		}
411 
412 		/* Both LEB 1 and LEB 2 are OK and consistent */
413 		vfree(leb[1]);
414 		return leb[0];
415 	} else {
416 		/* LEB 0 is corrupted or does not exist */
417 		if (leb[1]) {
418 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
419 			if (leb_corrupted[1] < 0)
420 				goto out_free;
421 		}
422 		if (leb_corrupted[1]) {
423 			/* Both LEB 0 and LEB 1 are corrupted */
424 			ubi_err("both volume tables are corrupted");
425 			goto out_free;
426 		}
427 
428 		ubi_warn("volume table copy #1 is corrupted");
429 		err = create_vtbl(ubi, si, 0, leb[1]);
430 		if (err)
431 			goto out_free;
432 		ubi_msg("volume table was restored");
433 
434 		vfree(leb[0]);
435 		return leb[1];
436 	}
437 
438 out_free:
439 	vfree(leb[0]);
440 	vfree(leb[1]);
441 	return ERR_PTR(err);
442 }
443 
444 /**
445  * create_empty_lvol - create empty layout volume.
446  * @ubi: UBI device description object
447  * @si: scanning information
448  *
449  * This function returns volume table contents in case of success and a
450  * negative error code in case of failure.
451  */
452 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
453 						 struct ubi_scan_info *si)
454 {
455 	int i;
456 	struct ubi_vtbl_record *vtbl;
457 
458 	vtbl = vmalloc(ubi->vtbl_size);
459 	if (!vtbl)
460 		return ERR_PTR(-ENOMEM);
461 	memset(vtbl, 0, ubi->vtbl_size);
462 
463 	for (i = 0; i < ubi->vtbl_slots; i++)
464 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
465 
466 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
467 		int err;
468 
469 		err = create_vtbl(ubi, si, i, vtbl);
470 		if (err) {
471 			vfree(vtbl);
472 			return ERR_PTR(err);
473 		}
474 	}
475 
476 	return vtbl;
477 }
478 
479 /**
480  * init_volumes - initialize volume information for existing volumes.
481  * @ubi: UBI device description object
482  * @si: scanning information
483  * @vtbl: volume table
484  *
485  * This function allocates volume description objects for existing volumes.
486  * Returns zero in case of success and a negative error code in case of
487  * failure.
488  */
489 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
490 			const struct ubi_vtbl_record *vtbl)
491 {
492 	int i, reserved_pebs = 0;
493 	struct ubi_scan_volume *sv;
494 	struct ubi_volume *vol;
495 
496 	for (i = 0; i < ubi->vtbl_slots; i++) {
497 		cond_resched();
498 
499 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
500 			continue; /* Empty record */
501 
502 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
503 		if (!vol)
504 			return -ENOMEM;
505 
506 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
507 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
508 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
509 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
510 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
511 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
512 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
513 		memcpy(vol->name, vtbl[i].name, vol->name_len);
514 		vol->name[vol->name_len] = '\0';
515 		vol->vol_id = i;
516 
517 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
518 			/* Auto re-size flag may be set only for one volume */
519 			if (ubi->autoresize_vol_id != -1) {
520 				ubi_err("more then one auto-resize volume (%d "
521 					"and %d)", ubi->autoresize_vol_id, i);
522 				kfree(vol);
523 				return -EINVAL;
524 			}
525 
526 			ubi->autoresize_vol_id = i;
527 		}
528 
529 		ubi_assert(!ubi->volumes[i]);
530 		ubi->volumes[i] = vol;
531 		ubi->vol_count += 1;
532 		vol->ubi = ubi;
533 		reserved_pebs += vol->reserved_pebs;
534 
535 		/*
536 		 * In case of dynamic volume UBI knows nothing about how many
537 		 * data is stored there. So assume the whole volume is used.
538 		 */
539 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
540 			vol->used_ebs = vol->reserved_pebs;
541 			vol->last_eb_bytes = vol->usable_leb_size;
542 			vol->used_bytes =
543 				(long long)vol->used_ebs * vol->usable_leb_size;
544 			continue;
545 		}
546 
547 		/* Static volumes only */
548 		sv = ubi_scan_find_sv(si, i);
549 		if (!sv) {
550 			/*
551 			 * No eraseblocks belonging to this volume found. We
552 			 * don't actually know whether this static volume is
553 			 * completely corrupted or just contains no data. And
554 			 * we cannot know this as long as data size is not
555 			 * stored on flash. So we just assume the volume is
556 			 * empty. FIXME: this should be handled.
557 			 */
558 			continue;
559 		}
560 
561 		if (sv->leb_count != sv->used_ebs) {
562 			/*
563 			 * We found a static volume which misses several
564 			 * eraseblocks. Treat it as corrupted.
565 			 */
566 			ubi_warn("static volume %d misses %d LEBs - corrupted",
567 				 sv->vol_id, sv->used_ebs - sv->leb_count);
568 			vol->corrupted = 1;
569 			continue;
570 		}
571 
572 		vol->used_ebs = sv->used_ebs;
573 		vol->used_bytes =
574 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
575 		vol->used_bytes += sv->last_data_size;
576 		vol->last_eb_bytes = sv->last_data_size;
577 	}
578 
579 	/* And add the layout volume */
580 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
581 	if (!vol)
582 		return -ENOMEM;
583 
584 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
585 	vol->alignment = 1;
586 	vol->vol_type = UBI_DYNAMIC_VOLUME;
587 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
588 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
589 	vol->usable_leb_size = ubi->leb_size;
590 	vol->used_ebs = vol->reserved_pebs;
591 	vol->last_eb_bytes = vol->reserved_pebs;
592 	vol->used_bytes =
593 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
594 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
595 	vol->ref_count = 1;
596 
597 	ubi_assert(!ubi->volumes[i]);
598 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
599 	reserved_pebs += vol->reserved_pebs;
600 	ubi->vol_count += 1;
601 	vol->ubi = ubi;
602 
603 	if (reserved_pebs > ubi->avail_pebs)
604 		ubi_err("not enough PEBs, required %d, available %d",
605 			reserved_pebs, ubi->avail_pebs);
606 	ubi->rsvd_pebs += reserved_pebs;
607 	ubi->avail_pebs -= reserved_pebs;
608 
609 	return 0;
610 }
611 
612 /**
613  * check_sv - check volume scanning information.
614  * @vol: UBI volume description object
615  * @sv: volume scanning information
616  *
617  * This function returns zero if the volume scanning information is consistent
618  * to the data read from the volume tabla, and %-EINVAL if not.
619  */
620 static int check_sv(const struct ubi_volume *vol,
621 		    const struct ubi_scan_volume *sv)
622 {
623 	if (sv->highest_lnum >= vol->reserved_pebs) {
624 		dbg_err("bad highest_lnum");
625 		goto bad;
626 	}
627 	if (sv->leb_count > vol->reserved_pebs) {
628 		dbg_err("bad leb_count");
629 		goto bad;
630 	}
631 	if (sv->vol_type != vol->vol_type) {
632 		dbg_err("bad vol_type");
633 		goto bad;
634 	}
635 	if (sv->used_ebs > vol->reserved_pebs) {
636 		dbg_err("bad used_ebs");
637 		goto bad;
638 	}
639 	if (sv->data_pad != vol->data_pad) {
640 		dbg_err("bad data_pad");
641 		goto bad;
642 	}
643 	return 0;
644 
645 bad:
646 	ubi_err("bad scanning information");
647 	ubi_dbg_dump_sv(sv);
648 	ubi_dbg_dump_vol_info(vol);
649 	return -EINVAL;
650 }
651 
652 /**
653  * check_scanning_info - check that scanning information.
654  * @ubi: UBI device description object
655  * @si: scanning information
656  *
657  * Even though we protect on-flash data by CRC checksums, we still don't trust
658  * the media. This function ensures that scanning information is consistent to
659  * the information read from the volume table. Returns zero if the scanning
660  * information is OK and %-EINVAL if it is not.
661  */
662 static int check_scanning_info(const struct ubi_device *ubi,
663 			       struct ubi_scan_info *si)
664 {
665 	int err, i;
666 	struct ubi_scan_volume *sv;
667 	struct ubi_volume *vol;
668 
669 	if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
670 		ubi_err("scanning found %d volumes, maximum is %d + %d",
671 			si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
672 		return -EINVAL;
673 	}
674 
675 	if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
676 	    si->highest_vol_id < UBI_INTERNAL_VOL_START) {
677 		ubi_err("too large volume ID %d found by scanning",
678 			si->highest_vol_id);
679 		return -EINVAL;
680 	}
681 
682 
683 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
684 		cond_resched();
685 
686 		sv = ubi_scan_find_sv(si, i);
687 		vol = ubi->volumes[i];
688 		if (!vol) {
689 			if (sv)
690 				ubi_scan_rm_volume(si, sv);
691 			continue;
692 		}
693 
694 		if (vol->reserved_pebs == 0) {
695 			ubi_assert(i < ubi->vtbl_slots);
696 
697 			if (!sv)
698 				continue;
699 
700 			/*
701 			 * During scanning we found a volume which does not
702 			 * exist according to the information in the volume
703 			 * table. This must have happened due to an unclean
704 			 * reboot while the volume was being removed. Discard
705 			 * these eraseblocks.
706 			 */
707 			ubi_msg("finish volume %d removal", sv->vol_id);
708 			ubi_scan_rm_volume(si, sv);
709 		} else if (sv) {
710 			err = check_sv(vol, sv);
711 			if (err)
712 				return err;
713 		}
714 	}
715 
716 	return 0;
717 }
718 
719 /**
720  * ubi_read_volume_table - read volume table.
721  * information.
722  * @ubi: UBI device description object
723  * @si: scanning information
724  *
725  * This function reads volume table, checks it, recover from errors if needed,
726  * or creates it if needed. Returns zero in case of success and a negative
727  * error code in case of failure.
728  */
729 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
730 {
731 	int i, err;
732 	struct ubi_scan_volume *sv;
733 
734 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
735 
736 	/*
737 	 * The number of supported volumes is limited by the eraseblock size
738 	 * and by the UBI_MAX_VOLUMES constant.
739 	 */
740 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
741 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
742 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
743 
744 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
745 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
746 
747 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
748 	if (!sv) {
749 		/*
750 		 * No logical eraseblocks belonging to the layout volume were
751 		 * found. This could mean that the flash is just empty. In
752 		 * this case we create empty layout volume.
753 		 *
754 		 * But if flash is not empty this must be a corruption or the
755 		 * MTD device just contains garbage.
756 		 */
757 		if (si->is_empty) {
758 			ubi->vtbl = create_empty_lvol(ubi, si);
759 			if (IS_ERR(ubi->vtbl))
760 				return PTR_ERR(ubi->vtbl);
761 		} else {
762 			ubi_err("the layout volume was not found");
763 			return -EINVAL;
764 		}
765 	} else {
766 		if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
767 			/* This must not happen with proper UBI images */
768 			dbg_err("too many LEBs (%d) in layout volume",
769 				sv->leb_count);
770 			return -EINVAL;
771 		}
772 
773 		ubi->vtbl = process_lvol(ubi, si, sv);
774 		if (IS_ERR(ubi->vtbl))
775 			return PTR_ERR(ubi->vtbl);
776 	}
777 
778 	ubi->avail_pebs = ubi->good_peb_count;
779 
780 	/*
781 	 * The layout volume is OK, initialize the corresponding in-RAM data
782 	 * structures.
783 	 */
784 	err = init_volumes(ubi, si, ubi->vtbl);
785 	if (err)
786 		goto out_free;
787 
788 	/*
789 	 * Get sure that the scanning information is consistent to the
790 	 * information stored in the volume table.
791 	 */
792 	err = check_scanning_info(ubi, si);
793 	if (err)
794 		goto out_free;
795 
796 	return 0;
797 
798 out_free:
799 	vfree(ubi->vtbl);
800 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
801 		if (ubi->volumes[i]) {
802 			kfree(ubi->volumes[i]);
803 			ubi->volumes[i] = NULL;
804 		}
805 	return err;
806 }
807 
808 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
809 
810 /**
811  * paranoid_vtbl_check - check volume table.
812  * @ubi: UBI device description object
813  */
814 static void paranoid_vtbl_check(const struct ubi_device *ubi)
815 {
816 	if (vtbl_check(ubi, ubi->vtbl)) {
817 		ubi_err("paranoid check failed");
818 		BUG();
819 	}
820 }
821 
822 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
823