1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. 34 * 35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is 36 * erased, and the updated volume table is written back to LEB 0. Then same for 37 * LEB 1. This scheme guarantees recoverability from unclean reboots. 38 * 39 * In this UBI implementation the on-flash volume table does not contain any 40 * information about how much data static volumes contain. 41 * 42 * But it would still be beneficial to store this information in the volume 43 * table. For example, suppose we have a static volume X, and all its physical 44 * eraseblocks became bad for some reasons. Suppose we are attaching the 45 * corresponding MTD device, for some reason we find no logical eraseblocks 46 * corresponding to the volume X. According to the volume table volume X does 47 * exist. So we don't know whether it is just empty or all its physical 48 * eraseblocks went bad. So we cannot alarm the user properly. 49 * 50 * The volume table also stores so-called "update marker", which is used for 51 * volume updates. Before updating the volume, the update marker is set, and 52 * after the update operation is finished, the update marker is cleared. So if 53 * the update operation was interrupted (e.g. by an unclean reboot) - the 54 * update marker is still there and we know that the volume's contents is 55 * damaged. 56 */ 57 58 #include <linux/crc32.h> 59 #include <linux/err.h> 60 #include <linux/slab.h> 61 #include <asm/div64.h> 62 #include "ubi.h" 63 64 static void self_vtbl_check(const struct ubi_device *ubi); 65 66 /* Empty volume table record */ 67 static struct ubi_vtbl_record empty_vtbl_record; 68 69 /** 70 * ubi_change_vtbl_record - change volume table record. 71 * @ubi: UBI device description object 72 * @idx: table index to change 73 * @vtbl_rec: new volume table record 74 * 75 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 76 * volume table record is written. The caller does not have to calculate CRC of 77 * the record as it is done by this function. Returns zero in case of success 78 * and a negative error code in case of failure. 79 */ 80 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 81 struct ubi_vtbl_record *vtbl_rec) 82 { 83 int i, err; 84 uint32_t crc; 85 struct ubi_volume *layout_vol; 86 87 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 88 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 89 90 if (!vtbl_rec) 91 vtbl_rec = &empty_vtbl_record; 92 else { 93 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 94 vtbl_rec->crc = cpu_to_be32(crc); 95 } 96 97 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 98 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 99 err = ubi_eba_unmap_leb(ubi, layout_vol, i); 100 if (err) 101 return err; 102 103 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, 104 ubi->vtbl_size); 105 if (err) 106 return err; 107 } 108 109 self_vtbl_check(ubi); 110 return 0; 111 } 112 113 /** 114 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. 115 * @ubi: UBI device description object 116 * @rename_list: list of &struct ubi_rename_entry objects 117 * 118 * This function re-names multiple volumes specified in @req in the volume 119 * table. Returns zero in case of success and a negative error code in case of 120 * failure. 121 */ 122 int ubi_vtbl_rename_volumes(struct ubi_device *ubi, 123 struct list_head *rename_list) 124 { 125 int i, err; 126 struct ubi_rename_entry *re; 127 struct ubi_volume *layout_vol; 128 129 list_for_each_entry(re, rename_list, list) { 130 uint32_t crc; 131 struct ubi_volume *vol = re->desc->vol; 132 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; 133 134 if (re->remove) { 135 memcpy(vtbl_rec, &empty_vtbl_record, 136 sizeof(struct ubi_vtbl_record)); 137 continue; 138 } 139 140 vtbl_rec->name_len = cpu_to_be16(re->new_name_len); 141 memcpy(vtbl_rec->name, re->new_name, re->new_name_len); 142 memset(vtbl_rec->name + re->new_name_len, 0, 143 UBI_VOL_NAME_MAX + 1 - re->new_name_len); 144 crc = crc32(UBI_CRC32_INIT, vtbl_rec, 145 UBI_VTBL_RECORD_SIZE_CRC); 146 vtbl_rec->crc = cpu_to_be32(crc); 147 } 148 149 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 150 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 151 err = ubi_eba_unmap_leb(ubi, layout_vol, i); 152 if (err) 153 return err; 154 155 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, 156 ubi->vtbl_size); 157 if (err) 158 return err; 159 } 160 161 return 0; 162 } 163 164 /** 165 * vtbl_check - check if volume table is not corrupted and sensible. 166 * @ubi: UBI device description object 167 * @vtbl: volume table 168 * 169 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 170 * and %-EINVAL if it contains inconsistent data. 171 */ 172 static int vtbl_check(const struct ubi_device *ubi, 173 const struct ubi_vtbl_record *vtbl) 174 { 175 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 176 int upd_marker, err; 177 uint32_t crc; 178 const char *name; 179 180 for (i = 0; i < ubi->vtbl_slots; i++) { 181 cond_resched(); 182 183 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 184 alignment = be32_to_cpu(vtbl[i].alignment); 185 data_pad = be32_to_cpu(vtbl[i].data_pad); 186 upd_marker = vtbl[i].upd_marker; 187 vol_type = vtbl[i].vol_type; 188 name_len = be16_to_cpu(vtbl[i].name_len); 189 name = &vtbl[i].name[0]; 190 191 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 192 if (be32_to_cpu(vtbl[i].crc) != crc) { 193 ubi_err("bad CRC at record %u: %#08x, not %#08x", 194 i, crc, be32_to_cpu(vtbl[i].crc)); 195 ubi_dump_vtbl_record(&vtbl[i], i); 196 return 1; 197 } 198 199 if (reserved_pebs == 0) { 200 if (memcmp(&vtbl[i], &empty_vtbl_record, 201 UBI_VTBL_RECORD_SIZE)) { 202 err = 2; 203 goto bad; 204 } 205 continue; 206 } 207 208 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 209 name_len < 0) { 210 err = 3; 211 goto bad; 212 } 213 214 if (alignment > ubi->leb_size || alignment == 0) { 215 err = 4; 216 goto bad; 217 } 218 219 n = alignment & (ubi->min_io_size - 1); 220 if (alignment != 1 && n) { 221 err = 5; 222 goto bad; 223 } 224 225 n = ubi->leb_size % alignment; 226 if (data_pad != n) { 227 ubi_err("bad data_pad, has to be %d", n); 228 err = 6; 229 goto bad; 230 } 231 232 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 233 err = 7; 234 goto bad; 235 } 236 237 if (upd_marker != 0 && upd_marker != 1) { 238 err = 8; 239 goto bad; 240 } 241 242 if (reserved_pebs > ubi->good_peb_count) { 243 ubi_err("too large reserved_pebs %d, good PEBs %d", 244 reserved_pebs, ubi->good_peb_count); 245 err = 9; 246 goto bad; 247 } 248 249 if (name_len > UBI_VOL_NAME_MAX) { 250 err = 10; 251 goto bad; 252 } 253 254 if (name[0] == '\0') { 255 err = 11; 256 goto bad; 257 } 258 259 if (name_len != strnlen(name, name_len + 1)) { 260 err = 12; 261 goto bad; 262 } 263 } 264 265 /* Checks that all names are unique */ 266 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 267 for (n = i + 1; n < ubi->vtbl_slots; n++) { 268 int len1 = be16_to_cpu(vtbl[i].name_len); 269 int len2 = be16_to_cpu(vtbl[n].name_len); 270 271 if (len1 > 0 && len1 == len2 && 272 !strncmp(vtbl[i].name, vtbl[n].name, len1)) { 273 ubi_err("volumes %d and %d have the same name \"%s\"", 274 i, n, vtbl[i].name); 275 ubi_dump_vtbl_record(&vtbl[i], i); 276 ubi_dump_vtbl_record(&vtbl[n], n); 277 return -EINVAL; 278 } 279 } 280 } 281 282 return 0; 283 284 bad: 285 ubi_err("volume table check failed: record %d, error %d", i, err); 286 ubi_dump_vtbl_record(&vtbl[i], i); 287 return -EINVAL; 288 } 289 290 /** 291 * create_vtbl - create a copy of volume table. 292 * @ubi: UBI device description object 293 * @ai: attaching information 294 * @copy: number of the volume table copy 295 * @vtbl: contents of the volume table 296 * 297 * This function returns zero in case of success and a negative error code in 298 * case of failure. 299 */ 300 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, 301 int copy, void *vtbl) 302 { 303 int err, tries = 0; 304 struct ubi_vid_hdr *vid_hdr; 305 struct ubi_ainf_peb *new_aeb; 306 307 dbg_gen("create volume table (copy #%d)", copy + 1); 308 309 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 310 if (!vid_hdr) 311 return -ENOMEM; 312 313 retry: 314 new_aeb = ubi_early_get_peb(ubi, ai); 315 if (IS_ERR(new_aeb)) { 316 err = PTR_ERR(new_aeb); 317 goto out_free; 318 } 319 320 vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; 321 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); 322 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 323 vid_hdr->data_size = vid_hdr->used_ebs = 324 vid_hdr->data_pad = cpu_to_be32(0); 325 vid_hdr->lnum = cpu_to_be32(copy); 326 vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); 327 328 /* The EC header is already there, write the VID header */ 329 err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr); 330 if (err) 331 goto write_error; 332 333 /* Write the layout volume contents */ 334 err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); 335 if (err) 336 goto write_error; 337 338 /* 339 * And add it to the attaching information. Don't delete the old version 340 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. 341 */ 342 err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); 343 kmem_cache_free(ai->aeb_slab_cache, new_aeb); 344 ubi_free_vid_hdr(ubi, vid_hdr); 345 return err; 346 347 write_error: 348 if (err == -EIO && ++tries <= 5) { 349 /* 350 * Probably this physical eraseblock went bad, try to pick 351 * another one. 352 */ 353 list_add(&new_aeb->u.list, &ai->erase); 354 goto retry; 355 } 356 kmem_cache_free(ai->aeb_slab_cache, new_aeb); 357 out_free: 358 ubi_free_vid_hdr(ubi, vid_hdr); 359 return err; 360 361 } 362 363 /** 364 * process_lvol - process the layout volume. 365 * @ubi: UBI device description object 366 * @ai: attaching information 367 * @av: layout volume attaching information 368 * 369 * This function is responsible for reading the layout volume, ensuring it is 370 * not corrupted, and recovering from corruptions if needed. Returns volume 371 * table in case of success and a negative error code in case of failure. 372 */ 373 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, 374 struct ubi_attach_info *ai, 375 struct ubi_ainf_volume *av) 376 { 377 int err; 378 struct rb_node *rb; 379 struct ubi_ainf_peb *aeb; 380 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 381 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 382 383 /* 384 * UBI goes through the following steps when it changes the layout 385 * volume: 386 * a. erase LEB 0; 387 * b. write new data to LEB 0; 388 * c. erase LEB 1; 389 * d. write new data to LEB 1. 390 * 391 * Before the change, both LEBs contain the same data. 392 * 393 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 394 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 395 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 396 * finally, unclean reboots may result in a situation when neither LEB 397 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 398 * 0 contains more recent information. 399 * 400 * So the plan is to first check LEB 0. Then 401 * a. if LEB 0 is OK, it must be containing the most recent data; then 402 * we compare it with LEB 1, and if they are different, we copy LEB 403 * 0 to LEB 1; 404 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 405 * to LEB 0. 406 */ 407 408 dbg_gen("check layout volume"); 409 410 /* Read both LEB 0 and LEB 1 into memory */ 411 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 412 leb[aeb->lnum] = vzalloc(ubi->vtbl_size); 413 if (!leb[aeb->lnum]) { 414 err = -ENOMEM; 415 goto out_free; 416 } 417 418 err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, 419 ubi->vtbl_size); 420 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) 421 /* 422 * Scrub the PEB later. Note, -EBADMSG indicates an 423 * uncorrectable ECC error, but we have our own CRC and 424 * the data will be checked later. If the data is OK, 425 * the PEB will be scrubbed (because we set 426 * aeb->scrub). If the data is not OK, the contents of 427 * the PEB will be recovered from the second copy, and 428 * aeb->scrub will be cleared in 429 * 'ubi_add_to_av()'. 430 */ 431 aeb->scrub = 1; 432 else if (err) 433 goto out_free; 434 } 435 436 err = -EINVAL; 437 if (leb[0]) { 438 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 439 if (leb_corrupted[0] < 0) 440 goto out_free; 441 } 442 443 if (!leb_corrupted[0]) { 444 /* LEB 0 is OK */ 445 if (leb[1]) 446 leb_corrupted[1] = memcmp(leb[0], leb[1], 447 ubi->vtbl_size); 448 if (leb_corrupted[1]) { 449 ubi_warn("volume table copy #2 is corrupted"); 450 err = create_vtbl(ubi, ai, 1, leb[0]); 451 if (err) 452 goto out_free; 453 ubi_msg("volume table was restored"); 454 } 455 456 /* Both LEB 1 and LEB 2 are OK and consistent */ 457 vfree(leb[1]); 458 return leb[0]; 459 } else { 460 /* LEB 0 is corrupted or does not exist */ 461 if (leb[1]) { 462 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 463 if (leb_corrupted[1] < 0) 464 goto out_free; 465 } 466 if (leb_corrupted[1]) { 467 /* Both LEB 0 and LEB 1 are corrupted */ 468 ubi_err("both volume tables are corrupted"); 469 goto out_free; 470 } 471 472 ubi_warn("volume table copy #1 is corrupted"); 473 err = create_vtbl(ubi, ai, 0, leb[1]); 474 if (err) 475 goto out_free; 476 ubi_msg("volume table was restored"); 477 478 vfree(leb[0]); 479 return leb[1]; 480 } 481 482 out_free: 483 vfree(leb[0]); 484 vfree(leb[1]); 485 return ERR_PTR(err); 486 } 487 488 /** 489 * create_empty_lvol - create empty layout volume. 490 * @ubi: UBI device description object 491 * @ai: attaching information 492 * 493 * This function returns volume table contents in case of success and a 494 * negative error code in case of failure. 495 */ 496 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, 497 struct ubi_attach_info *ai) 498 { 499 int i; 500 struct ubi_vtbl_record *vtbl; 501 502 vtbl = vzalloc(ubi->vtbl_size); 503 if (!vtbl) 504 return ERR_PTR(-ENOMEM); 505 506 for (i = 0; i < ubi->vtbl_slots; i++) 507 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 508 509 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 510 int err; 511 512 err = create_vtbl(ubi, ai, i, vtbl); 513 if (err) { 514 vfree(vtbl); 515 return ERR_PTR(err); 516 } 517 } 518 519 return vtbl; 520 } 521 522 /** 523 * init_volumes - initialize volume information for existing volumes. 524 * @ubi: UBI device description object 525 * @ai: scanning information 526 * @vtbl: volume table 527 * 528 * This function allocates volume description objects for existing volumes. 529 * Returns zero in case of success and a negative error code in case of 530 * failure. 531 */ 532 static int init_volumes(struct ubi_device *ubi, 533 const struct ubi_attach_info *ai, 534 const struct ubi_vtbl_record *vtbl) 535 { 536 int i, reserved_pebs = 0; 537 struct ubi_ainf_volume *av; 538 struct ubi_volume *vol; 539 540 for (i = 0; i < ubi->vtbl_slots; i++) { 541 cond_resched(); 542 543 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 544 continue; /* Empty record */ 545 546 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 547 if (!vol) 548 return -ENOMEM; 549 550 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 551 vol->alignment = be32_to_cpu(vtbl[i].alignment); 552 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 553 vol->upd_marker = vtbl[i].upd_marker; 554 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 555 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 556 vol->name_len = be16_to_cpu(vtbl[i].name_len); 557 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 558 memcpy(vol->name, vtbl[i].name, vol->name_len); 559 vol->name[vol->name_len] = '\0'; 560 vol->vol_id = i; 561 562 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { 563 /* Auto re-size flag may be set only for one volume */ 564 if (ubi->autoresize_vol_id != -1) { 565 ubi_err("more than one auto-resize volume (%d and %d)", 566 ubi->autoresize_vol_id, i); 567 kfree(vol); 568 return -EINVAL; 569 } 570 571 ubi->autoresize_vol_id = i; 572 } 573 574 ubi_assert(!ubi->volumes[i]); 575 ubi->volumes[i] = vol; 576 ubi->vol_count += 1; 577 vol->ubi = ubi; 578 reserved_pebs += vol->reserved_pebs; 579 580 /* 581 * In case of dynamic volume UBI knows nothing about how many 582 * data is stored there. So assume the whole volume is used. 583 */ 584 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 585 vol->used_ebs = vol->reserved_pebs; 586 vol->last_eb_bytes = vol->usable_leb_size; 587 vol->used_bytes = 588 (long long)vol->used_ebs * vol->usable_leb_size; 589 continue; 590 } 591 592 /* Static volumes only */ 593 av = ubi_find_av(ai, i); 594 if (!av) { 595 /* 596 * No eraseblocks belonging to this volume found. We 597 * don't actually know whether this static volume is 598 * completely corrupted or just contains no data. And 599 * we cannot know this as long as data size is not 600 * stored on flash. So we just assume the volume is 601 * empty. FIXME: this should be handled. 602 */ 603 continue; 604 } 605 606 if (av->leb_count != av->used_ebs) { 607 /* 608 * We found a static volume which misses several 609 * eraseblocks. Treat it as corrupted. 610 */ 611 ubi_warn("static volume %d misses %d LEBs - corrupted", 612 av->vol_id, av->used_ebs - av->leb_count); 613 vol->corrupted = 1; 614 continue; 615 } 616 617 vol->used_ebs = av->used_ebs; 618 vol->used_bytes = 619 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 620 vol->used_bytes += av->last_data_size; 621 vol->last_eb_bytes = av->last_data_size; 622 } 623 624 /* And add the layout volume */ 625 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 626 if (!vol) 627 return -ENOMEM; 628 629 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 630 vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; 631 vol->vol_type = UBI_DYNAMIC_VOLUME; 632 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 633 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 634 vol->usable_leb_size = ubi->leb_size; 635 vol->used_ebs = vol->reserved_pebs; 636 vol->last_eb_bytes = vol->reserved_pebs; 637 vol->used_bytes = 638 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 639 vol->vol_id = UBI_LAYOUT_VOLUME_ID; 640 vol->ref_count = 1; 641 642 ubi_assert(!ubi->volumes[i]); 643 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 644 reserved_pebs += vol->reserved_pebs; 645 ubi->vol_count += 1; 646 vol->ubi = ubi; 647 648 if (reserved_pebs > ubi->avail_pebs) { 649 ubi_err("not enough PEBs, required %d, available %d", 650 reserved_pebs, ubi->avail_pebs); 651 if (ubi->corr_peb_count) 652 ubi_err("%d PEBs are corrupted and not used", 653 ubi->corr_peb_count); 654 } 655 ubi->rsvd_pebs += reserved_pebs; 656 ubi->avail_pebs -= reserved_pebs; 657 658 return 0; 659 } 660 661 /** 662 * check_av - check volume attaching information. 663 * @vol: UBI volume description object 664 * @av: volume attaching information 665 * 666 * This function returns zero if the volume attaching information is consistent 667 * to the data read from the volume tabla, and %-EINVAL if not. 668 */ 669 static int check_av(const struct ubi_volume *vol, 670 const struct ubi_ainf_volume *av) 671 { 672 int err; 673 674 if (av->highest_lnum >= vol->reserved_pebs) { 675 err = 1; 676 goto bad; 677 } 678 if (av->leb_count > vol->reserved_pebs) { 679 err = 2; 680 goto bad; 681 } 682 if (av->vol_type != vol->vol_type) { 683 err = 3; 684 goto bad; 685 } 686 if (av->used_ebs > vol->reserved_pebs) { 687 err = 4; 688 goto bad; 689 } 690 if (av->data_pad != vol->data_pad) { 691 err = 5; 692 goto bad; 693 } 694 return 0; 695 696 bad: 697 ubi_err("bad attaching information, error %d", err); 698 ubi_dump_av(av); 699 ubi_dump_vol_info(vol); 700 return -EINVAL; 701 } 702 703 /** 704 * check_attaching_info - check that attaching information. 705 * @ubi: UBI device description object 706 * @ai: attaching information 707 * 708 * Even though we protect on-flash data by CRC checksums, we still don't trust 709 * the media. This function ensures that attaching information is consistent to 710 * the information read from the volume table. Returns zero if the attaching 711 * information is OK and %-EINVAL if it is not. 712 */ 713 static int check_attaching_info(const struct ubi_device *ubi, 714 struct ubi_attach_info *ai) 715 { 716 int err, i; 717 struct ubi_ainf_volume *av; 718 struct ubi_volume *vol; 719 720 if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 721 ubi_err("found %d volumes while attaching, maximum is %d + %d", 722 ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 723 return -EINVAL; 724 } 725 726 if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && 727 ai->highest_vol_id < UBI_INTERNAL_VOL_START) { 728 ubi_err("too large volume ID %d found", ai->highest_vol_id); 729 return -EINVAL; 730 } 731 732 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 733 cond_resched(); 734 735 av = ubi_find_av(ai, i); 736 vol = ubi->volumes[i]; 737 if (!vol) { 738 if (av) 739 ubi_remove_av(ai, av); 740 continue; 741 } 742 743 if (vol->reserved_pebs == 0) { 744 ubi_assert(i < ubi->vtbl_slots); 745 746 if (!av) 747 continue; 748 749 /* 750 * During attaching we found a volume which does not 751 * exist according to the information in the volume 752 * table. This must have happened due to an unclean 753 * reboot while the volume was being removed. Discard 754 * these eraseblocks. 755 */ 756 ubi_msg("finish volume %d removal", av->vol_id); 757 ubi_remove_av(ai, av); 758 } else if (av) { 759 err = check_av(vol, av); 760 if (err) 761 return err; 762 } 763 } 764 765 return 0; 766 } 767 768 /** 769 * ubi_read_volume_table - read the volume table. 770 * @ubi: UBI device description object 771 * @ai: attaching information 772 * 773 * This function reads volume table, checks it, recover from errors if needed, 774 * or creates it if needed. Returns zero in case of success and a negative 775 * error code in case of failure. 776 */ 777 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) 778 { 779 int i, err; 780 struct ubi_ainf_volume *av; 781 782 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 783 784 /* 785 * The number of supported volumes is limited by the eraseblock size 786 * and by the UBI_MAX_VOLUMES constant. 787 */ 788 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 789 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 790 ubi->vtbl_slots = UBI_MAX_VOLUMES; 791 792 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 793 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 794 795 av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); 796 if (!av) { 797 /* 798 * No logical eraseblocks belonging to the layout volume were 799 * found. This could mean that the flash is just empty. In 800 * this case we create empty layout volume. 801 * 802 * But if flash is not empty this must be a corruption or the 803 * MTD device just contains garbage. 804 */ 805 if (ai->is_empty) { 806 ubi->vtbl = create_empty_lvol(ubi, ai); 807 if (IS_ERR(ubi->vtbl)) 808 return PTR_ERR(ubi->vtbl); 809 } else { 810 ubi_err("the layout volume was not found"); 811 return -EINVAL; 812 } 813 } else { 814 if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { 815 /* This must not happen with proper UBI images */ 816 ubi_err("too many LEBs (%d) in layout volume", 817 av->leb_count); 818 return -EINVAL; 819 } 820 821 ubi->vtbl = process_lvol(ubi, ai, av); 822 if (IS_ERR(ubi->vtbl)) 823 return PTR_ERR(ubi->vtbl); 824 } 825 826 ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; 827 828 /* 829 * The layout volume is OK, initialize the corresponding in-RAM data 830 * structures. 831 */ 832 err = init_volumes(ubi, ai, ubi->vtbl); 833 if (err) 834 goto out_free; 835 836 /* 837 * Make sure that the attaching information is consistent to the 838 * information stored in the volume table. 839 */ 840 err = check_attaching_info(ubi, ai); 841 if (err) 842 goto out_free; 843 844 return 0; 845 846 out_free: 847 vfree(ubi->vtbl); 848 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 849 kfree(ubi->volumes[i]); 850 ubi->volumes[i] = NULL; 851 } 852 return err; 853 } 854 855 /** 856 * self_vtbl_check - check volume table. 857 * @ubi: UBI device description object 858 */ 859 static void self_vtbl_check(const struct ubi_device *ubi) 860 { 861 if (!ubi_dbg_chk_gen(ubi)) 862 return; 863 864 if (vtbl_check(ubi, ubi->vtbl)) { 865 ubi_err("self-check failed"); 866 BUG(); 867 } 868 } 869