1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. 34 * 35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is 36 * erased, and the updated volume table is written back to LEB 0. Then same for 37 * LEB 1. This scheme guarantees recoverability from unclean reboots. 38 * 39 * In this UBI implementation the on-flash volume table does not contain any 40 * information about how many data static volumes contain. This information may 41 * be found from the scanning data. 42 * 43 * But it would still be beneficial to store this information in the volume 44 * table. For example, suppose we have a static volume X, and all its physical 45 * eraseblocks became bad for some reasons. Suppose we are attaching the 46 * corresponding MTD device, the scanning has found no logical eraseblocks 47 * corresponding to the volume X. According to the volume table volume X does 48 * exist. So we don't know whether it is just empty or all its physical 49 * eraseblocks went bad. So we cannot alarm the user about this corruption. 50 * 51 * The volume table also stores so-called "update marker", which is used for 52 * volume updates. Before updating the volume, the update marker is set, and 53 * after the update operation is finished, the update marker is cleared. So if 54 * the update operation was interrupted (e.g. by an unclean reboot) - the 55 * update marker is still there and we know that the volume's contents is 56 * damaged. 57 */ 58 59 #include <linux/crc32.h> 60 #include <linux/err.h> 61 #include <asm/div64.h> 62 #include "ubi.h" 63 64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 65 static void paranoid_vtbl_check(const struct ubi_device *ubi); 66 #else 67 #define paranoid_vtbl_check(ubi) 68 #endif 69 70 /* Empty volume table record */ 71 static struct ubi_vtbl_record empty_vtbl_record; 72 73 /** 74 * ubi_change_vtbl_record - change volume table record. 75 * @ubi: UBI device description object 76 * @idx: table index to change 77 * @vtbl_rec: new volume table record 78 * 79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 80 * volume table record is written. The caller does not have to calculate CRC of 81 * the record as it is done by this function. Returns zero in case of success 82 * and a negative error code in case of failure. 83 */ 84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 85 struct ubi_vtbl_record *vtbl_rec) 86 { 87 int i, err; 88 uint32_t crc; 89 struct ubi_volume *layout_vol; 90 91 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 92 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 93 94 if (!vtbl_rec) 95 vtbl_rec = &empty_vtbl_record; 96 else { 97 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 98 vtbl_rec->crc = cpu_to_be32(crc); 99 } 100 101 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 102 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 103 err = ubi_eba_unmap_leb(ubi, layout_vol, i); 104 if (err) 105 return err; 106 107 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, 108 ubi->vtbl_size, UBI_LONGTERM); 109 if (err) 110 return err; 111 } 112 113 paranoid_vtbl_check(ubi); 114 return 0; 115 } 116 117 /** 118 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. 119 * @ubi: UBI device description object 120 * @rename_list: list of &struct ubi_rename_entry objects 121 * 122 * This function re-names multiple volumes specified in @req in the volume 123 * table. Returns zero in case of success and a negative error code in case of 124 * failure. 125 */ 126 int ubi_vtbl_rename_volumes(struct ubi_device *ubi, 127 struct list_head *rename_list) 128 { 129 int i, err; 130 struct ubi_rename_entry *re; 131 struct ubi_volume *layout_vol; 132 133 list_for_each_entry(re, rename_list, list) { 134 uint32_t crc; 135 struct ubi_volume *vol = re->desc->vol; 136 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; 137 138 if (re->remove) { 139 memcpy(vtbl_rec, &empty_vtbl_record, 140 sizeof(struct ubi_vtbl_record)); 141 continue; 142 } 143 144 vtbl_rec->name_len = cpu_to_be16(re->new_name_len); 145 memcpy(vtbl_rec->name, re->new_name, re->new_name_len); 146 memset(vtbl_rec->name + re->new_name_len, 0, 147 UBI_VOL_NAME_MAX + 1 - re->new_name_len); 148 crc = crc32(UBI_CRC32_INIT, vtbl_rec, 149 UBI_VTBL_RECORD_SIZE_CRC); 150 vtbl_rec->crc = cpu_to_be32(crc); 151 } 152 153 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 154 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 155 err = ubi_eba_unmap_leb(ubi, layout_vol, i); 156 if (err) 157 return err; 158 159 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0, 160 ubi->vtbl_size, UBI_LONGTERM); 161 if (err) 162 return err; 163 } 164 165 return 0; 166 } 167 168 /** 169 * vtbl_check - check if volume table is not corrupted and sensible. 170 * @ubi: UBI device description object 171 * @vtbl: volume table 172 * 173 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 174 * and %-EINVAL if it contains inconsistent data. 175 */ 176 static int vtbl_check(const struct ubi_device *ubi, 177 const struct ubi_vtbl_record *vtbl) 178 { 179 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 180 int upd_marker, err; 181 uint32_t crc; 182 const char *name; 183 184 for (i = 0; i < ubi->vtbl_slots; i++) { 185 cond_resched(); 186 187 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 188 alignment = be32_to_cpu(vtbl[i].alignment); 189 data_pad = be32_to_cpu(vtbl[i].data_pad); 190 upd_marker = vtbl[i].upd_marker; 191 vol_type = vtbl[i].vol_type; 192 name_len = be16_to_cpu(vtbl[i].name_len); 193 name = &vtbl[i].name[0]; 194 195 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 196 if (be32_to_cpu(vtbl[i].crc) != crc) { 197 ubi_err("bad CRC at record %u: %#08x, not %#08x", 198 i, crc, be32_to_cpu(vtbl[i].crc)); 199 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 200 return 1; 201 } 202 203 if (reserved_pebs == 0) { 204 if (memcmp(&vtbl[i], &empty_vtbl_record, 205 UBI_VTBL_RECORD_SIZE)) { 206 err = 2; 207 goto bad; 208 } 209 continue; 210 } 211 212 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 213 name_len < 0) { 214 err = 3; 215 goto bad; 216 } 217 218 if (alignment > ubi->leb_size || alignment == 0) { 219 err = 4; 220 goto bad; 221 } 222 223 n = alignment & (ubi->min_io_size - 1); 224 if (alignment != 1 && n) { 225 err = 5; 226 goto bad; 227 } 228 229 n = ubi->leb_size % alignment; 230 if (data_pad != n) { 231 dbg_err("bad data_pad, has to be %d", n); 232 err = 6; 233 goto bad; 234 } 235 236 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 237 err = 7; 238 goto bad; 239 } 240 241 if (upd_marker != 0 && upd_marker != 1) { 242 err = 8; 243 goto bad; 244 } 245 246 if (reserved_pebs > ubi->good_peb_count) { 247 dbg_err("too large reserved_pebs, good PEBs %d", 248 ubi->good_peb_count); 249 err = 9; 250 goto bad; 251 } 252 253 if (name_len > UBI_VOL_NAME_MAX) { 254 err = 10; 255 goto bad; 256 } 257 258 if (name[0] == '\0') { 259 err = 11; 260 goto bad; 261 } 262 263 if (name_len != strnlen(name, name_len + 1)) { 264 err = 12; 265 goto bad; 266 } 267 } 268 269 /* Checks that all names are unique */ 270 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 271 for (n = i + 1; n < ubi->vtbl_slots; n++) { 272 int len1 = be16_to_cpu(vtbl[i].name_len); 273 int len2 = be16_to_cpu(vtbl[n].name_len); 274 275 if (len1 > 0 && len1 == len2 && 276 !strncmp(vtbl[i].name, vtbl[n].name, len1)) { 277 ubi_err("volumes %d and %d have the same name" 278 " \"%s\"", i, n, vtbl[i].name); 279 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 280 ubi_dbg_dump_vtbl_record(&vtbl[n], n); 281 return -EINVAL; 282 } 283 } 284 } 285 286 return 0; 287 288 bad: 289 ubi_err("volume table check failed: record %d, error %d", i, err); 290 ubi_dbg_dump_vtbl_record(&vtbl[i], i); 291 return -EINVAL; 292 } 293 294 /** 295 * create_vtbl - create a copy of volume table. 296 * @ubi: UBI device description object 297 * @si: scanning information 298 * @copy: number of the volume table copy 299 * @vtbl: contents of the volume table 300 * 301 * This function returns zero in case of success and a negative error code in 302 * case of failure. 303 */ 304 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si, 305 int copy, void *vtbl) 306 { 307 int err, tries = 0; 308 static struct ubi_vid_hdr *vid_hdr; 309 struct ubi_scan_volume *sv; 310 struct ubi_scan_leb *new_seb, *old_seb = NULL; 311 312 ubi_msg("create volume table (copy #%d)", copy + 1); 313 314 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 315 if (!vid_hdr) 316 return -ENOMEM; 317 318 /* 319 * Check if there is a logical eraseblock which would have to contain 320 * this volume table copy was found during scanning. It has to be wiped 321 * out. 322 */ 323 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); 324 if (sv) 325 old_seb = ubi_scan_find_seb(sv, copy); 326 327 retry: 328 new_seb = ubi_scan_get_free_peb(ubi, si); 329 if (IS_ERR(new_seb)) { 330 err = PTR_ERR(new_seb); 331 goto out_free; 332 } 333 334 vid_hdr->vol_type = UBI_VID_DYNAMIC; 335 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); 336 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 337 vid_hdr->data_size = vid_hdr->used_ebs = 338 vid_hdr->data_pad = cpu_to_be32(0); 339 vid_hdr->lnum = cpu_to_be32(copy); 340 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum); 341 342 /* The EC header is already there, write the VID header */ 343 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr); 344 if (err) 345 goto write_error; 346 347 /* Write the layout volume contents */ 348 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size); 349 if (err) 350 goto write_error; 351 352 /* 353 * And add it to the scanning information. Don't delete the old 354 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'. 355 */ 356 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec, 357 vid_hdr, 0); 358 kfree(new_seb); 359 ubi_free_vid_hdr(ubi, vid_hdr); 360 return err; 361 362 write_error: 363 if (err == -EIO && ++tries <= 5) { 364 /* 365 * Probably this physical eraseblock went bad, try to pick 366 * another one. 367 */ 368 list_add_tail(&new_seb->u.list, &si->corr); 369 goto retry; 370 } 371 kfree(new_seb); 372 out_free: 373 ubi_free_vid_hdr(ubi, vid_hdr); 374 return err; 375 376 } 377 378 /** 379 * process_lvol - process the layout volume. 380 * @ubi: UBI device description object 381 * @si: scanning information 382 * @sv: layout volume scanning information 383 * 384 * This function is responsible for reading the layout volume, ensuring it is 385 * not corrupted, and recovering from corruptions if needed. Returns volume 386 * table in case of success and a negative error code in case of failure. 387 */ 388 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, 389 struct ubi_scan_info *si, 390 struct ubi_scan_volume *sv) 391 { 392 int err; 393 struct rb_node *rb; 394 struct ubi_scan_leb *seb; 395 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 396 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 397 398 /* 399 * UBI goes through the following steps when it changes the layout 400 * volume: 401 * a. erase LEB 0; 402 * b. write new data to LEB 0; 403 * c. erase LEB 1; 404 * d. write new data to LEB 1. 405 * 406 * Before the change, both LEBs contain the same data. 407 * 408 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 409 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 410 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 411 * finally, unclean reboots may result in a situation when neither LEB 412 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 413 * 0 contains more recent information. 414 * 415 * So the plan is to first check LEB 0. Then 416 * a. if LEB 0 is OK, it must be containing the most resent data; then 417 * we compare it with LEB 1, and if they are different, we copy LEB 418 * 0 to LEB 1; 419 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 420 * to LEB 0. 421 */ 422 423 dbg_gen("check layout volume"); 424 425 /* Read both LEB 0 and LEB 1 into memory */ 426 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 427 leb[seb->lnum] = vmalloc(ubi->vtbl_size); 428 if (!leb[seb->lnum]) { 429 err = -ENOMEM; 430 goto out_free; 431 } 432 memset(leb[seb->lnum], 0, ubi->vtbl_size); 433 434 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0, 435 ubi->vtbl_size); 436 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) 437 /* 438 * Scrub the PEB later. Note, -EBADMSG indicates an 439 * uncorrectable ECC error, but we have our own CRC and 440 * the data will be checked later. If the data is OK, 441 * the PEB will be scrubbed (because we set 442 * seb->scrub). If the data is not OK, the contents of 443 * the PEB will be recovered from the second copy, and 444 * seb->scrub will be cleared in 445 * 'ubi_scan_add_used()'. 446 */ 447 seb->scrub = 1; 448 else if (err) 449 goto out_free; 450 } 451 452 err = -EINVAL; 453 if (leb[0]) { 454 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 455 if (leb_corrupted[0] < 0) 456 goto out_free; 457 } 458 459 if (!leb_corrupted[0]) { 460 /* LEB 0 is OK */ 461 if (leb[1]) 462 leb_corrupted[1] = memcmp(leb[0], leb[1], 463 ubi->vtbl_size); 464 if (leb_corrupted[1]) { 465 ubi_warn("volume table copy #2 is corrupted"); 466 err = create_vtbl(ubi, si, 1, leb[0]); 467 if (err) 468 goto out_free; 469 ubi_msg("volume table was restored"); 470 } 471 472 /* Both LEB 1 and LEB 2 are OK and consistent */ 473 vfree(leb[1]); 474 return leb[0]; 475 } else { 476 /* LEB 0 is corrupted or does not exist */ 477 if (leb[1]) { 478 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 479 if (leb_corrupted[1] < 0) 480 goto out_free; 481 } 482 if (leb_corrupted[1]) { 483 /* Both LEB 0 and LEB 1 are corrupted */ 484 ubi_err("both volume tables are corrupted"); 485 goto out_free; 486 } 487 488 ubi_warn("volume table copy #1 is corrupted"); 489 err = create_vtbl(ubi, si, 0, leb[1]); 490 if (err) 491 goto out_free; 492 ubi_msg("volume table was restored"); 493 494 vfree(leb[0]); 495 return leb[1]; 496 } 497 498 out_free: 499 vfree(leb[0]); 500 vfree(leb[1]); 501 return ERR_PTR(err); 502 } 503 504 /** 505 * create_empty_lvol - create empty layout volume. 506 * @ubi: UBI device description object 507 * @si: scanning information 508 * 509 * This function returns volume table contents in case of success and a 510 * negative error code in case of failure. 511 */ 512 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, 513 struct ubi_scan_info *si) 514 { 515 int i; 516 struct ubi_vtbl_record *vtbl; 517 518 vtbl = vmalloc(ubi->vtbl_size); 519 if (!vtbl) 520 return ERR_PTR(-ENOMEM); 521 memset(vtbl, 0, ubi->vtbl_size); 522 523 for (i = 0; i < ubi->vtbl_slots; i++) 524 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 525 526 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 527 int err; 528 529 err = create_vtbl(ubi, si, i, vtbl); 530 if (err) { 531 vfree(vtbl); 532 return ERR_PTR(err); 533 } 534 } 535 536 return vtbl; 537 } 538 539 /** 540 * init_volumes - initialize volume information for existing volumes. 541 * @ubi: UBI device description object 542 * @si: scanning information 543 * @vtbl: volume table 544 * 545 * This function allocates volume description objects for existing volumes. 546 * Returns zero in case of success and a negative error code in case of 547 * failure. 548 */ 549 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si, 550 const struct ubi_vtbl_record *vtbl) 551 { 552 int i, reserved_pebs = 0; 553 struct ubi_scan_volume *sv; 554 struct ubi_volume *vol; 555 556 for (i = 0; i < ubi->vtbl_slots; i++) { 557 cond_resched(); 558 559 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 560 continue; /* Empty record */ 561 562 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 563 if (!vol) 564 return -ENOMEM; 565 566 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 567 vol->alignment = be32_to_cpu(vtbl[i].alignment); 568 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 569 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 570 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 571 vol->name_len = be16_to_cpu(vtbl[i].name_len); 572 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 573 memcpy(vol->name, vtbl[i].name, vol->name_len); 574 vol->name[vol->name_len] = '\0'; 575 vol->vol_id = i; 576 577 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { 578 /* Auto re-size flag may be set only for one volume */ 579 if (ubi->autoresize_vol_id != -1) { 580 ubi_err("more then one auto-resize volume (%d " 581 "and %d)", ubi->autoresize_vol_id, i); 582 kfree(vol); 583 return -EINVAL; 584 } 585 586 ubi->autoresize_vol_id = i; 587 } 588 589 ubi_assert(!ubi->volumes[i]); 590 ubi->volumes[i] = vol; 591 ubi->vol_count += 1; 592 vol->ubi = ubi; 593 reserved_pebs += vol->reserved_pebs; 594 595 /* 596 * In case of dynamic volume UBI knows nothing about how many 597 * data is stored there. So assume the whole volume is used. 598 */ 599 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 600 vol->used_ebs = vol->reserved_pebs; 601 vol->last_eb_bytes = vol->usable_leb_size; 602 vol->used_bytes = 603 (long long)vol->used_ebs * vol->usable_leb_size; 604 continue; 605 } 606 607 /* Static volumes only */ 608 sv = ubi_scan_find_sv(si, i); 609 if (!sv) { 610 /* 611 * No eraseblocks belonging to this volume found. We 612 * don't actually know whether this static volume is 613 * completely corrupted or just contains no data. And 614 * we cannot know this as long as data size is not 615 * stored on flash. So we just assume the volume is 616 * empty. FIXME: this should be handled. 617 */ 618 continue; 619 } 620 621 if (sv->leb_count != sv->used_ebs) { 622 /* 623 * We found a static volume which misses several 624 * eraseblocks. Treat it as corrupted. 625 */ 626 ubi_warn("static volume %d misses %d LEBs - corrupted", 627 sv->vol_id, sv->used_ebs - sv->leb_count); 628 vol->corrupted = 1; 629 continue; 630 } 631 632 vol->used_ebs = sv->used_ebs; 633 vol->used_bytes = 634 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 635 vol->used_bytes += sv->last_data_size; 636 vol->last_eb_bytes = sv->last_data_size; 637 } 638 639 /* And add the layout volume */ 640 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 641 if (!vol) 642 return -ENOMEM; 643 644 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 645 vol->alignment = 1; 646 vol->vol_type = UBI_DYNAMIC_VOLUME; 647 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 648 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 649 vol->usable_leb_size = ubi->leb_size; 650 vol->used_ebs = vol->reserved_pebs; 651 vol->last_eb_bytes = vol->reserved_pebs; 652 vol->used_bytes = 653 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 654 vol->vol_id = UBI_LAYOUT_VOLUME_ID; 655 vol->ref_count = 1; 656 657 ubi_assert(!ubi->volumes[i]); 658 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 659 reserved_pebs += vol->reserved_pebs; 660 ubi->vol_count += 1; 661 vol->ubi = ubi; 662 663 if (reserved_pebs > ubi->avail_pebs) 664 ubi_err("not enough PEBs, required %d, available %d", 665 reserved_pebs, ubi->avail_pebs); 666 ubi->rsvd_pebs += reserved_pebs; 667 ubi->avail_pebs -= reserved_pebs; 668 669 return 0; 670 } 671 672 /** 673 * check_sv - check volume scanning information. 674 * @vol: UBI volume description object 675 * @sv: volume scanning information 676 * 677 * This function returns zero if the volume scanning information is consistent 678 * to the data read from the volume tabla, and %-EINVAL if not. 679 */ 680 static int check_sv(const struct ubi_volume *vol, 681 const struct ubi_scan_volume *sv) 682 { 683 int err; 684 685 if (sv->highest_lnum >= vol->reserved_pebs) { 686 err = 1; 687 goto bad; 688 } 689 if (sv->leb_count > vol->reserved_pebs) { 690 err = 2; 691 goto bad; 692 } 693 if (sv->vol_type != vol->vol_type) { 694 err = 3; 695 goto bad; 696 } 697 if (sv->used_ebs > vol->reserved_pebs) { 698 err = 4; 699 goto bad; 700 } 701 if (sv->data_pad != vol->data_pad) { 702 err = 5; 703 goto bad; 704 } 705 return 0; 706 707 bad: 708 ubi_err("bad scanning information, error %d", err); 709 ubi_dbg_dump_sv(sv); 710 ubi_dbg_dump_vol_info(vol); 711 return -EINVAL; 712 } 713 714 /** 715 * check_scanning_info - check that scanning information. 716 * @ubi: UBI device description object 717 * @si: scanning information 718 * 719 * Even though we protect on-flash data by CRC checksums, we still don't trust 720 * the media. This function ensures that scanning information is consistent to 721 * the information read from the volume table. Returns zero if the scanning 722 * information is OK and %-EINVAL if it is not. 723 */ 724 static int check_scanning_info(const struct ubi_device *ubi, 725 struct ubi_scan_info *si) 726 { 727 int err, i; 728 struct ubi_scan_volume *sv; 729 struct ubi_volume *vol; 730 731 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 732 ubi_err("scanning found %d volumes, maximum is %d + %d", 733 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 734 return -EINVAL; 735 } 736 737 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && 738 si->highest_vol_id < UBI_INTERNAL_VOL_START) { 739 ubi_err("too large volume ID %d found by scanning", 740 si->highest_vol_id); 741 return -EINVAL; 742 } 743 744 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 745 cond_resched(); 746 747 sv = ubi_scan_find_sv(si, i); 748 vol = ubi->volumes[i]; 749 if (!vol) { 750 if (sv) 751 ubi_scan_rm_volume(si, sv); 752 continue; 753 } 754 755 if (vol->reserved_pebs == 0) { 756 ubi_assert(i < ubi->vtbl_slots); 757 758 if (!sv) 759 continue; 760 761 /* 762 * During scanning we found a volume which does not 763 * exist according to the information in the volume 764 * table. This must have happened due to an unclean 765 * reboot while the volume was being removed. Discard 766 * these eraseblocks. 767 */ 768 ubi_msg("finish volume %d removal", sv->vol_id); 769 ubi_scan_rm_volume(si, sv); 770 } else if (sv) { 771 err = check_sv(vol, sv); 772 if (err) 773 return err; 774 } 775 } 776 777 return 0; 778 } 779 780 /** 781 * ubi_read_volume_table - read the volume table. 782 * @ubi: UBI device description object 783 * @si: scanning information 784 * 785 * This function reads volume table, checks it, recover from errors if needed, 786 * or creates it if needed. Returns zero in case of success and a negative 787 * error code in case of failure. 788 */ 789 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si) 790 { 791 int i, err; 792 struct ubi_scan_volume *sv; 793 794 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 795 796 /* 797 * The number of supported volumes is limited by the eraseblock size 798 * and by the UBI_MAX_VOLUMES constant. 799 */ 800 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 801 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 802 ubi->vtbl_slots = UBI_MAX_VOLUMES; 803 804 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 805 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 806 807 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID); 808 if (!sv) { 809 /* 810 * No logical eraseblocks belonging to the layout volume were 811 * found. This could mean that the flash is just empty. In 812 * this case we create empty layout volume. 813 * 814 * But if flash is not empty this must be a corruption or the 815 * MTD device just contains garbage. 816 */ 817 if (si->is_empty) { 818 ubi->vtbl = create_empty_lvol(ubi, si); 819 if (IS_ERR(ubi->vtbl)) 820 return PTR_ERR(ubi->vtbl); 821 } else { 822 ubi_err("the layout volume was not found"); 823 return -EINVAL; 824 } 825 } else { 826 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) { 827 /* This must not happen with proper UBI images */ 828 dbg_err("too many LEBs (%d) in layout volume", 829 sv->leb_count); 830 return -EINVAL; 831 } 832 833 ubi->vtbl = process_lvol(ubi, si, sv); 834 if (IS_ERR(ubi->vtbl)) 835 return PTR_ERR(ubi->vtbl); 836 } 837 838 ubi->avail_pebs = ubi->good_peb_count; 839 840 /* 841 * The layout volume is OK, initialize the corresponding in-RAM data 842 * structures. 843 */ 844 err = init_volumes(ubi, si, ubi->vtbl); 845 if (err) 846 goto out_free; 847 848 /* 849 * Get sure that the scanning information is consistent to the 850 * information stored in the volume table. 851 */ 852 err = check_scanning_info(ubi, si); 853 if (err) 854 goto out_free; 855 856 return 0; 857 858 out_free: 859 vfree(ubi->vtbl); 860 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 861 kfree(ubi->volumes[i]); 862 ubi->volumes[i] = NULL; 863 } 864 return err; 865 } 866 867 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 868 869 /** 870 * paranoid_vtbl_check - check volume table. 871 * @ubi: UBI device description object 872 */ 873 static void paranoid_vtbl_check(const struct ubi_device *ubi) 874 { 875 if (vtbl_check(ubi, ubi->vtbl)) { 876 ubi_err("paranoid check failed"); 877 BUG(); 878 } 879 } 880 881 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 882