xref: /openbmc/linux/drivers/mtd/ubi/vtbl.c (revision db181ce0)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * This file includes volume table manipulation code. The volume table is an
24  * on-flash table containing volume meta-data like name, number of reserved
25  * physical eraseblocks, type, etc. The volume table is stored in the so-called
26  * "layout volume".
27  *
28  * The layout volume is an internal volume which is organized as follows. It
29  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31  * other. This redundancy guarantees robustness to unclean reboots. The volume
32  * table is basically an array of volume table records. Each record contains
33  * full information about the volume and protected by a CRC checksum.
34  *
35  * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36  * erased, and the updated volume table is written back to LEB 0. Then same for
37  * LEB 1. This scheme guarantees recoverability from unclean reboots.
38  *
39  * In this UBI implementation the on-flash volume table does not contain any
40  * information about how much data static volumes contain.
41  *
42  * But it would still be beneficial to store this information in the volume
43  * table. For example, suppose we have a static volume X, and all its physical
44  * eraseblocks became bad for some reasons. Suppose we are attaching the
45  * corresponding MTD device, for some reason we find no logical eraseblocks
46  * corresponding to the volume X. According to the volume table volume X does
47  * exist. So we don't know whether it is just empty or all its physical
48  * eraseblocks went bad. So we cannot alarm the user properly.
49  *
50  * The volume table also stores so-called "update marker", which is used for
51  * volume updates. Before updating the volume, the update marker is set, and
52  * after the update operation is finished, the update marker is cleared. So if
53  * the update operation was interrupted (e.g. by an unclean reboot) - the
54  * update marker is still there and we know that the volume's contents is
55  * damaged.
56  */
57 
58 #include <linux/crc32.h>
59 #include <linux/err.h>
60 #include <linux/slab.h>
61 #include <asm/div64.h>
62 #include "ubi.h"
63 
64 static void self_vtbl_check(const struct ubi_device *ubi);
65 
66 /* Empty volume table record */
67 static struct ubi_vtbl_record empty_vtbl_record;
68 
69 /**
70  * ubi_change_vtbl_record - change volume table record.
71  * @ubi: UBI device description object
72  * @idx: table index to change
73  * @vtbl_rec: new volume table record
74  *
75  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
76  * volume table record is written. The caller does not have to calculate CRC of
77  * the record as it is done by this function. Returns zero in case of success
78  * and a negative error code in case of failure.
79  */
80 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
81 			   struct ubi_vtbl_record *vtbl_rec)
82 {
83 	int i, err;
84 	uint32_t crc;
85 	struct ubi_volume *layout_vol;
86 
87 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
88 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
89 
90 	if (!vtbl_rec)
91 		vtbl_rec = &empty_vtbl_record;
92 	else {
93 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
94 		vtbl_rec->crc = cpu_to_be32(crc);
95 	}
96 
97 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
98 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
99 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
100 		if (err)
101 			return err;
102 
103 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
104 					ubi->vtbl_size);
105 		if (err)
106 			return err;
107 	}
108 
109 	self_vtbl_check(ubi);
110 	return 0;
111 }
112 
113 /**
114  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
115  * @ubi: UBI device description object
116  * @rename_list: list of &struct ubi_rename_entry objects
117  *
118  * This function re-names multiple volumes specified in @req in the volume
119  * table. Returns zero in case of success and a negative error code in case of
120  * failure.
121  */
122 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
123 			    struct list_head *rename_list)
124 {
125 	int i, err;
126 	struct ubi_rename_entry *re;
127 	struct ubi_volume *layout_vol;
128 
129 	list_for_each_entry(re, rename_list, list) {
130 		uint32_t crc;
131 		struct ubi_volume *vol = re->desc->vol;
132 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
133 
134 		if (re->remove) {
135 			memcpy(vtbl_rec, &empty_vtbl_record,
136 			       sizeof(struct ubi_vtbl_record));
137 			continue;
138 		}
139 
140 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
141 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
142 		memset(vtbl_rec->name + re->new_name_len, 0,
143 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
144 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
145 			    UBI_VTBL_RECORD_SIZE_CRC);
146 		vtbl_rec->crc = cpu_to_be32(crc);
147 	}
148 
149 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
150 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
151 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
152 		if (err)
153 			return err;
154 
155 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
156 					ubi->vtbl_size);
157 		if (err)
158 			return err;
159 	}
160 
161 	return 0;
162 }
163 
164 /**
165  * vtbl_check - check if volume table is not corrupted and sensible.
166  * @ubi: UBI device description object
167  * @vtbl: volume table
168  *
169  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
170  * and %-EINVAL if it contains inconsistent data.
171  */
172 static int vtbl_check(const struct ubi_device *ubi,
173 		      const struct ubi_vtbl_record *vtbl)
174 {
175 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
176 	int upd_marker, err;
177 	uint32_t crc;
178 	const char *name;
179 
180 	for (i = 0; i < ubi->vtbl_slots; i++) {
181 		cond_resched();
182 
183 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
184 		alignment = be32_to_cpu(vtbl[i].alignment);
185 		data_pad = be32_to_cpu(vtbl[i].data_pad);
186 		upd_marker = vtbl[i].upd_marker;
187 		vol_type = vtbl[i].vol_type;
188 		name_len = be16_to_cpu(vtbl[i].name_len);
189 		name = &vtbl[i].name[0];
190 
191 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
192 		if (be32_to_cpu(vtbl[i].crc) != crc) {
193 			ubi_err("bad CRC at record %u: %#08x, not %#08x",
194 				 i, crc, be32_to_cpu(vtbl[i].crc));
195 			ubi_dump_vtbl_record(&vtbl[i], i);
196 			return 1;
197 		}
198 
199 		if (reserved_pebs == 0) {
200 			if (memcmp(&vtbl[i], &empty_vtbl_record,
201 						UBI_VTBL_RECORD_SIZE)) {
202 				err = 2;
203 				goto bad;
204 			}
205 			continue;
206 		}
207 
208 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
209 		    name_len < 0) {
210 			err = 3;
211 			goto bad;
212 		}
213 
214 		if (alignment > ubi->leb_size || alignment == 0) {
215 			err = 4;
216 			goto bad;
217 		}
218 
219 		n = alignment & (ubi->min_io_size - 1);
220 		if (alignment != 1 && n) {
221 			err = 5;
222 			goto bad;
223 		}
224 
225 		n = ubi->leb_size % alignment;
226 		if (data_pad != n) {
227 			ubi_err("bad data_pad, has to be %d", n);
228 			err = 6;
229 			goto bad;
230 		}
231 
232 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
233 			err = 7;
234 			goto bad;
235 		}
236 
237 		if (upd_marker != 0 && upd_marker != 1) {
238 			err = 8;
239 			goto bad;
240 		}
241 
242 		if (reserved_pebs > ubi->good_peb_count) {
243 			ubi_err("too large reserved_pebs %d, good PEBs %d",
244 				reserved_pebs, ubi->good_peb_count);
245 			err = 9;
246 			goto bad;
247 		}
248 
249 		if (name_len > UBI_VOL_NAME_MAX) {
250 			err = 10;
251 			goto bad;
252 		}
253 
254 		if (name[0] == '\0') {
255 			err = 11;
256 			goto bad;
257 		}
258 
259 		if (name_len != strnlen(name, name_len + 1)) {
260 			err = 12;
261 			goto bad;
262 		}
263 	}
264 
265 	/* Checks that all names are unique */
266 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
267 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
268 			int len1 = be16_to_cpu(vtbl[i].name_len);
269 			int len2 = be16_to_cpu(vtbl[n].name_len);
270 
271 			if (len1 > 0 && len1 == len2 &&
272 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
273 				ubi_err("volumes %d and %d have the same name \"%s\"",
274 					i, n, vtbl[i].name);
275 				ubi_dump_vtbl_record(&vtbl[i], i);
276 				ubi_dump_vtbl_record(&vtbl[n], n);
277 				return -EINVAL;
278 			}
279 		}
280 	}
281 
282 	return 0;
283 
284 bad:
285 	ubi_err("volume table check failed: record %d, error %d", i, err);
286 	ubi_dump_vtbl_record(&vtbl[i], i);
287 	return -EINVAL;
288 }
289 
290 /**
291  * create_vtbl - create a copy of volume table.
292  * @ubi: UBI device description object
293  * @ai: attaching information
294  * @copy: number of the volume table copy
295  * @vtbl: contents of the volume table
296  *
297  * This function returns zero in case of success and a negative error code in
298  * case of failure.
299  */
300 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
301 		       int copy, void *vtbl)
302 {
303 	int err, tries = 0;
304 	struct ubi_vid_hdr *vid_hdr;
305 	struct ubi_ainf_peb *new_aeb;
306 
307 	dbg_gen("create volume table (copy #%d)", copy + 1);
308 
309 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
310 	if (!vid_hdr)
311 		return -ENOMEM;
312 
313 retry:
314 	new_aeb = ubi_early_get_peb(ubi, ai);
315 	if (IS_ERR(new_aeb)) {
316 		err = PTR_ERR(new_aeb);
317 		goto out_free;
318 	}
319 
320 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
321 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
322 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
323 	vid_hdr->data_size = vid_hdr->used_ebs =
324 			     vid_hdr->data_pad = cpu_to_be32(0);
325 	vid_hdr->lnum = cpu_to_be32(copy);
326 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
327 
328 	/* The EC header is already there, write the VID header */
329 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
330 	if (err)
331 		goto write_error;
332 
333 	/* Write the layout volume contents */
334 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
335 	if (err)
336 		goto write_error;
337 
338 	/*
339 	 * And add it to the attaching information. Don't delete the old version
340 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
341 	 */
342 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
343 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
344 	ubi_free_vid_hdr(ubi, vid_hdr);
345 	return err;
346 
347 write_error:
348 	if (err == -EIO && ++tries <= 5) {
349 		/*
350 		 * Probably this physical eraseblock went bad, try to pick
351 		 * another one.
352 		 */
353 		list_add(&new_aeb->u.list, &ai->erase);
354 		goto retry;
355 	}
356 	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
357 out_free:
358 	ubi_free_vid_hdr(ubi, vid_hdr);
359 	return err;
360 
361 }
362 
363 /**
364  * process_lvol - process the layout volume.
365  * @ubi: UBI device description object
366  * @ai: attaching information
367  * @av: layout volume attaching information
368  *
369  * This function is responsible for reading the layout volume, ensuring it is
370  * not corrupted, and recovering from corruptions if needed. Returns volume
371  * table in case of success and a negative error code in case of failure.
372  */
373 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
374 					    struct ubi_attach_info *ai,
375 					    struct ubi_ainf_volume *av)
376 {
377 	int err;
378 	struct rb_node *rb;
379 	struct ubi_ainf_peb *aeb;
380 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
381 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
382 
383 	/*
384 	 * UBI goes through the following steps when it changes the layout
385 	 * volume:
386 	 * a. erase LEB 0;
387 	 * b. write new data to LEB 0;
388 	 * c. erase LEB 1;
389 	 * d. write new data to LEB 1.
390 	 *
391 	 * Before the change, both LEBs contain the same data.
392 	 *
393 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
394 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
395 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
396 	 * finally, unclean reboots may result in a situation when neither LEB
397 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
398 	 * 0 contains more recent information.
399 	 *
400 	 * So the plan is to first check LEB 0. Then
401 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
402 	 *    we compare it with LEB 1, and if they are different, we copy LEB
403 	 *    0 to LEB 1;
404 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
405 	 *    to LEB 0.
406 	 */
407 
408 	dbg_gen("check layout volume");
409 
410 	/* Read both LEB 0 and LEB 1 into memory */
411 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
412 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
413 		if (!leb[aeb->lnum]) {
414 			err = -ENOMEM;
415 			goto out_free;
416 		}
417 
418 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
419 				       ubi->vtbl_size);
420 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
421 			/*
422 			 * Scrub the PEB later. Note, -EBADMSG indicates an
423 			 * uncorrectable ECC error, but we have our own CRC and
424 			 * the data will be checked later. If the data is OK,
425 			 * the PEB will be scrubbed (because we set
426 			 * aeb->scrub). If the data is not OK, the contents of
427 			 * the PEB will be recovered from the second copy, and
428 			 * aeb->scrub will be cleared in
429 			 * 'ubi_add_to_av()'.
430 			 */
431 			aeb->scrub = 1;
432 		else if (err)
433 			goto out_free;
434 	}
435 
436 	err = -EINVAL;
437 	if (leb[0]) {
438 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
439 		if (leb_corrupted[0] < 0)
440 			goto out_free;
441 	}
442 
443 	if (!leb_corrupted[0]) {
444 		/* LEB 0 is OK */
445 		if (leb[1])
446 			leb_corrupted[1] = memcmp(leb[0], leb[1],
447 						  ubi->vtbl_size);
448 		if (leb_corrupted[1]) {
449 			ubi_warn("volume table copy #2 is corrupted");
450 			err = create_vtbl(ubi, ai, 1, leb[0]);
451 			if (err)
452 				goto out_free;
453 			ubi_msg("volume table was restored");
454 		}
455 
456 		/* Both LEB 1 and LEB 2 are OK and consistent */
457 		vfree(leb[1]);
458 		return leb[0];
459 	} else {
460 		/* LEB 0 is corrupted or does not exist */
461 		if (leb[1]) {
462 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
463 			if (leb_corrupted[1] < 0)
464 				goto out_free;
465 		}
466 		if (leb_corrupted[1]) {
467 			/* Both LEB 0 and LEB 1 are corrupted */
468 			ubi_err("both volume tables are corrupted");
469 			goto out_free;
470 		}
471 
472 		ubi_warn("volume table copy #1 is corrupted");
473 		err = create_vtbl(ubi, ai, 0, leb[1]);
474 		if (err)
475 			goto out_free;
476 		ubi_msg("volume table was restored");
477 
478 		vfree(leb[0]);
479 		return leb[1];
480 	}
481 
482 out_free:
483 	vfree(leb[0]);
484 	vfree(leb[1]);
485 	return ERR_PTR(err);
486 }
487 
488 /**
489  * create_empty_lvol - create empty layout volume.
490  * @ubi: UBI device description object
491  * @ai: attaching information
492  *
493  * This function returns volume table contents in case of success and a
494  * negative error code in case of failure.
495  */
496 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
497 						 struct ubi_attach_info *ai)
498 {
499 	int i;
500 	struct ubi_vtbl_record *vtbl;
501 
502 	vtbl = vzalloc(ubi->vtbl_size);
503 	if (!vtbl)
504 		return ERR_PTR(-ENOMEM);
505 
506 	for (i = 0; i < ubi->vtbl_slots; i++)
507 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
508 
509 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
510 		int err;
511 
512 		err = create_vtbl(ubi, ai, i, vtbl);
513 		if (err) {
514 			vfree(vtbl);
515 			return ERR_PTR(err);
516 		}
517 	}
518 
519 	return vtbl;
520 }
521 
522 /**
523  * init_volumes - initialize volume information for existing volumes.
524  * @ubi: UBI device description object
525  * @ai: scanning information
526  * @vtbl: volume table
527  *
528  * This function allocates volume description objects for existing volumes.
529  * Returns zero in case of success and a negative error code in case of
530  * failure.
531  */
532 static int init_volumes(struct ubi_device *ubi,
533 			const struct ubi_attach_info *ai,
534 			const struct ubi_vtbl_record *vtbl)
535 {
536 	int i, reserved_pebs = 0;
537 	struct ubi_ainf_volume *av;
538 	struct ubi_volume *vol;
539 
540 	for (i = 0; i < ubi->vtbl_slots; i++) {
541 		cond_resched();
542 
543 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
544 			continue; /* Empty record */
545 
546 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
547 		if (!vol)
548 			return -ENOMEM;
549 
550 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
551 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
552 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
553 		vol->upd_marker = vtbl[i].upd_marker;
554 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
555 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
556 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
557 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
558 		memcpy(vol->name, vtbl[i].name, vol->name_len);
559 		vol->name[vol->name_len] = '\0';
560 		vol->vol_id = i;
561 
562 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
563 			/* Auto re-size flag may be set only for one volume */
564 			if (ubi->autoresize_vol_id != -1) {
565 				ubi_err("more than one auto-resize volume (%d and %d)",
566 					ubi->autoresize_vol_id, i);
567 				kfree(vol);
568 				return -EINVAL;
569 			}
570 
571 			ubi->autoresize_vol_id = i;
572 		}
573 
574 		ubi_assert(!ubi->volumes[i]);
575 		ubi->volumes[i] = vol;
576 		ubi->vol_count += 1;
577 		vol->ubi = ubi;
578 		reserved_pebs += vol->reserved_pebs;
579 
580 		/*
581 		 * In case of dynamic volume UBI knows nothing about how many
582 		 * data is stored there. So assume the whole volume is used.
583 		 */
584 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
585 			vol->used_ebs = vol->reserved_pebs;
586 			vol->last_eb_bytes = vol->usable_leb_size;
587 			vol->used_bytes =
588 				(long long)vol->used_ebs * vol->usable_leb_size;
589 			continue;
590 		}
591 
592 		/* Static volumes only */
593 		av = ubi_find_av(ai, i);
594 		if (!av) {
595 			/*
596 			 * No eraseblocks belonging to this volume found. We
597 			 * don't actually know whether this static volume is
598 			 * completely corrupted or just contains no data. And
599 			 * we cannot know this as long as data size is not
600 			 * stored on flash. So we just assume the volume is
601 			 * empty. FIXME: this should be handled.
602 			 */
603 			continue;
604 		}
605 
606 		if (av->leb_count != av->used_ebs) {
607 			/*
608 			 * We found a static volume which misses several
609 			 * eraseblocks. Treat it as corrupted.
610 			 */
611 			ubi_warn("static volume %d misses %d LEBs - corrupted",
612 				 av->vol_id, av->used_ebs - av->leb_count);
613 			vol->corrupted = 1;
614 			continue;
615 		}
616 
617 		vol->used_ebs = av->used_ebs;
618 		vol->used_bytes =
619 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
620 		vol->used_bytes += av->last_data_size;
621 		vol->last_eb_bytes = av->last_data_size;
622 	}
623 
624 	/* And add the layout volume */
625 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
626 	if (!vol)
627 		return -ENOMEM;
628 
629 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
630 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
631 	vol->vol_type = UBI_DYNAMIC_VOLUME;
632 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
633 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
634 	vol->usable_leb_size = ubi->leb_size;
635 	vol->used_ebs = vol->reserved_pebs;
636 	vol->last_eb_bytes = vol->reserved_pebs;
637 	vol->used_bytes =
638 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
639 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
640 	vol->ref_count = 1;
641 
642 	ubi_assert(!ubi->volumes[i]);
643 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
644 	reserved_pebs += vol->reserved_pebs;
645 	ubi->vol_count += 1;
646 	vol->ubi = ubi;
647 
648 	if (reserved_pebs > ubi->avail_pebs) {
649 		ubi_err("not enough PEBs, required %d, available %d",
650 			reserved_pebs, ubi->avail_pebs);
651 		if (ubi->corr_peb_count)
652 			ubi_err("%d PEBs are corrupted and not used",
653 				ubi->corr_peb_count);
654 	}
655 	ubi->rsvd_pebs += reserved_pebs;
656 	ubi->avail_pebs -= reserved_pebs;
657 
658 	return 0;
659 }
660 
661 /**
662  * check_av - check volume attaching information.
663  * @vol: UBI volume description object
664  * @av: volume attaching information
665  *
666  * This function returns zero if the volume attaching information is consistent
667  * to the data read from the volume tabla, and %-EINVAL if not.
668  */
669 static int check_av(const struct ubi_volume *vol,
670 		    const struct ubi_ainf_volume *av)
671 {
672 	int err;
673 
674 	if (av->highest_lnum >= vol->reserved_pebs) {
675 		err = 1;
676 		goto bad;
677 	}
678 	if (av->leb_count > vol->reserved_pebs) {
679 		err = 2;
680 		goto bad;
681 	}
682 	if (av->vol_type != vol->vol_type) {
683 		err = 3;
684 		goto bad;
685 	}
686 	if (av->used_ebs > vol->reserved_pebs) {
687 		err = 4;
688 		goto bad;
689 	}
690 	if (av->data_pad != vol->data_pad) {
691 		err = 5;
692 		goto bad;
693 	}
694 	return 0;
695 
696 bad:
697 	ubi_err("bad attaching information, error %d", err);
698 	ubi_dump_av(av);
699 	ubi_dump_vol_info(vol);
700 	return -EINVAL;
701 }
702 
703 /**
704  * check_attaching_info - check that attaching information.
705  * @ubi: UBI device description object
706  * @ai: attaching information
707  *
708  * Even though we protect on-flash data by CRC checksums, we still don't trust
709  * the media. This function ensures that attaching information is consistent to
710  * the information read from the volume table. Returns zero if the attaching
711  * information is OK and %-EINVAL if it is not.
712  */
713 static int check_attaching_info(const struct ubi_device *ubi,
714 			       struct ubi_attach_info *ai)
715 {
716 	int err, i;
717 	struct ubi_ainf_volume *av;
718 	struct ubi_volume *vol;
719 
720 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
721 		ubi_err("found %d volumes while attaching, maximum is %d + %d",
722 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
723 		return -EINVAL;
724 	}
725 
726 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
727 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
728 		ubi_err("too large volume ID %d found", ai->highest_vol_id);
729 		return -EINVAL;
730 	}
731 
732 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
733 		cond_resched();
734 
735 		av = ubi_find_av(ai, i);
736 		vol = ubi->volumes[i];
737 		if (!vol) {
738 			if (av)
739 				ubi_remove_av(ai, av);
740 			continue;
741 		}
742 
743 		if (vol->reserved_pebs == 0) {
744 			ubi_assert(i < ubi->vtbl_slots);
745 
746 			if (!av)
747 				continue;
748 
749 			/*
750 			 * During attaching we found a volume which does not
751 			 * exist according to the information in the volume
752 			 * table. This must have happened due to an unclean
753 			 * reboot while the volume was being removed. Discard
754 			 * these eraseblocks.
755 			 */
756 			ubi_msg("finish volume %d removal", av->vol_id);
757 			ubi_remove_av(ai, av);
758 		} else if (av) {
759 			err = check_av(vol, av);
760 			if (err)
761 				return err;
762 		}
763 	}
764 
765 	return 0;
766 }
767 
768 /**
769  * ubi_read_volume_table - read the volume table.
770  * @ubi: UBI device description object
771  * @ai: attaching information
772  *
773  * This function reads volume table, checks it, recover from errors if needed,
774  * or creates it if needed. Returns zero in case of success and a negative
775  * error code in case of failure.
776  */
777 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
778 {
779 	int i, err;
780 	struct ubi_ainf_volume *av;
781 
782 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
783 
784 	/*
785 	 * The number of supported volumes is limited by the eraseblock size
786 	 * and by the UBI_MAX_VOLUMES constant.
787 	 */
788 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
789 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
790 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
791 
792 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
793 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
794 
795 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
796 	if (!av) {
797 		/*
798 		 * No logical eraseblocks belonging to the layout volume were
799 		 * found. This could mean that the flash is just empty. In
800 		 * this case we create empty layout volume.
801 		 *
802 		 * But if flash is not empty this must be a corruption or the
803 		 * MTD device just contains garbage.
804 		 */
805 		if (ai->is_empty) {
806 			ubi->vtbl = create_empty_lvol(ubi, ai);
807 			if (IS_ERR(ubi->vtbl))
808 				return PTR_ERR(ubi->vtbl);
809 		} else {
810 			ubi_err("the layout volume was not found");
811 			return -EINVAL;
812 		}
813 	} else {
814 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
815 			/* This must not happen with proper UBI images */
816 			ubi_err("too many LEBs (%d) in layout volume",
817 				av->leb_count);
818 			return -EINVAL;
819 		}
820 
821 		ubi->vtbl = process_lvol(ubi, ai, av);
822 		if (IS_ERR(ubi->vtbl))
823 			return PTR_ERR(ubi->vtbl);
824 	}
825 
826 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
827 
828 	/*
829 	 * The layout volume is OK, initialize the corresponding in-RAM data
830 	 * structures.
831 	 */
832 	err = init_volumes(ubi, ai, ubi->vtbl);
833 	if (err)
834 		goto out_free;
835 
836 	/*
837 	 * Make sure that the attaching information is consistent to the
838 	 * information stored in the volume table.
839 	 */
840 	err = check_attaching_info(ubi, ai);
841 	if (err)
842 		goto out_free;
843 
844 	return 0;
845 
846 out_free:
847 	vfree(ubi->vtbl);
848 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
849 		kfree(ubi->volumes[i]);
850 		ubi->volumes[i] = NULL;
851 	}
852 	return err;
853 }
854 
855 /**
856  * self_vtbl_check - check volume table.
857  * @ubi: UBI device description object
858  */
859 static void self_vtbl_check(const struct ubi_device *ubi)
860 {
861 	if (!ubi_dbg_chk_gen(ubi))
862 		return;
863 
864 	if (vtbl_check(ubi, ubi->vtbl)) {
865 		ubi_err("self-check failed");
866 		BUG();
867 	}
868 }
869