1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. Note, 34 * nowadays we use the atomic LEB change operation when updating the volume 35 * table, so we do not really need 2 LEBs anymore, but we preserve the older 36 * design for the backward compatibility reasons. 37 * 38 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is 39 * erased, and the updated volume table is written back to LEB 0. Then same for 40 * LEB 1. This scheme guarantees recoverability from unclean reboots. 41 * 42 * In this UBI implementation the on-flash volume table does not contain any 43 * information about how much data static volumes contain. 44 * 45 * But it would still be beneficial to store this information in the volume 46 * table. For example, suppose we have a static volume X, and all its physical 47 * eraseblocks became bad for some reasons. Suppose we are attaching the 48 * corresponding MTD device, for some reason we find no logical eraseblocks 49 * corresponding to the volume X. According to the volume table volume X does 50 * exist. So we don't know whether it is just empty or all its physical 51 * eraseblocks went bad. So we cannot alarm the user properly. 52 * 53 * The volume table also stores so-called "update marker", which is used for 54 * volume updates. Before updating the volume, the update marker is set, and 55 * after the update operation is finished, the update marker is cleared. So if 56 * the update operation was interrupted (e.g. by an unclean reboot) - the 57 * update marker is still there and we know that the volume's contents is 58 * damaged. 59 */ 60 61 #include <linux/crc32.h> 62 #include <linux/err.h> 63 #include <linux/slab.h> 64 #include <asm/div64.h> 65 #include "ubi.h" 66 67 static void self_vtbl_check(const struct ubi_device *ubi); 68 69 /* Empty volume table record */ 70 static struct ubi_vtbl_record empty_vtbl_record; 71 72 /** 73 * ubi_update_layout_vol - helper for updatting layout volumes on flash 74 * @ubi: UBI device description object 75 */ 76 static int ubi_update_layout_vol(struct ubi_device *ubi) 77 { 78 struct ubi_volume *layout_vol; 79 int i, err; 80 81 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 82 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 83 err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, 84 ubi->vtbl_size); 85 if (err) 86 return err; 87 } 88 89 return 0; 90 } 91 92 /** 93 * ubi_change_vtbl_record - change volume table record. 94 * @ubi: UBI device description object 95 * @idx: table index to change 96 * @vtbl_rec: new volume table record 97 * 98 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 99 * volume table record is written. The caller does not have to calculate CRC of 100 * the record as it is done by this function. Returns zero in case of success 101 * and a negative error code in case of failure. 102 */ 103 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 104 struct ubi_vtbl_record *vtbl_rec) 105 { 106 int err; 107 uint32_t crc; 108 109 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 110 111 if (!vtbl_rec) 112 vtbl_rec = &empty_vtbl_record; 113 else { 114 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 115 vtbl_rec->crc = cpu_to_be32(crc); 116 } 117 118 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 119 err = ubi_update_layout_vol(ubi); 120 121 self_vtbl_check(ubi); 122 return err ? err : 0; 123 } 124 125 /** 126 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. 127 * @ubi: UBI device description object 128 * @rename_list: list of &struct ubi_rename_entry objects 129 * 130 * This function re-names multiple volumes specified in @req in the volume 131 * table. Returns zero in case of success and a negative error code in case of 132 * failure. 133 */ 134 int ubi_vtbl_rename_volumes(struct ubi_device *ubi, 135 struct list_head *rename_list) 136 { 137 struct ubi_rename_entry *re; 138 139 list_for_each_entry(re, rename_list, list) { 140 uint32_t crc; 141 struct ubi_volume *vol = re->desc->vol; 142 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; 143 144 if (re->remove) { 145 memcpy(vtbl_rec, &empty_vtbl_record, 146 sizeof(struct ubi_vtbl_record)); 147 continue; 148 } 149 150 vtbl_rec->name_len = cpu_to_be16(re->new_name_len); 151 memcpy(vtbl_rec->name, re->new_name, re->new_name_len); 152 memset(vtbl_rec->name + re->new_name_len, 0, 153 UBI_VOL_NAME_MAX + 1 - re->new_name_len); 154 crc = crc32(UBI_CRC32_INIT, vtbl_rec, 155 UBI_VTBL_RECORD_SIZE_CRC); 156 vtbl_rec->crc = cpu_to_be32(crc); 157 } 158 159 return ubi_update_layout_vol(ubi); 160 } 161 162 /** 163 * vtbl_check - check if volume table is not corrupted and sensible. 164 * @ubi: UBI device description object 165 * @vtbl: volume table 166 * 167 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 168 * and %-EINVAL if it contains inconsistent data. 169 */ 170 static int vtbl_check(const struct ubi_device *ubi, 171 const struct ubi_vtbl_record *vtbl) 172 { 173 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 174 int upd_marker, err; 175 uint32_t crc; 176 const char *name; 177 178 for (i = 0; i < ubi->vtbl_slots; i++) { 179 cond_resched(); 180 181 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 182 alignment = be32_to_cpu(vtbl[i].alignment); 183 data_pad = be32_to_cpu(vtbl[i].data_pad); 184 upd_marker = vtbl[i].upd_marker; 185 vol_type = vtbl[i].vol_type; 186 name_len = be16_to_cpu(vtbl[i].name_len); 187 name = &vtbl[i].name[0]; 188 189 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 190 if (be32_to_cpu(vtbl[i].crc) != crc) { 191 ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x", 192 i, crc, be32_to_cpu(vtbl[i].crc)); 193 ubi_dump_vtbl_record(&vtbl[i], i); 194 return 1; 195 } 196 197 if (reserved_pebs == 0) { 198 if (memcmp(&vtbl[i], &empty_vtbl_record, 199 UBI_VTBL_RECORD_SIZE)) { 200 err = 2; 201 goto bad; 202 } 203 continue; 204 } 205 206 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 207 name_len < 0) { 208 err = 3; 209 goto bad; 210 } 211 212 if (alignment > ubi->leb_size || alignment == 0) { 213 err = 4; 214 goto bad; 215 } 216 217 n = alignment & (ubi->min_io_size - 1); 218 if (alignment != 1 && n) { 219 err = 5; 220 goto bad; 221 } 222 223 n = ubi->leb_size % alignment; 224 if (data_pad != n) { 225 ubi_err(ubi, "bad data_pad, has to be %d", n); 226 err = 6; 227 goto bad; 228 } 229 230 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 231 err = 7; 232 goto bad; 233 } 234 235 if (upd_marker != 0 && upd_marker != 1) { 236 err = 8; 237 goto bad; 238 } 239 240 if (reserved_pebs > ubi->good_peb_count) { 241 ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d", 242 reserved_pebs, ubi->good_peb_count); 243 err = 9; 244 goto bad; 245 } 246 247 if (name_len > UBI_VOL_NAME_MAX) { 248 err = 10; 249 goto bad; 250 } 251 252 if (name[0] == '\0') { 253 err = 11; 254 goto bad; 255 } 256 257 if (name_len != strnlen(name, name_len + 1)) { 258 err = 12; 259 goto bad; 260 } 261 } 262 263 /* Checks that all names are unique */ 264 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 265 for (n = i + 1; n < ubi->vtbl_slots; n++) { 266 int len1 = be16_to_cpu(vtbl[i].name_len); 267 int len2 = be16_to_cpu(vtbl[n].name_len); 268 269 if (len1 > 0 && len1 == len2 && 270 !strncmp(vtbl[i].name, vtbl[n].name, len1)) { 271 ubi_err(ubi, "volumes %d and %d have the same name \"%s\"", 272 i, n, vtbl[i].name); 273 ubi_dump_vtbl_record(&vtbl[i], i); 274 ubi_dump_vtbl_record(&vtbl[n], n); 275 return -EINVAL; 276 } 277 } 278 } 279 280 return 0; 281 282 bad: 283 ubi_err(ubi, "volume table check failed: record %d, error %d", i, err); 284 ubi_dump_vtbl_record(&vtbl[i], i); 285 return -EINVAL; 286 } 287 288 /** 289 * create_vtbl - create a copy of volume table. 290 * @ubi: UBI device description object 291 * @ai: attaching information 292 * @copy: number of the volume table copy 293 * @vtbl: contents of the volume table 294 * 295 * This function returns zero in case of success and a negative error code in 296 * case of failure. 297 */ 298 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, 299 int copy, void *vtbl) 300 { 301 int err, tries = 0; 302 struct ubi_vid_io_buf *vidb; 303 struct ubi_vid_hdr *vid_hdr; 304 struct ubi_ainf_peb *new_aeb; 305 306 dbg_gen("create volume table (copy #%d)", copy + 1); 307 308 vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL); 309 if (!vidb) 310 return -ENOMEM; 311 312 vid_hdr = ubi_get_vid_hdr(vidb); 313 314 retry: 315 new_aeb = ubi_early_get_peb(ubi, ai); 316 if (IS_ERR(new_aeb)) { 317 err = PTR_ERR(new_aeb); 318 goto out_free; 319 } 320 321 vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; 322 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); 323 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 324 vid_hdr->data_size = vid_hdr->used_ebs = 325 vid_hdr->data_pad = cpu_to_be32(0); 326 vid_hdr->lnum = cpu_to_be32(copy); 327 vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); 328 329 /* The EC header is already there, write the VID header */ 330 err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb); 331 if (err) 332 goto write_error; 333 334 /* Write the layout volume contents */ 335 err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); 336 if (err) 337 goto write_error; 338 339 /* 340 * And add it to the attaching information. Don't delete the old version 341 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. 342 */ 343 err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); 344 ubi_free_aeb(ai, new_aeb); 345 ubi_free_vid_buf(vidb); 346 return err; 347 348 write_error: 349 if (err == -EIO && ++tries <= 5) { 350 /* 351 * Probably this physical eraseblock went bad, try to pick 352 * another one. 353 */ 354 list_add(&new_aeb->u.list, &ai->erase); 355 goto retry; 356 } 357 ubi_free_aeb(ai, new_aeb); 358 out_free: 359 ubi_free_vid_buf(vidb); 360 return err; 361 362 } 363 364 /** 365 * process_lvol - process the layout volume. 366 * @ubi: UBI device description object 367 * @ai: attaching information 368 * @av: layout volume attaching information 369 * 370 * This function is responsible for reading the layout volume, ensuring it is 371 * not corrupted, and recovering from corruptions if needed. Returns volume 372 * table in case of success and a negative error code in case of failure. 373 */ 374 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, 375 struct ubi_attach_info *ai, 376 struct ubi_ainf_volume *av) 377 { 378 int err; 379 struct rb_node *rb; 380 struct ubi_ainf_peb *aeb; 381 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 382 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 383 384 /* 385 * UBI goes through the following steps when it changes the layout 386 * volume: 387 * a. erase LEB 0; 388 * b. write new data to LEB 0; 389 * c. erase LEB 1; 390 * d. write new data to LEB 1. 391 * 392 * Before the change, both LEBs contain the same data. 393 * 394 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 395 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 396 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 397 * finally, unclean reboots may result in a situation when neither LEB 398 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 399 * 0 contains more recent information. 400 * 401 * So the plan is to first check LEB 0. Then 402 * a. if LEB 0 is OK, it must be containing the most recent data; then 403 * we compare it with LEB 1, and if they are different, we copy LEB 404 * 0 to LEB 1; 405 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 406 * to LEB 0. 407 */ 408 409 dbg_gen("check layout volume"); 410 411 /* Read both LEB 0 and LEB 1 into memory */ 412 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 413 leb[aeb->lnum] = vzalloc(ubi->vtbl_size); 414 if (!leb[aeb->lnum]) { 415 err = -ENOMEM; 416 goto out_free; 417 } 418 419 err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, 420 ubi->vtbl_size); 421 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) 422 /* 423 * Scrub the PEB later. Note, -EBADMSG indicates an 424 * uncorrectable ECC error, but we have our own CRC and 425 * the data will be checked later. If the data is OK, 426 * the PEB will be scrubbed (because we set 427 * aeb->scrub). If the data is not OK, the contents of 428 * the PEB will be recovered from the second copy, and 429 * aeb->scrub will be cleared in 430 * 'ubi_add_to_av()'. 431 */ 432 aeb->scrub = 1; 433 else if (err) 434 goto out_free; 435 } 436 437 err = -EINVAL; 438 if (leb[0]) { 439 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 440 if (leb_corrupted[0] < 0) 441 goto out_free; 442 } 443 444 if (!leb_corrupted[0]) { 445 /* LEB 0 is OK */ 446 if (leb[1]) 447 leb_corrupted[1] = memcmp(leb[0], leb[1], 448 ubi->vtbl_size); 449 if (leb_corrupted[1]) { 450 ubi_warn(ubi, "volume table copy #2 is corrupted"); 451 err = create_vtbl(ubi, ai, 1, leb[0]); 452 if (err) 453 goto out_free; 454 ubi_msg(ubi, "volume table was restored"); 455 } 456 457 /* Both LEB 1 and LEB 2 are OK and consistent */ 458 vfree(leb[1]); 459 return leb[0]; 460 } else { 461 /* LEB 0 is corrupted or does not exist */ 462 if (leb[1]) { 463 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 464 if (leb_corrupted[1] < 0) 465 goto out_free; 466 } 467 if (leb_corrupted[1]) { 468 /* Both LEB 0 and LEB 1 are corrupted */ 469 ubi_err(ubi, "both volume tables are corrupted"); 470 goto out_free; 471 } 472 473 ubi_warn(ubi, "volume table copy #1 is corrupted"); 474 err = create_vtbl(ubi, ai, 0, leb[1]); 475 if (err) 476 goto out_free; 477 ubi_msg(ubi, "volume table was restored"); 478 479 vfree(leb[0]); 480 return leb[1]; 481 } 482 483 out_free: 484 vfree(leb[0]); 485 vfree(leb[1]); 486 return ERR_PTR(err); 487 } 488 489 /** 490 * create_empty_lvol - create empty layout volume. 491 * @ubi: UBI device description object 492 * @ai: attaching information 493 * 494 * This function returns volume table contents in case of success and a 495 * negative error code in case of failure. 496 */ 497 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, 498 struct ubi_attach_info *ai) 499 { 500 int i; 501 struct ubi_vtbl_record *vtbl; 502 503 vtbl = vzalloc(ubi->vtbl_size); 504 if (!vtbl) 505 return ERR_PTR(-ENOMEM); 506 507 for (i = 0; i < ubi->vtbl_slots; i++) 508 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 509 510 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 511 int err; 512 513 err = create_vtbl(ubi, ai, i, vtbl); 514 if (err) { 515 vfree(vtbl); 516 return ERR_PTR(err); 517 } 518 } 519 520 return vtbl; 521 } 522 523 /** 524 * init_volumes - initialize volume information for existing volumes. 525 * @ubi: UBI device description object 526 * @ai: scanning information 527 * @vtbl: volume table 528 * 529 * This function allocates volume description objects for existing volumes. 530 * Returns zero in case of success and a negative error code in case of 531 * failure. 532 */ 533 static int init_volumes(struct ubi_device *ubi, 534 const struct ubi_attach_info *ai, 535 const struct ubi_vtbl_record *vtbl) 536 { 537 int i, reserved_pebs = 0; 538 struct ubi_ainf_volume *av; 539 struct ubi_volume *vol; 540 541 for (i = 0; i < ubi->vtbl_slots; i++) { 542 cond_resched(); 543 544 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 545 continue; /* Empty record */ 546 547 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 548 if (!vol) 549 return -ENOMEM; 550 551 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 552 vol->alignment = be32_to_cpu(vtbl[i].alignment); 553 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 554 vol->upd_marker = vtbl[i].upd_marker; 555 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 556 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 557 vol->name_len = be16_to_cpu(vtbl[i].name_len); 558 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 559 memcpy(vol->name, vtbl[i].name, vol->name_len); 560 vol->name[vol->name_len] = '\0'; 561 vol->vol_id = i; 562 563 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { 564 /* Auto re-size flag may be set only for one volume */ 565 if (ubi->autoresize_vol_id != -1) { 566 ubi_err(ubi, "more than one auto-resize volume (%d and %d)", 567 ubi->autoresize_vol_id, i); 568 kfree(vol); 569 return -EINVAL; 570 } 571 572 ubi->autoresize_vol_id = i; 573 } 574 575 ubi_assert(!ubi->volumes[i]); 576 ubi->volumes[i] = vol; 577 ubi->vol_count += 1; 578 vol->ubi = ubi; 579 reserved_pebs += vol->reserved_pebs; 580 581 /* 582 * In case of dynamic volume UBI knows nothing about how many 583 * data is stored there. So assume the whole volume is used. 584 */ 585 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 586 vol->used_ebs = vol->reserved_pebs; 587 vol->last_eb_bytes = vol->usable_leb_size; 588 vol->used_bytes = 589 (long long)vol->used_ebs * vol->usable_leb_size; 590 continue; 591 } 592 593 /* Static volumes only */ 594 av = ubi_find_av(ai, i); 595 if (!av || !av->leb_count) { 596 /* 597 * No eraseblocks belonging to this volume found. We 598 * don't actually know whether this static volume is 599 * completely corrupted or just contains no data. And 600 * we cannot know this as long as data size is not 601 * stored on flash. So we just assume the volume is 602 * empty. FIXME: this should be handled. 603 */ 604 continue; 605 } 606 607 if (av->leb_count != av->used_ebs) { 608 /* 609 * We found a static volume which misses several 610 * eraseblocks. Treat it as corrupted. 611 */ 612 ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted", 613 av->vol_id, av->used_ebs - av->leb_count); 614 vol->corrupted = 1; 615 continue; 616 } 617 618 vol->used_ebs = av->used_ebs; 619 vol->used_bytes = 620 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 621 vol->used_bytes += av->last_data_size; 622 vol->last_eb_bytes = av->last_data_size; 623 } 624 625 /* And add the layout volume */ 626 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 627 if (!vol) 628 return -ENOMEM; 629 630 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 631 vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; 632 vol->vol_type = UBI_DYNAMIC_VOLUME; 633 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 634 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 635 vol->usable_leb_size = ubi->leb_size; 636 vol->used_ebs = vol->reserved_pebs; 637 vol->last_eb_bytes = vol->reserved_pebs; 638 vol->used_bytes = 639 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 640 vol->vol_id = UBI_LAYOUT_VOLUME_ID; 641 vol->ref_count = 1; 642 643 ubi_assert(!ubi->volumes[i]); 644 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 645 reserved_pebs += vol->reserved_pebs; 646 ubi->vol_count += 1; 647 vol->ubi = ubi; 648 649 if (reserved_pebs > ubi->avail_pebs) { 650 ubi_err(ubi, "not enough PEBs, required %d, available %d", 651 reserved_pebs, ubi->avail_pebs); 652 if (ubi->corr_peb_count) 653 ubi_err(ubi, "%d PEBs are corrupted and not used", 654 ubi->corr_peb_count); 655 return -ENOSPC; 656 } 657 ubi->rsvd_pebs += reserved_pebs; 658 ubi->avail_pebs -= reserved_pebs; 659 660 return 0; 661 } 662 663 /** 664 * check_av - check volume attaching information. 665 * @vol: UBI volume description object 666 * @av: volume attaching information 667 * 668 * This function returns zero if the volume attaching information is consistent 669 * to the data read from the volume tabla, and %-EINVAL if not. 670 */ 671 static int check_av(const struct ubi_volume *vol, 672 const struct ubi_ainf_volume *av) 673 { 674 int err; 675 676 if (av->highest_lnum >= vol->reserved_pebs) { 677 err = 1; 678 goto bad; 679 } 680 if (av->leb_count > vol->reserved_pebs) { 681 err = 2; 682 goto bad; 683 } 684 if (av->vol_type != vol->vol_type) { 685 err = 3; 686 goto bad; 687 } 688 if (av->used_ebs > vol->reserved_pebs) { 689 err = 4; 690 goto bad; 691 } 692 if (av->data_pad != vol->data_pad) { 693 err = 5; 694 goto bad; 695 } 696 return 0; 697 698 bad: 699 ubi_err(vol->ubi, "bad attaching information, error %d", err); 700 ubi_dump_av(av); 701 ubi_dump_vol_info(vol); 702 return -EINVAL; 703 } 704 705 /** 706 * check_attaching_info - check that attaching information. 707 * @ubi: UBI device description object 708 * @ai: attaching information 709 * 710 * Even though we protect on-flash data by CRC checksums, we still don't trust 711 * the media. This function ensures that attaching information is consistent to 712 * the information read from the volume table. Returns zero if the attaching 713 * information is OK and %-EINVAL if it is not. 714 */ 715 static int check_attaching_info(const struct ubi_device *ubi, 716 struct ubi_attach_info *ai) 717 { 718 int err, i; 719 struct ubi_ainf_volume *av; 720 struct ubi_volume *vol; 721 722 if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 723 ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d", 724 ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 725 return -EINVAL; 726 } 727 728 if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && 729 ai->highest_vol_id < UBI_INTERNAL_VOL_START) { 730 ubi_err(ubi, "too large volume ID %d found", 731 ai->highest_vol_id); 732 return -EINVAL; 733 } 734 735 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 736 cond_resched(); 737 738 av = ubi_find_av(ai, i); 739 vol = ubi->volumes[i]; 740 if (!vol) { 741 if (av) 742 ubi_remove_av(ai, av); 743 continue; 744 } 745 746 if (vol->reserved_pebs == 0) { 747 ubi_assert(i < ubi->vtbl_slots); 748 749 if (!av) 750 continue; 751 752 /* 753 * During attaching we found a volume which does not 754 * exist according to the information in the volume 755 * table. This must have happened due to an unclean 756 * reboot while the volume was being removed. Discard 757 * these eraseblocks. 758 */ 759 ubi_msg(ubi, "finish volume %d removal", av->vol_id); 760 ubi_remove_av(ai, av); 761 } else if (av) { 762 err = check_av(vol, av); 763 if (err) 764 return err; 765 } 766 } 767 768 return 0; 769 } 770 771 /** 772 * ubi_read_volume_table - read the volume table. 773 * @ubi: UBI device description object 774 * @ai: attaching information 775 * 776 * This function reads volume table, checks it, recover from errors if needed, 777 * or creates it if needed. Returns zero in case of success and a negative 778 * error code in case of failure. 779 */ 780 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) 781 { 782 int i, err; 783 struct ubi_ainf_volume *av; 784 785 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 786 787 /* 788 * The number of supported volumes is limited by the eraseblock size 789 * and by the UBI_MAX_VOLUMES constant. 790 */ 791 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 792 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 793 ubi->vtbl_slots = UBI_MAX_VOLUMES; 794 795 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 796 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 797 798 av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); 799 if (!av) { 800 /* 801 * No logical eraseblocks belonging to the layout volume were 802 * found. This could mean that the flash is just empty. In 803 * this case we create empty layout volume. 804 * 805 * But if flash is not empty this must be a corruption or the 806 * MTD device just contains garbage. 807 */ 808 if (ai->is_empty) { 809 ubi->vtbl = create_empty_lvol(ubi, ai); 810 if (IS_ERR(ubi->vtbl)) 811 return PTR_ERR(ubi->vtbl); 812 } else { 813 ubi_err(ubi, "the layout volume was not found"); 814 return -EINVAL; 815 } 816 } else { 817 if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { 818 /* This must not happen with proper UBI images */ 819 ubi_err(ubi, "too many LEBs (%d) in layout volume", 820 av->leb_count); 821 return -EINVAL; 822 } 823 824 ubi->vtbl = process_lvol(ubi, ai, av); 825 if (IS_ERR(ubi->vtbl)) 826 return PTR_ERR(ubi->vtbl); 827 } 828 829 ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; 830 831 /* 832 * The layout volume is OK, initialize the corresponding in-RAM data 833 * structures. 834 */ 835 err = init_volumes(ubi, ai, ubi->vtbl); 836 if (err) 837 goto out_free; 838 839 /* 840 * Make sure that the attaching information is consistent to the 841 * information stored in the volume table. 842 */ 843 err = check_attaching_info(ubi, ai); 844 if (err) 845 goto out_free; 846 847 return 0; 848 849 out_free: 850 vfree(ubi->vtbl); 851 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 852 kfree(ubi->volumes[i]); 853 ubi->volumes[i] = NULL; 854 } 855 return err; 856 } 857 858 /** 859 * self_vtbl_check - check volume table. 860 * @ubi: UBI device description object 861 */ 862 static void self_vtbl_check(const struct ubi_device *ubi) 863 { 864 if (!ubi_dbg_chk_gen(ubi)) 865 return; 866 867 if (vtbl_check(ubi, ubi->vtbl)) { 868 ubi_err(ubi, "self-check failed"); 869 BUG(); 870 } 871 } 872