1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * This file includes volume table manipulation code. The volume table is an 24 * on-flash table containing volume meta-data like name, number of reserved 25 * physical eraseblocks, type, etc. The volume table is stored in the so-called 26 * "layout volume". 27 * 28 * The layout volume is an internal volume which is organized as follows. It 29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical 30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each 31 * other. This redundancy guarantees robustness to unclean reboots. The volume 32 * table is basically an array of volume table records. Each record contains 33 * full information about the volume and protected by a CRC checksum. Note, 34 * nowadays we use the atomic LEB change operation when updating the volume 35 * table, so we do not really need 2 LEBs anymore, but we preserve the older 36 * design for the backward compatibility reasons. 37 * 38 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is 39 * erased, and the updated volume table is written back to LEB 0. Then same for 40 * LEB 1. This scheme guarantees recoverability from unclean reboots. 41 * 42 * In this UBI implementation the on-flash volume table does not contain any 43 * information about how much data static volumes contain. 44 * 45 * But it would still be beneficial to store this information in the volume 46 * table. For example, suppose we have a static volume X, and all its physical 47 * eraseblocks became bad for some reasons. Suppose we are attaching the 48 * corresponding MTD device, for some reason we find no logical eraseblocks 49 * corresponding to the volume X. According to the volume table volume X does 50 * exist. So we don't know whether it is just empty or all its physical 51 * eraseblocks went bad. So we cannot alarm the user properly. 52 * 53 * The volume table also stores so-called "update marker", which is used for 54 * volume updates. Before updating the volume, the update marker is set, and 55 * after the update operation is finished, the update marker is cleared. So if 56 * the update operation was interrupted (e.g. by an unclean reboot) - the 57 * update marker is still there and we know that the volume's contents is 58 * damaged. 59 */ 60 61 #include <linux/crc32.h> 62 #include <linux/err.h> 63 #include <linux/slab.h> 64 #include <asm/div64.h> 65 #include "ubi.h" 66 67 static void self_vtbl_check(const struct ubi_device *ubi); 68 69 /* Empty volume table record */ 70 static struct ubi_vtbl_record empty_vtbl_record; 71 72 /** 73 * ubi_change_vtbl_record - change volume table record. 74 * @ubi: UBI device description object 75 * @idx: table index to change 76 * @vtbl_rec: new volume table record 77 * 78 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty 79 * volume table record is written. The caller does not have to calculate CRC of 80 * the record as it is done by this function. Returns zero in case of success 81 * and a negative error code in case of failure. 82 */ 83 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx, 84 struct ubi_vtbl_record *vtbl_rec) 85 { 86 int i, err; 87 uint32_t crc; 88 struct ubi_volume *layout_vol; 89 90 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots); 91 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 92 93 if (!vtbl_rec) 94 vtbl_rec = &empty_vtbl_record; 95 else { 96 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC); 97 vtbl_rec->crc = cpu_to_be32(crc); 98 } 99 100 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record)); 101 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 102 err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, 103 ubi->vtbl_size); 104 if (err) 105 return err; 106 } 107 108 self_vtbl_check(ubi); 109 return 0; 110 } 111 112 /** 113 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table. 114 * @ubi: UBI device description object 115 * @rename_list: list of &struct ubi_rename_entry objects 116 * 117 * This function re-names multiple volumes specified in @req in the volume 118 * table. Returns zero in case of success and a negative error code in case of 119 * failure. 120 */ 121 int ubi_vtbl_rename_volumes(struct ubi_device *ubi, 122 struct list_head *rename_list) 123 { 124 int i, err; 125 struct ubi_rename_entry *re; 126 struct ubi_volume *layout_vol; 127 128 list_for_each_entry(re, rename_list, list) { 129 uint32_t crc; 130 struct ubi_volume *vol = re->desc->vol; 131 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id]; 132 133 if (re->remove) { 134 memcpy(vtbl_rec, &empty_vtbl_record, 135 sizeof(struct ubi_vtbl_record)); 136 continue; 137 } 138 139 vtbl_rec->name_len = cpu_to_be16(re->new_name_len); 140 memcpy(vtbl_rec->name, re->new_name, re->new_name_len); 141 memset(vtbl_rec->name + re->new_name_len, 0, 142 UBI_VOL_NAME_MAX + 1 - re->new_name_len); 143 crc = crc32(UBI_CRC32_INIT, vtbl_rec, 144 UBI_VTBL_RECORD_SIZE_CRC); 145 vtbl_rec->crc = cpu_to_be32(crc); 146 } 147 148 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)]; 149 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 150 err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl, 151 ubi->vtbl_size); 152 if (err) 153 return err; 154 } 155 156 return 0; 157 } 158 159 /** 160 * vtbl_check - check if volume table is not corrupted and sensible. 161 * @ubi: UBI device description object 162 * @vtbl: volume table 163 * 164 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect, 165 * and %-EINVAL if it contains inconsistent data. 166 */ 167 static int vtbl_check(const struct ubi_device *ubi, 168 const struct ubi_vtbl_record *vtbl) 169 { 170 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len; 171 int upd_marker, err; 172 uint32_t crc; 173 const char *name; 174 175 for (i = 0; i < ubi->vtbl_slots; i++) { 176 cond_resched(); 177 178 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 179 alignment = be32_to_cpu(vtbl[i].alignment); 180 data_pad = be32_to_cpu(vtbl[i].data_pad); 181 upd_marker = vtbl[i].upd_marker; 182 vol_type = vtbl[i].vol_type; 183 name_len = be16_to_cpu(vtbl[i].name_len); 184 name = &vtbl[i].name[0]; 185 186 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC); 187 if (be32_to_cpu(vtbl[i].crc) != crc) { 188 ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x", 189 i, crc, be32_to_cpu(vtbl[i].crc)); 190 ubi_dump_vtbl_record(&vtbl[i], i); 191 return 1; 192 } 193 194 if (reserved_pebs == 0) { 195 if (memcmp(&vtbl[i], &empty_vtbl_record, 196 UBI_VTBL_RECORD_SIZE)) { 197 err = 2; 198 goto bad; 199 } 200 continue; 201 } 202 203 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 || 204 name_len < 0) { 205 err = 3; 206 goto bad; 207 } 208 209 if (alignment > ubi->leb_size || alignment == 0) { 210 err = 4; 211 goto bad; 212 } 213 214 n = alignment & (ubi->min_io_size - 1); 215 if (alignment != 1 && n) { 216 err = 5; 217 goto bad; 218 } 219 220 n = ubi->leb_size % alignment; 221 if (data_pad != n) { 222 ubi_err(ubi, "bad data_pad, has to be %d", n); 223 err = 6; 224 goto bad; 225 } 226 227 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 228 err = 7; 229 goto bad; 230 } 231 232 if (upd_marker != 0 && upd_marker != 1) { 233 err = 8; 234 goto bad; 235 } 236 237 if (reserved_pebs > ubi->good_peb_count) { 238 ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d", 239 reserved_pebs, ubi->good_peb_count); 240 err = 9; 241 goto bad; 242 } 243 244 if (name_len > UBI_VOL_NAME_MAX) { 245 err = 10; 246 goto bad; 247 } 248 249 if (name[0] == '\0') { 250 err = 11; 251 goto bad; 252 } 253 254 if (name_len != strnlen(name, name_len + 1)) { 255 err = 12; 256 goto bad; 257 } 258 } 259 260 /* Checks that all names are unique */ 261 for (i = 0; i < ubi->vtbl_slots - 1; i++) { 262 for (n = i + 1; n < ubi->vtbl_slots; n++) { 263 int len1 = be16_to_cpu(vtbl[i].name_len); 264 int len2 = be16_to_cpu(vtbl[n].name_len); 265 266 if (len1 > 0 && len1 == len2 && 267 !strncmp(vtbl[i].name, vtbl[n].name, len1)) { 268 ubi_err(ubi, "volumes %d and %d have the same name \"%s\"", 269 i, n, vtbl[i].name); 270 ubi_dump_vtbl_record(&vtbl[i], i); 271 ubi_dump_vtbl_record(&vtbl[n], n); 272 return -EINVAL; 273 } 274 } 275 } 276 277 return 0; 278 279 bad: 280 ubi_err(ubi, "volume table check failed: record %d, error %d", i, err); 281 ubi_dump_vtbl_record(&vtbl[i], i); 282 return -EINVAL; 283 } 284 285 /** 286 * create_vtbl - create a copy of volume table. 287 * @ubi: UBI device description object 288 * @ai: attaching information 289 * @copy: number of the volume table copy 290 * @vtbl: contents of the volume table 291 * 292 * This function returns zero in case of success and a negative error code in 293 * case of failure. 294 */ 295 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai, 296 int copy, void *vtbl) 297 { 298 int err, tries = 0; 299 struct ubi_vid_hdr *vid_hdr; 300 struct ubi_ainf_peb *new_aeb; 301 302 dbg_gen("create volume table (copy #%d)", copy + 1); 303 304 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 305 if (!vid_hdr) 306 return -ENOMEM; 307 308 retry: 309 new_aeb = ubi_early_get_peb(ubi, ai); 310 if (IS_ERR(new_aeb)) { 311 err = PTR_ERR(new_aeb); 312 goto out_free; 313 } 314 315 vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE; 316 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID); 317 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT; 318 vid_hdr->data_size = vid_hdr->used_ebs = 319 vid_hdr->data_pad = cpu_to_be32(0); 320 vid_hdr->lnum = cpu_to_be32(copy); 321 vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum); 322 323 /* The EC header is already there, write the VID header */ 324 err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr); 325 if (err) 326 goto write_error; 327 328 /* Write the layout volume contents */ 329 err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size); 330 if (err) 331 goto write_error; 332 333 /* 334 * And add it to the attaching information. Don't delete the old version 335 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'. 336 */ 337 err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0); 338 kmem_cache_free(ai->aeb_slab_cache, new_aeb); 339 ubi_free_vid_hdr(ubi, vid_hdr); 340 return err; 341 342 write_error: 343 if (err == -EIO && ++tries <= 5) { 344 /* 345 * Probably this physical eraseblock went bad, try to pick 346 * another one. 347 */ 348 list_add(&new_aeb->u.list, &ai->erase); 349 goto retry; 350 } 351 kmem_cache_free(ai->aeb_slab_cache, new_aeb); 352 out_free: 353 ubi_free_vid_hdr(ubi, vid_hdr); 354 return err; 355 356 } 357 358 /** 359 * process_lvol - process the layout volume. 360 * @ubi: UBI device description object 361 * @ai: attaching information 362 * @av: layout volume attaching information 363 * 364 * This function is responsible for reading the layout volume, ensuring it is 365 * not corrupted, and recovering from corruptions if needed. Returns volume 366 * table in case of success and a negative error code in case of failure. 367 */ 368 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi, 369 struct ubi_attach_info *ai, 370 struct ubi_ainf_volume *av) 371 { 372 int err; 373 struct rb_node *rb; 374 struct ubi_ainf_peb *aeb; 375 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL }; 376 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1}; 377 378 /* 379 * UBI goes through the following steps when it changes the layout 380 * volume: 381 * a. erase LEB 0; 382 * b. write new data to LEB 0; 383 * c. erase LEB 1; 384 * d. write new data to LEB 1. 385 * 386 * Before the change, both LEBs contain the same data. 387 * 388 * Due to unclean reboots, the contents of LEB 0 may be lost, but there 389 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not. 390 * Similarly, LEB 1 may be lost, but there should be LEB 0. And 391 * finally, unclean reboots may result in a situation when neither LEB 392 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB 393 * 0 contains more recent information. 394 * 395 * So the plan is to first check LEB 0. Then 396 * a. if LEB 0 is OK, it must be containing the most recent data; then 397 * we compare it with LEB 1, and if they are different, we copy LEB 398 * 0 to LEB 1; 399 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1 400 * to LEB 0. 401 */ 402 403 dbg_gen("check layout volume"); 404 405 /* Read both LEB 0 and LEB 1 into memory */ 406 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 407 leb[aeb->lnum] = vzalloc(ubi->vtbl_size); 408 if (!leb[aeb->lnum]) { 409 err = -ENOMEM; 410 goto out_free; 411 } 412 413 err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0, 414 ubi->vtbl_size); 415 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) 416 /* 417 * Scrub the PEB later. Note, -EBADMSG indicates an 418 * uncorrectable ECC error, but we have our own CRC and 419 * the data will be checked later. If the data is OK, 420 * the PEB will be scrubbed (because we set 421 * aeb->scrub). If the data is not OK, the contents of 422 * the PEB will be recovered from the second copy, and 423 * aeb->scrub will be cleared in 424 * 'ubi_add_to_av()'. 425 */ 426 aeb->scrub = 1; 427 else if (err) 428 goto out_free; 429 } 430 431 err = -EINVAL; 432 if (leb[0]) { 433 leb_corrupted[0] = vtbl_check(ubi, leb[0]); 434 if (leb_corrupted[0] < 0) 435 goto out_free; 436 } 437 438 if (!leb_corrupted[0]) { 439 /* LEB 0 is OK */ 440 if (leb[1]) 441 leb_corrupted[1] = memcmp(leb[0], leb[1], 442 ubi->vtbl_size); 443 if (leb_corrupted[1]) { 444 ubi_warn(ubi, "volume table copy #2 is corrupted"); 445 err = create_vtbl(ubi, ai, 1, leb[0]); 446 if (err) 447 goto out_free; 448 ubi_msg(ubi, "volume table was restored"); 449 } 450 451 /* Both LEB 1 and LEB 2 are OK and consistent */ 452 vfree(leb[1]); 453 return leb[0]; 454 } else { 455 /* LEB 0 is corrupted or does not exist */ 456 if (leb[1]) { 457 leb_corrupted[1] = vtbl_check(ubi, leb[1]); 458 if (leb_corrupted[1] < 0) 459 goto out_free; 460 } 461 if (leb_corrupted[1]) { 462 /* Both LEB 0 and LEB 1 are corrupted */ 463 ubi_err(ubi, "both volume tables are corrupted"); 464 goto out_free; 465 } 466 467 ubi_warn(ubi, "volume table copy #1 is corrupted"); 468 err = create_vtbl(ubi, ai, 0, leb[1]); 469 if (err) 470 goto out_free; 471 ubi_msg(ubi, "volume table was restored"); 472 473 vfree(leb[0]); 474 return leb[1]; 475 } 476 477 out_free: 478 vfree(leb[0]); 479 vfree(leb[1]); 480 return ERR_PTR(err); 481 } 482 483 /** 484 * create_empty_lvol - create empty layout volume. 485 * @ubi: UBI device description object 486 * @ai: attaching information 487 * 488 * This function returns volume table contents in case of success and a 489 * negative error code in case of failure. 490 */ 491 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi, 492 struct ubi_attach_info *ai) 493 { 494 int i; 495 struct ubi_vtbl_record *vtbl; 496 497 vtbl = vzalloc(ubi->vtbl_size); 498 if (!vtbl) 499 return ERR_PTR(-ENOMEM); 500 501 for (i = 0; i < ubi->vtbl_slots; i++) 502 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE); 503 504 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) { 505 int err; 506 507 err = create_vtbl(ubi, ai, i, vtbl); 508 if (err) { 509 vfree(vtbl); 510 return ERR_PTR(err); 511 } 512 } 513 514 return vtbl; 515 } 516 517 /** 518 * init_volumes - initialize volume information for existing volumes. 519 * @ubi: UBI device description object 520 * @ai: scanning information 521 * @vtbl: volume table 522 * 523 * This function allocates volume description objects for existing volumes. 524 * Returns zero in case of success and a negative error code in case of 525 * failure. 526 */ 527 static int init_volumes(struct ubi_device *ubi, 528 const struct ubi_attach_info *ai, 529 const struct ubi_vtbl_record *vtbl) 530 { 531 int i, reserved_pebs = 0; 532 struct ubi_ainf_volume *av; 533 struct ubi_volume *vol; 534 535 for (i = 0; i < ubi->vtbl_slots; i++) { 536 cond_resched(); 537 538 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0) 539 continue; /* Empty record */ 540 541 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 542 if (!vol) 543 return -ENOMEM; 544 545 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs); 546 vol->alignment = be32_to_cpu(vtbl[i].alignment); 547 vol->data_pad = be32_to_cpu(vtbl[i].data_pad); 548 vol->upd_marker = vtbl[i].upd_marker; 549 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ? 550 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 551 vol->name_len = be16_to_cpu(vtbl[i].name_len); 552 vol->usable_leb_size = ubi->leb_size - vol->data_pad; 553 memcpy(vol->name, vtbl[i].name, vol->name_len); 554 vol->name[vol->name_len] = '\0'; 555 vol->vol_id = i; 556 557 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) { 558 /* Auto re-size flag may be set only for one volume */ 559 if (ubi->autoresize_vol_id != -1) { 560 ubi_err(ubi, "more than one auto-resize volume (%d and %d)", 561 ubi->autoresize_vol_id, i); 562 kfree(vol); 563 return -EINVAL; 564 } 565 566 ubi->autoresize_vol_id = i; 567 } 568 569 ubi_assert(!ubi->volumes[i]); 570 ubi->volumes[i] = vol; 571 ubi->vol_count += 1; 572 vol->ubi = ubi; 573 reserved_pebs += vol->reserved_pebs; 574 575 /* 576 * In case of dynamic volume UBI knows nothing about how many 577 * data is stored there. So assume the whole volume is used. 578 */ 579 if (vol->vol_type == UBI_DYNAMIC_VOLUME) { 580 vol->used_ebs = vol->reserved_pebs; 581 vol->last_eb_bytes = vol->usable_leb_size; 582 vol->used_bytes = 583 (long long)vol->used_ebs * vol->usable_leb_size; 584 continue; 585 } 586 587 /* Static volumes only */ 588 av = ubi_find_av(ai, i); 589 if (!av || !av->leb_count) { 590 /* 591 * No eraseblocks belonging to this volume found. We 592 * don't actually know whether this static volume is 593 * completely corrupted or just contains no data. And 594 * we cannot know this as long as data size is not 595 * stored on flash. So we just assume the volume is 596 * empty. FIXME: this should be handled. 597 */ 598 continue; 599 } 600 601 if (av->leb_count != av->used_ebs) { 602 /* 603 * We found a static volume which misses several 604 * eraseblocks. Treat it as corrupted. 605 */ 606 ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted", 607 av->vol_id, av->used_ebs - av->leb_count); 608 vol->corrupted = 1; 609 continue; 610 } 611 612 vol->used_ebs = av->used_ebs; 613 vol->used_bytes = 614 (long long)(vol->used_ebs - 1) * vol->usable_leb_size; 615 vol->used_bytes += av->last_data_size; 616 vol->last_eb_bytes = av->last_data_size; 617 } 618 619 /* And add the layout volume */ 620 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL); 621 if (!vol) 622 return -ENOMEM; 623 624 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS; 625 vol->alignment = UBI_LAYOUT_VOLUME_ALIGN; 626 vol->vol_type = UBI_DYNAMIC_VOLUME; 627 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1; 628 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1); 629 vol->usable_leb_size = ubi->leb_size; 630 vol->used_ebs = vol->reserved_pebs; 631 vol->last_eb_bytes = vol->reserved_pebs; 632 vol->used_bytes = 633 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad); 634 vol->vol_id = UBI_LAYOUT_VOLUME_ID; 635 vol->ref_count = 1; 636 637 ubi_assert(!ubi->volumes[i]); 638 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol; 639 reserved_pebs += vol->reserved_pebs; 640 ubi->vol_count += 1; 641 vol->ubi = ubi; 642 643 if (reserved_pebs > ubi->avail_pebs) { 644 ubi_err(ubi, "not enough PEBs, required %d, available %d", 645 reserved_pebs, ubi->avail_pebs); 646 if (ubi->corr_peb_count) 647 ubi_err(ubi, "%d PEBs are corrupted and not used", 648 ubi->corr_peb_count); 649 } 650 ubi->rsvd_pebs += reserved_pebs; 651 ubi->avail_pebs -= reserved_pebs; 652 653 return 0; 654 } 655 656 /** 657 * check_av - check volume attaching information. 658 * @ubi: UBI device description object 659 * @vol: UBI volume description object 660 * @av: volume attaching information 661 * 662 * This function returns zero if the volume attaching information is consistent 663 * to the data read from the volume tabla, and %-EINVAL if not. 664 */ 665 static int check_av(const struct ubi_device *ubi, const struct ubi_volume *vol, 666 const struct ubi_ainf_volume *av) 667 { 668 int err; 669 670 if (av->highest_lnum >= vol->reserved_pebs) { 671 err = 1; 672 goto bad; 673 } 674 if (av->leb_count > vol->reserved_pebs) { 675 err = 2; 676 goto bad; 677 } 678 if (av->vol_type != vol->vol_type) { 679 err = 3; 680 goto bad; 681 } 682 if (av->used_ebs > vol->reserved_pebs) { 683 err = 4; 684 goto bad; 685 } 686 if (av->data_pad != vol->data_pad) { 687 err = 5; 688 goto bad; 689 } 690 return 0; 691 692 bad: 693 ubi_err(ubi, "bad attaching information, error %d", err); 694 ubi_dump_av(av); 695 ubi_dump_vol_info(vol); 696 return -EINVAL; 697 } 698 699 /** 700 * check_attaching_info - check that attaching information. 701 * @ubi: UBI device description object 702 * @ai: attaching information 703 * 704 * Even though we protect on-flash data by CRC checksums, we still don't trust 705 * the media. This function ensures that attaching information is consistent to 706 * the information read from the volume table. Returns zero if the attaching 707 * information is OK and %-EINVAL if it is not. 708 */ 709 static int check_attaching_info(const struct ubi_device *ubi, 710 struct ubi_attach_info *ai) 711 { 712 int err, i; 713 struct ubi_ainf_volume *av; 714 struct ubi_volume *vol; 715 716 if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) { 717 ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d", 718 ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots); 719 return -EINVAL; 720 } 721 722 if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT && 723 ai->highest_vol_id < UBI_INTERNAL_VOL_START) { 724 ubi_err(ubi, "too large volume ID %d found", 725 ai->highest_vol_id); 726 return -EINVAL; 727 } 728 729 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 730 cond_resched(); 731 732 av = ubi_find_av(ai, i); 733 vol = ubi->volumes[i]; 734 if (!vol) { 735 if (av) 736 ubi_remove_av(ai, av); 737 continue; 738 } 739 740 if (vol->reserved_pebs == 0) { 741 ubi_assert(i < ubi->vtbl_slots); 742 743 if (!av) 744 continue; 745 746 /* 747 * During attaching we found a volume which does not 748 * exist according to the information in the volume 749 * table. This must have happened due to an unclean 750 * reboot while the volume was being removed. Discard 751 * these eraseblocks. 752 */ 753 ubi_msg(ubi, "finish volume %d removal", av->vol_id); 754 ubi_remove_av(ai, av); 755 } else if (av) { 756 err = check_av(ubi, vol, av); 757 if (err) 758 return err; 759 } 760 } 761 762 return 0; 763 } 764 765 /** 766 * ubi_read_volume_table - read the volume table. 767 * @ubi: UBI device description object 768 * @ai: attaching information 769 * 770 * This function reads volume table, checks it, recover from errors if needed, 771 * or creates it if needed. Returns zero in case of success and a negative 772 * error code in case of failure. 773 */ 774 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai) 775 { 776 int i, err; 777 struct ubi_ainf_volume *av; 778 779 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b); 780 781 /* 782 * The number of supported volumes is limited by the eraseblock size 783 * and by the UBI_MAX_VOLUMES constant. 784 */ 785 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE; 786 if (ubi->vtbl_slots > UBI_MAX_VOLUMES) 787 ubi->vtbl_slots = UBI_MAX_VOLUMES; 788 789 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE; 790 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size); 791 792 av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID); 793 if (!av) { 794 /* 795 * No logical eraseblocks belonging to the layout volume were 796 * found. This could mean that the flash is just empty. In 797 * this case we create empty layout volume. 798 * 799 * But if flash is not empty this must be a corruption or the 800 * MTD device just contains garbage. 801 */ 802 if (ai->is_empty) { 803 ubi->vtbl = create_empty_lvol(ubi, ai); 804 if (IS_ERR(ubi->vtbl)) 805 return PTR_ERR(ubi->vtbl); 806 } else { 807 ubi_err(ubi, "the layout volume was not found"); 808 return -EINVAL; 809 } 810 } else { 811 if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) { 812 /* This must not happen with proper UBI images */ 813 ubi_err(ubi, "too many LEBs (%d) in layout volume", 814 av->leb_count); 815 return -EINVAL; 816 } 817 818 ubi->vtbl = process_lvol(ubi, ai, av); 819 if (IS_ERR(ubi->vtbl)) 820 return PTR_ERR(ubi->vtbl); 821 } 822 823 ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count; 824 825 /* 826 * The layout volume is OK, initialize the corresponding in-RAM data 827 * structures. 828 */ 829 err = init_volumes(ubi, ai, ubi->vtbl); 830 if (err) 831 goto out_free; 832 833 /* 834 * Make sure that the attaching information is consistent to the 835 * information stored in the volume table. 836 */ 837 err = check_attaching_info(ubi, ai); 838 if (err) 839 goto out_free; 840 841 return 0; 842 843 out_free: 844 vfree(ubi->vtbl); 845 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 846 kfree(ubi->volumes[i]); 847 ubi->volumes[i] = NULL; 848 } 849 return err; 850 } 851 852 /** 853 * self_vtbl_check - check volume table. 854 * @ubi: UBI device description object 855 */ 856 static void self_vtbl_check(const struct ubi_device *ubi) 857 { 858 if (!ubi_dbg_chk_gen(ubi)) 859 return; 860 861 if (vtbl_check(ubi, ubi->vtbl)) { 862 ubi_err(ubi, "self-check failed"); 863 BUG(); 864 } 865 } 866