xref: /openbmc/linux/drivers/mtd/ubi/vtbl.c (revision 9ac8d3fb)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * This file includes volume table manipulation code. The volume table is an
24  * on-flash table containing volume meta-data like name, number of reserved
25  * physical eraseblocks, type, etc. The volume table is stored in the so-called
26  * "layout volume".
27  *
28  * The layout volume is an internal volume which is organized as follows. It
29  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31  * other. This redundancy guarantees robustness to unclean reboots. The volume
32  * table is basically an array of volume table records. Each record contains
33  * full information about the volume and protected by a CRC checksum.
34  *
35  * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36  * erased, and the updated volume table is written back to LEB 0. Then same for
37  * LEB 1. This scheme guarantees recoverability from unclean reboots.
38  *
39  * In this UBI implementation the on-flash volume table does not contain any
40  * information about how many data static volumes contain. This information may
41  * be found from the scanning data.
42  *
43  * But it would still be beneficial to store this information in the volume
44  * table. For example, suppose we have a static volume X, and all its physical
45  * eraseblocks became bad for some reasons. Suppose we are attaching the
46  * corresponding MTD device, the scanning has found no logical eraseblocks
47  * corresponding to the volume X. According to the volume table volume X does
48  * exist. So we don't know whether it is just empty or all its physical
49  * eraseblocks went bad. So we cannot alarm the user about this corruption.
50  *
51  * The volume table also stores so-called "update marker", which is used for
52  * volume updates. Before updating the volume, the update marker is set, and
53  * after the update operation is finished, the update marker is cleared. So if
54  * the update operation was interrupted (e.g. by an unclean reboot) - the
55  * update marker is still there and we know that the volume's contents is
56  * damaged.
57  */
58 
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <asm/div64.h>
62 #include "ubi.h"
63 
64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65 static void paranoid_vtbl_check(const struct ubi_device *ubi);
66 #else
67 #define paranoid_vtbl_check(ubi)
68 #endif
69 
70 /* Empty volume table record */
71 static struct ubi_vtbl_record empty_vtbl_record;
72 
73 /**
74  * ubi_change_vtbl_record - change volume table record.
75  * @ubi: UBI device description object
76  * @idx: table index to change
77  * @vtbl_rec: new volume table record
78  *
79  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80  * volume table record is written. The caller does not have to calculate CRC of
81  * the record as it is done by this function. Returns zero in case of success
82  * and a negative error code in case of failure.
83  */
84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
85 			   struct ubi_vtbl_record *vtbl_rec)
86 {
87 	int i, err;
88 	uint32_t crc;
89 	struct ubi_volume *layout_vol;
90 
91 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
92 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
93 
94 	if (!vtbl_rec)
95 		vtbl_rec = &empty_vtbl_record;
96 	else {
97 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
98 		vtbl_rec->crc = cpu_to_be32(crc);
99 	}
100 
101 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
102 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
103 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
104 		if (err)
105 			return err;
106 
107 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
108 					ubi->vtbl_size, UBI_LONGTERM);
109 		if (err)
110 			return err;
111 	}
112 
113 	paranoid_vtbl_check(ubi);
114 	return 0;
115 }
116 
117 /**
118  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
119  * @ubi: UBI device description object
120  * @rename_list: list of &struct ubi_rename_entry objects
121  *
122  * This function re-names multiple volumes specified in @req in the volume
123  * table. Returns zero in case of success and a negative error code in case of
124  * failure.
125  */
126 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
127 			    struct list_head *rename_list)
128 {
129 	int i, err;
130 	struct ubi_rename_entry *re;
131 	struct ubi_volume *layout_vol;
132 
133 	list_for_each_entry(re, rename_list, list) {
134 		uint32_t crc;
135 		struct ubi_volume *vol = re->desc->vol;
136 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
137 
138 		if (re->remove) {
139 			memcpy(vtbl_rec, &empty_vtbl_record,
140 			       sizeof(struct ubi_vtbl_record));
141 			continue;
142 		}
143 
144 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
145 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
146 		memset(vtbl_rec->name + re->new_name_len, 0,
147 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
148 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
149 			    UBI_VTBL_RECORD_SIZE_CRC);
150 		vtbl_rec->crc = cpu_to_be32(crc);
151 	}
152 
153 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
154 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
155 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
156 		if (err)
157 			return err;
158 
159 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
160 					ubi->vtbl_size, UBI_LONGTERM);
161 		if (err)
162 			return err;
163 	}
164 
165 	return 0;
166 }
167 
168 /**
169  * vtbl_check - check if volume table is not corrupted and sensible.
170  * @ubi: UBI device description object
171  * @vtbl: volume table
172  *
173  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
174  * and %-EINVAL if it contains inconsistent data.
175  */
176 static int vtbl_check(const struct ubi_device *ubi,
177 		      const struct ubi_vtbl_record *vtbl)
178 {
179 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
180 	int upd_marker, err;
181 	uint32_t crc;
182 	const char *name;
183 
184 	for (i = 0; i < ubi->vtbl_slots; i++) {
185 		cond_resched();
186 
187 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
188 		alignment = be32_to_cpu(vtbl[i].alignment);
189 		data_pad = be32_to_cpu(vtbl[i].data_pad);
190 		upd_marker = vtbl[i].upd_marker;
191 		vol_type = vtbl[i].vol_type;
192 		name_len = be16_to_cpu(vtbl[i].name_len);
193 		name = &vtbl[i].name[0];
194 
195 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
196 		if (be32_to_cpu(vtbl[i].crc) != crc) {
197 			ubi_err("bad CRC at record %u: %#08x, not %#08x",
198 				 i, crc, be32_to_cpu(vtbl[i].crc));
199 			ubi_dbg_dump_vtbl_record(&vtbl[i], i);
200 			return 1;
201 		}
202 
203 		if (reserved_pebs == 0) {
204 			if (memcmp(&vtbl[i], &empty_vtbl_record,
205 						UBI_VTBL_RECORD_SIZE)) {
206 				err = 2;
207 				goto bad;
208 			}
209 			continue;
210 		}
211 
212 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
213 		    name_len < 0) {
214 			err = 3;
215 			goto bad;
216 		}
217 
218 		if (alignment > ubi->leb_size || alignment == 0) {
219 			err = 4;
220 			goto bad;
221 		}
222 
223 		n = alignment & (ubi->min_io_size - 1);
224 		if (alignment != 1 && n) {
225 			err = 5;
226 			goto bad;
227 		}
228 
229 		n = ubi->leb_size % alignment;
230 		if (data_pad != n) {
231 			dbg_err("bad data_pad, has to be %d", n);
232 			err = 6;
233 			goto bad;
234 		}
235 
236 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
237 			err = 7;
238 			goto bad;
239 		}
240 
241 		if (upd_marker != 0 && upd_marker != 1) {
242 			err = 8;
243 			goto bad;
244 		}
245 
246 		if (reserved_pebs > ubi->good_peb_count) {
247 			dbg_err("too large reserved_pebs %d, good PEBs %d",
248 				reserved_pebs, ubi->good_peb_count);
249 			err = 9;
250 			goto bad;
251 		}
252 
253 		if (name_len > UBI_VOL_NAME_MAX) {
254 			err = 10;
255 			goto bad;
256 		}
257 
258 		if (name[0] == '\0') {
259 			err = 11;
260 			goto bad;
261 		}
262 
263 		if (name_len != strnlen(name, name_len + 1)) {
264 			err = 12;
265 			goto bad;
266 		}
267 	}
268 
269 	/* Checks that all names are unique */
270 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
271 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
272 			int len1 = be16_to_cpu(vtbl[i].name_len);
273 			int len2 = be16_to_cpu(vtbl[n].name_len);
274 
275 			if (len1 > 0 && len1 == len2 &&
276 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
277 				ubi_err("volumes %d and %d have the same name"
278 					" \"%s\"", i, n, vtbl[i].name);
279 				ubi_dbg_dump_vtbl_record(&vtbl[i], i);
280 				ubi_dbg_dump_vtbl_record(&vtbl[n], n);
281 				return -EINVAL;
282 			}
283 		}
284 	}
285 
286 	return 0;
287 
288 bad:
289 	ubi_err("volume table check failed: record %d, error %d", i, err);
290 	ubi_dbg_dump_vtbl_record(&vtbl[i], i);
291 	return -EINVAL;
292 }
293 
294 /**
295  * create_vtbl - create a copy of volume table.
296  * @ubi: UBI device description object
297  * @si: scanning information
298  * @copy: number of the volume table copy
299  * @vtbl: contents of the volume table
300  *
301  * This function returns zero in case of success and a negative error code in
302  * case of failure.
303  */
304 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
305 		       int copy, void *vtbl)
306 {
307 	int err, tries = 0;
308 	static struct ubi_vid_hdr *vid_hdr;
309 	struct ubi_scan_volume *sv;
310 	struct ubi_scan_leb *new_seb, *old_seb = NULL;
311 
312 	ubi_msg("create volume table (copy #%d)", copy + 1);
313 
314 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
315 	if (!vid_hdr)
316 		return -ENOMEM;
317 
318 	/*
319 	 * Check if there is a logical eraseblock which would have to contain
320 	 * this volume table copy was found during scanning. It has to be wiped
321 	 * out.
322 	 */
323 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
324 	if (sv)
325 		old_seb = ubi_scan_find_seb(sv, copy);
326 
327 retry:
328 	new_seb = ubi_scan_get_free_peb(ubi, si);
329 	if (IS_ERR(new_seb)) {
330 		err = PTR_ERR(new_seb);
331 		goto out_free;
332 	}
333 
334 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
335 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
336 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
337 	vid_hdr->data_size = vid_hdr->used_ebs =
338 			     vid_hdr->data_pad = cpu_to_be32(0);
339 	vid_hdr->lnum = cpu_to_be32(copy);
340 	vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
341 
342 	/* The EC header is already there, write the VID header */
343 	err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
344 	if (err)
345 		goto write_error;
346 
347 	/* Write the layout volume contents */
348 	err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
349 	if (err)
350 		goto write_error;
351 
352 	/*
353 	 * And add it to the scanning information. Don't delete the old
354 	 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
355 	 */
356 	err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
357 				vid_hdr, 0);
358 	kfree(new_seb);
359 	ubi_free_vid_hdr(ubi, vid_hdr);
360 	return err;
361 
362 write_error:
363 	if (err == -EIO && ++tries <= 5) {
364 		/*
365 		 * Probably this physical eraseblock went bad, try to pick
366 		 * another one.
367 		 */
368 		list_add_tail(&new_seb->u.list, &si->corr);
369 		goto retry;
370 	}
371 	kfree(new_seb);
372 out_free:
373 	ubi_free_vid_hdr(ubi, vid_hdr);
374 	return err;
375 
376 }
377 
378 /**
379  * process_lvol - process the layout volume.
380  * @ubi: UBI device description object
381  * @si: scanning information
382  * @sv: layout volume scanning information
383  *
384  * This function is responsible for reading the layout volume, ensuring it is
385  * not corrupted, and recovering from corruptions if needed. Returns volume
386  * table in case of success and a negative error code in case of failure.
387  */
388 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
389 					    struct ubi_scan_info *si,
390 					    struct ubi_scan_volume *sv)
391 {
392 	int err;
393 	struct rb_node *rb;
394 	struct ubi_scan_leb *seb;
395 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
396 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
397 
398 	/*
399 	 * UBI goes through the following steps when it changes the layout
400 	 * volume:
401 	 * a. erase LEB 0;
402 	 * b. write new data to LEB 0;
403 	 * c. erase LEB 1;
404 	 * d. write new data to LEB 1.
405 	 *
406 	 * Before the change, both LEBs contain the same data.
407 	 *
408 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
409 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
410 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
411 	 * finally, unclean reboots may result in a situation when neither LEB
412 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
413 	 * 0 contains more recent information.
414 	 *
415 	 * So the plan is to first check LEB 0. Then
416 	 * a. if LEB 0 is OK, it must be containing the most resent data; then
417 	 *    we compare it with LEB 1, and if they are different, we copy LEB
418 	 *    0 to LEB 1;
419 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
420 	 *    to LEB 0.
421 	 */
422 
423 	dbg_gen("check layout volume");
424 
425 	/* Read both LEB 0 and LEB 1 into memory */
426 	ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
427 		leb[seb->lnum] = vmalloc(ubi->vtbl_size);
428 		if (!leb[seb->lnum]) {
429 			err = -ENOMEM;
430 			goto out_free;
431 		}
432 		memset(leb[seb->lnum], 0, ubi->vtbl_size);
433 
434 		err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
435 				       ubi->vtbl_size);
436 		if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
437 			/*
438 			 * Scrub the PEB later. Note, -EBADMSG indicates an
439 			 * uncorrectable ECC error, but we have our own CRC and
440 			 * the data will be checked later. If the data is OK,
441 			 * the PEB will be scrubbed (because we set
442 			 * seb->scrub). If the data is not OK, the contents of
443 			 * the PEB will be recovered from the second copy, and
444 			 * seb->scrub will be cleared in
445 			 * 'ubi_scan_add_used()'.
446 			 */
447 			seb->scrub = 1;
448 		else if (err)
449 			goto out_free;
450 	}
451 
452 	err = -EINVAL;
453 	if (leb[0]) {
454 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
455 		if (leb_corrupted[0] < 0)
456 			goto out_free;
457 	}
458 
459 	if (!leb_corrupted[0]) {
460 		/* LEB 0 is OK */
461 		if (leb[1])
462 			leb_corrupted[1] = memcmp(leb[0], leb[1],
463 						  ubi->vtbl_size);
464 		if (leb_corrupted[1]) {
465 			ubi_warn("volume table copy #2 is corrupted");
466 			err = create_vtbl(ubi, si, 1, leb[0]);
467 			if (err)
468 				goto out_free;
469 			ubi_msg("volume table was restored");
470 		}
471 
472 		/* Both LEB 1 and LEB 2 are OK and consistent */
473 		vfree(leb[1]);
474 		return leb[0];
475 	} else {
476 		/* LEB 0 is corrupted or does not exist */
477 		if (leb[1]) {
478 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
479 			if (leb_corrupted[1] < 0)
480 				goto out_free;
481 		}
482 		if (leb_corrupted[1]) {
483 			/* Both LEB 0 and LEB 1 are corrupted */
484 			ubi_err("both volume tables are corrupted");
485 			goto out_free;
486 		}
487 
488 		ubi_warn("volume table copy #1 is corrupted");
489 		err = create_vtbl(ubi, si, 0, leb[1]);
490 		if (err)
491 			goto out_free;
492 		ubi_msg("volume table was restored");
493 
494 		vfree(leb[0]);
495 		return leb[1];
496 	}
497 
498 out_free:
499 	vfree(leb[0]);
500 	vfree(leb[1]);
501 	return ERR_PTR(err);
502 }
503 
504 /**
505  * create_empty_lvol - create empty layout volume.
506  * @ubi: UBI device description object
507  * @si: scanning information
508  *
509  * This function returns volume table contents in case of success and a
510  * negative error code in case of failure.
511  */
512 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
513 						 struct ubi_scan_info *si)
514 {
515 	int i;
516 	struct ubi_vtbl_record *vtbl;
517 
518 	vtbl = vmalloc(ubi->vtbl_size);
519 	if (!vtbl)
520 		return ERR_PTR(-ENOMEM);
521 	memset(vtbl, 0, ubi->vtbl_size);
522 
523 	for (i = 0; i < ubi->vtbl_slots; i++)
524 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
525 
526 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
527 		int err;
528 
529 		err = create_vtbl(ubi, si, i, vtbl);
530 		if (err) {
531 			vfree(vtbl);
532 			return ERR_PTR(err);
533 		}
534 	}
535 
536 	return vtbl;
537 }
538 
539 /**
540  * init_volumes - initialize volume information for existing volumes.
541  * @ubi: UBI device description object
542  * @si: scanning information
543  * @vtbl: volume table
544  *
545  * This function allocates volume description objects for existing volumes.
546  * Returns zero in case of success and a negative error code in case of
547  * failure.
548  */
549 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
550 			const struct ubi_vtbl_record *vtbl)
551 {
552 	int i, reserved_pebs = 0;
553 	struct ubi_scan_volume *sv;
554 	struct ubi_volume *vol;
555 
556 	for (i = 0; i < ubi->vtbl_slots; i++) {
557 		cond_resched();
558 
559 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
560 			continue; /* Empty record */
561 
562 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
563 		if (!vol)
564 			return -ENOMEM;
565 
566 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
567 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
568 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
569 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
570 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
571 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
572 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
573 		memcpy(vol->name, vtbl[i].name, vol->name_len);
574 		vol->name[vol->name_len] = '\0';
575 		vol->vol_id = i;
576 
577 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
578 			/* Auto re-size flag may be set only for one volume */
579 			if (ubi->autoresize_vol_id != -1) {
580 				ubi_err("more then one auto-resize volume (%d "
581 					"and %d)", ubi->autoresize_vol_id, i);
582 				kfree(vol);
583 				return -EINVAL;
584 			}
585 
586 			ubi->autoresize_vol_id = i;
587 		}
588 
589 		ubi_assert(!ubi->volumes[i]);
590 		ubi->volumes[i] = vol;
591 		ubi->vol_count += 1;
592 		vol->ubi = ubi;
593 		reserved_pebs += vol->reserved_pebs;
594 
595 		/*
596 		 * In case of dynamic volume UBI knows nothing about how many
597 		 * data is stored there. So assume the whole volume is used.
598 		 */
599 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
600 			vol->used_ebs = vol->reserved_pebs;
601 			vol->last_eb_bytes = vol->usable_leb_size;
602 			vol->used_bytes =
603 				(long long)vol->used_ebs * vol->usable_leb_size;
604 			continue;
605 		}
606 
607 		/* Static volumes only */
608 		sv = ubi_scan_find_sv(si, i);
609 		if (!sv) {
610 			/*
611 			 * No eraseblocks belonging to this volume found. We
612 			 * don't actually know whether this static volume is
613 			 * completely corrupted or just contains no data. And
614 			 * we cannot know this as long as data size is not
615 			 * stored on flash. So we just assume the volume is
616 			 * empty. FIXME: this should be handled.
617 			 */
618 			continue;
619 		}
620 
621 		if (sv->leb_count != sv->used_ebs) {
622 			/*
623 			 * We found a static volume which misses several
624 			 * eraseblocks. Treat it as corrupted.
625 			 */
626 			ubi_warn("static volume %d misses %d LEBs - corrupted",
627 				 sv->vol_id, sv->used_ebs - sv->leb_count);
628 			vol->corrupted = 1;
629 			continue;
630 		}
631 
632 		vol->used_ebs = sv->used_ebs;
633 		vol->used_bytes =
634 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
635 		vol->used_bytes += sv->last_data_size;
636 		vol->last_eb_bytes = sv->last_data_size;
637 	}
638 
639 	/* And add the layout volume */
640 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
641 	if (!vol)
642 		return -ENOMEM;
643 
644 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
645 	vol->alignment = 1;
646 	vol->vol_type = UBI_DYNAMIC_VOLUME;
647 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
648 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
649 	vol->usable_leb_size = ubi->leb_size;
650 	vol->used_ebs = vol->reserved_pebs;
651 	vol->last_eb_bytes = vol->reserved_pebs;
652 	vol->used_bytes =
653 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
654 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
655 	vol->ref_count = 1;
656 
657 	ubi_assert(!ubi->volumes[i]);
658 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
659 	reserved_pebs += vol->reserved_pebs;
660 	ubi->vol_count += 1;
661 	vol->ubi = ubi;
662 
663 	if (reserved_pebs > ubi->avail_pebs)
664 		ubi_err("not enough PEBs, required %d, available %d",
665 			reserved_pebs, ubi->avail_pebs);
666 	ubi->rsvd_pebs += reserved_pebs;
667 	ubi->avail_pebs -= reserved_pebs;
668 
669 	return 0;
670 }
671 
672 /**
673  * check_sv - check volume scanning information.
674  * @vol: UBI volume description object
675  * @sv: volume scanning information
676  *
677  * This function returns zero if the volume scanning information is consistent
678  * to the data read from the volume tabla, and %-EINVAL if not.
679  */
680 static int check_sv(const struct ubi_volume *vol,
681 		    const struct ubi_scan_volume *sv)
682 {
683 	int err;
684 
685 	if (sv->highest_lnum >= vol->reserved_pebs) {
686 		err = 1;
687 		goto bad;
688 	}
689 	if (sv->leb_count > vol->reserved_pebs) {
690 		err = 2;
691 		goto bad;
692 	}
693 	if (sv->vol_type != vol->vol_type) {
694 		err = 3;
695 		goto bad;
696 	}
697 	if (sv->used_ebs > vol->reserved_pebs) {
698 		err = 4;
699 		goto bad;
700 	}
701 	if (sv->data_pad != vol->data_pad) {
702 		err = 5;
703 		goto bad;
704 	}
705 	return 0;
706 
707 bad:
708 	ubi_err("bad scanning information, error %d", err);
709 	ubi_dbg_dump_sv(sv);
710 	ubi_dbg_dump_vol_info(vol);
711 	return -EINVAL;
712 }
713 
714 /**
715  * check_scanning_info - check that scanning information.
716  * @ubi: UBI device description object
717  * @si: scanning information
718  *
719  * Even though we protect on-flash data by CRC checksums, we still don't trust
720  * the media. This function ensures that scanning information is consistent to
721  * the information read from the volume table. Returns zero if the scanning
722  * information is OK and %-EINVAL if it is not.
723  */
724 static int check_scanning_info(const struct ubi_device *ubi,
725 			       struct ubi_scan_info *si)
726 {
727 	int err, i;
728 	struct ubi_scan_volume *sv;
729 	struct ubi_volume *vol;
730 
731 	if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
732 		ubi_err("scanning found %d volumes, maximum is %d + %d",
733 			si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
734 		return -EINVAL;
735 	}
736 
737 	if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
738 	    si->highest_vol_id < UBI_INTERNAL_VOL_START) {
739 		ubi_err("too large volume ID %d found by scanning",
740 			si->highest_vol_id);
741 		return -EINVAL;
742 	}
743 
744 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
745 		cond_resched();
746 
747 		sv = ubi_scan_find_sv(si, i);
748 		vol = ubi->volumes[i];
749 		if (!vol) {
750 			if (sv)
751 				ubi_scan_rm_volume(si, sv);
752 			continue;
753 		}
754 
755 		if (vol->reserved_pebs == 0) {
756 			ubi_assert(i < ubi->vtbl_slots);
757 
758 			if (!sv)
759 				continue;
760 
761 			/*
762 			 * During scanning we found a volume which does not
763 			 * exist according to the information in the volume
764 			 * table. This must have happened due to an unclean
765 			 * reboot while the volume was being removed. Discard
766 			 * these eraseblocks.
767 			 */
768 			ubi_msg("finish volume %d removal", sv->vol_id);
769 			ubi_scan_rm_volume(si, sv);
770 		} else if (sv) {
771 			err = check_sv(vol, sv);
772 			if (err)
773 				return err;
774 		}
775 	}
776 
777 	return 0;
778 }
779 
780 /**
781  * ubi_read_volume_table - read the volume table.
782  * @ubi: UBI device description object
783  * @si: scanning information
784  *
785  * This function reads volume table, checks it, recover from errors if needed,
786  * or creates it if needed. Returns zero in case of success and a negative
787  * error code in case of failure.
788  */
789 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
790 {
791 	int i, err;
792 	struct ubi_scan_volume *sv;
793 
794 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
795 
796 	/*
797 	 * The number of supported volumes is limited by the eraseblock size
798 	 * and by the UBI_MAX_VOLUMES constant.
799 	 */
800 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
801 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
802 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
803 
804 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
805 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
806 
807 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
808 	if (!sv) {
809 		/*
810 		 * No logical eraseblocks belonging to the layout volume were
811 		 * found. This could mean that the flash is just empty. In
812 		 * this case we create empty layout volume.
813 		 *
814 		 * But if flash is not empty this must be a corruption or the
815 		 * MTD device just contains garbage.
816 		 */
817 		if (si->is_empty) {
818 			ubi->vtbl = create_empty_lvol(ubi, si);
819 			if (IS_ERR(ubi->vtbl))
820 				return PTR_ERR(ubi->vtbl);
821 		} else {
822 			ubi_err("the layout volume was not found");
823 			return -EINVAL;
824 		}
825 	} else {
826 		if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
827 			/* This must not happen with proper UBI images */
828 			dbg_err("too many LEBs (%d) in layout volume",
829 				sv->leb_count);
830 			return -EINVAL;
831 		}
832 
833 		ubi->vtbl = process_lvol(ubi, si, sv);
834 		if (IS_ERR(ubi->vtbl))
835 			return PTR_ERR(ubi->vtbl);
836 	}
837 
838 	ubi->avail_pebs = ubi->good_peb_count;
839 
840 	/*
841 	 * The layout volume is OK, initialize the corresponding in-RAM data
842 	 * structures.
843 	 */
844 	err = init_volumes(ubi, si, ubi->vtbl);
845 	if (err)
846 		goto out_free;
847 
848 	/*
849 	 * Get sure that the scanning information is consistent to the
850 	 * information stored in the volume table.
851 	 */
852 	err = check_scanning_info(ubi, si);
853 	if (err)
854 		goto out_free;
855 
856 	return 0;
857 
858 out_free:
859 	vfree(ubi->vtbl);
860 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
861 		kfree(ubi->volumes[i]);
862 		ubi->volumes[i] = NULL;
863 	}
864 	return err;
865 }
866 
867 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
868 
869 /**
870  * paranoid_vtbl_check - check volume table.
871  * @ubi: UBI device description object
872  */
873 static void paranoid_vtbl_check(const struct ubi_device *ubi)
874 {
875 	if (vtbl_check(ubi, ubi->vtbl)) {
876 		ubi_err("paranoid check failed");
877 		BUG();
878 	}
879 }
880 
881 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
882