xref: /openbmc/linux/drivers/mtd/ubi/vtbl.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * This file includes volume table manipulation code. The volume table is an
24  * on-flash table containing volume meta-data like name, number of reserved
25  * physical eraseblocks, type, etc. The volume table is stored in the so-called
26  * "layout volume".
27  *
28  * The layout volume is an internal volume which is organized as follows. It
29  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31  * other. This redundancy guarantees robustness to unclean reboots. The volume
32  * table is basically an array of volume table records. Each record contains
33  * full information about the volume and protected by a CRC checksum. Note,
34  * nowadays we use the atomic LEB change operation when updating the volume
35  * table, so we do not really need 2 LEBs anymore, but we preserve the older
36  * design for the backward compatibility reasons.
37  *
38  * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
39  * erased, and the updated volume table is written back to LEB 0. Then same for
40  * LEB 1. This scheme guarantees recoverability from unclean reboots.
41  *
42  * In this UBI implementation the on-flash volume table does not contain any
43  * information about how much data static volumes contain.
44  *
45  * But it would still be beneficial to store this information in the volume
46  * table. For example, suppose we have a static volume X, and all its physical
47  * eraseblocks became bad for some reasons. Suppose we are attaching the
48  * corresponding MTD device, for some reason we find no logical eraseblocks
49  * corresponding to the volume X. According to the volume table volume X does
50  * exist. So we don't know whether it is just empty or all its physical
51  * eraseblocks went bad. So we cannot alarm the user properly.
52  *
53  * The volume table also stores so-called "update marker", which is used for
54  * volume updates. Before updating the volume, the update marker is set, and
55  * after the update operation is finished, the update marker is cleared. So if
56  * the update operation was interrupted (e.g. by an unclean reboot) - the
57  * update marker is still there and we know that the volume's contents is
58  * damaged.
59  */
60 
61 #include <linux/crc32.h>
62 #include <linux/err.h>
63 #include <linux/slab.h>
64 #include <asm/div64.h>
65 #include "ubi.h"
66 
67 static void self_vtbl_check(const struct ubi_device *ubi);
68 
69 /* Empty volume table record */
70 static struct ubi_vtbl_record empty_vtbl_record;
71 
72 /**
73  * ubi_update_layout_vol - helper for updatting layout volumes on flash
74  * @ubi: UBI device description object
75  */
76 static int ubi_update_layout_vol(struct ubi_device *ubi)
77 {
78 	struct ubi_volume *layout_vol;
79 	int i, err;
80 
81 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
82 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
83 		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
84 						ubi->vtbl_size);
85 		if (err)
86 			return err;
87 	}
88 
89 	return 0;
90 }
91 
92 /**
93  * ubi_change_vtbl_record - change volume table record.
94  * @ubi: UBI device description object
95  * @idx: table index to change
96  * @vtbl_rec: new volume table record
97  *
98  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
99  * volume table record is written. The caller does not have to calculate CRC of
100  * the record as it is done by this function. Returns zero in case of success
101  * and a negative error code in case of failure.
102  */
103 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
104 			   struct ubi_vtbl_record *vtbl_rec)
105 {
106 	int err;
107 	uint32_t crc;
108 
109 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
110 
111 	if (!vtbl_rec)
112 		vtbl_rec = &empty_vtbl_record;
113 	else {
114 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
115 		vtbl_rec->crc = cpu_to_be32(crc);
116 	}
117 
118 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
119 	err = ubi_update_layout_vol(ubi);
120 
121 	self_vtbl_check(ubi);
122 	return err ? err : 0;
123 }
124 
125 /**
126  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
127  * @ubi: UBI device description object
128  * @rename_list: list of &struct ubi_rename_entry objects
129  *
130  * This function re-names multiple volumes specified in @req in the volume
131  * table. Returns zero in case of success and a negative error code in case of
132  * failure.
133  */
134 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
135 			    struct list_head *rename_list)
136 {
137 	struct ubi_rename_entry *re;
138 
139 	list_for_each_entry(re, rename_list, list) {
140 		uint32_t crc;
141 		struct ubi_volume *vol = re->desc->vol;
142 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
143 
144 		if (re->remove) {
145 			memcpy(vtbl_rec, &empty_vtbl_record,
146 			       sizeof(struct ubi_vtbl_record));
147 			continue;
148 		}
149 
150 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
151 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
152 		memset(vtbl_rec->name + re->new_name_len, 0,
153 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
154 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
155 			    UBI_VTBL_RECORD_SIZE_CRC);
156 		vtbl_rec->crc = cpu_to_be32(crc);
157 	}
158 
159 	return ubi_update_layout_vol(ubi);
160 }
161 
162 /**
163  * vtbl_check - check if volume table is not corrupted and sensible.
164  * @ubi: UBI device description object
165  * @vtbl: volume table
166  *
167  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
168  * and %-EINVAL if it contains inconsistent data.
169  */
170 static int vtbl_check(const struct ubi_device *ubi,
171 		      const struct ubi_vtbl_record *vtbl)
172 {
173 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
174 	int upd_marker, err;
175 	uint32_t crc;
176 	const char *name;
177 
178 	for (i = 0; i < ubi->vtbl_slots; i++) {
179 		cond_resched();
180 
181 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
182 		alignment = be32_to_cpu(vtbl[i].alignment);
183 		data_pad = be32_to_cpu(vtbl[i].data_pad);
184 		upd_marker = vtbl[i].upd_marker;
185 		vol_type = vtbl[i].vol_type;
186 		name_len = be16_to_cpu(vtbl[i].name_len);
187 		name = &vtbl[i].name[0];
188 
189 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
190 		if (be32_to_cpu(vtbl[i].crc) != crc) {
191 			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
192 				 i, crc, be32_to_cpu(vtbl[i].crc));
193 			ubi_dump_vtbl_record(&vtbl[i], i);
194 			return 1;
195 		}
196 
197 		if (reserved_pebs == 0) {
198 			if (memcmp(&vtbl[i], &empty_vtbl_record,
199 						UBI_VTBL_RECORD_SIZE)) {
200 				err = 2;
201 				goto bad;
202 			}
203 			continue;
204 		}
205 
206 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
207 		    name_len < 0) {
208 			err = 3;
209 			goto bad;
210 		}
211 
212 		if (alignment > ubi->leb_size || alignment == 0) {
213 			err = 4;
214 			goto bad;
215 		}
216 
217 		n = alignment & (ubi->min_io_size - 1);
218 		if (alignment != 1 && n) {
219 			err = 5;
220 			goto bad;
221 		}
222 
223 		n = ubi->leb_size % alignment;
224 		if (data_pad != n) {
225 			ubi_err(ubi, "bad data_pad, has to be %d", n);
226 			err = 6;
227 			goto bad;
228 		}
229 
230 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
231 			err = 7;
232 			goto bad;
233 		}
234 
235 		if (upd_marker != 0 && upd_marker != 1) {
236 			err = 8;
237 			goto bad;
238 		}
239 
240 		if (reserved_pebs > ubi->good_peb_count) {
241 			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
242 				reserved_pebs, ubi->good_peb_count);
243 			err = 9;
244 			goto bad;
245 		}
246 
247 		if (name_len > UBI_VOL_NAME_MAX) {
248 			err = 10;
249 			goto bad;
250 		}
251 
252 		if (name[0] == '\0') {
253 			err = 11;
254 			goto bad;
255 		}
256 
257 		if (name_len != strnlen(name, name_len + 1)) {
258 			err = 12;
259 			goto bad;
260 		}
261 	}
262 
263 	/* Checks that all names are unique */
264 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
265 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
266 			int len1 = be16_to_cpu(vtbl[i].name_len);
267 			int len2 = be16_to_cpu(vtbl[n].name_len);
268 
269 			if (len1 > 0 && len1 == len2 &&
270 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
271 				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
272 					i, n, vtbl[i].name);
273 				ubi_dump_vtbl_record(&vtbl[i], i);
274 				ubi_dump_vtbl_record(&vtbl[n], n);
275 				return -EINVAL;
276 			}
277 		}
278 	}
279 
280 	return 0;
281 
282 bad:
283 	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
284 	ubi_dump_vtbl_record(&vtbl[i], i);
285 	return -EINVAL;
286 }
287 
288 /**
289  * create_vtbl - create a copy of volume table.
290  * @ubi: UBI device description object
291  * @ai: attaching information
292  * @copy: number of the volume table copy
293  * @vtbl: contents of the volume table
294  *
295  * This function returns zero in case of success and a negative error code in
296  * case of failure.
297  */
298 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
299 		       int copy, void *vtbl)
300 {
301 	int err, tries = 0;
302 	struct ubi_vid_io_buf *vidb;
303 	struct ubi_vid_hdr *vid_hdr;
304 	struct ubi_ainf_peb *new_aeb;
305 
306 	dbg_gen("create volume table (copy #%d)", copy + 1);
307 
308 	vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
309 	if (!vidb)
310 		return -ENOMEM;
311 
312 	vid_hdr = ubi_get_vid_hdr(vidb);
313 
314 retry:
315 	new_aeb = ubi_early_get_peb(ubi, ai);
316 	if (IS_ERR(new_aeb)) {
317 		err = PTR_ERR(new_aeb);
318 		goto out_free;
319 	}
320 
321 	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
322 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
323 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
324 	vid_hdr->data_size = vid_hdr->used_ebs =
325 			     vid_hdr->data_pad = cpu_to_be32(0);
326 	vid_hdr->lnum = cpu_to_be32(copy);
327 	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
328 
329 	/* The EC header is already there, write the VID header */
330 	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vidb);
331 	if (err)
332 		goto write_error;
333 
334 	/* Write the layout volume contents */
335 	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
336 	if (err)
337 		goto write_error;
338 
339 	/*
340 	 * And add it to the attaching information. Don't delete the old version
341 	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
342 	 */
343 	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
344 	ubi_free_aeb(ai, new_aeb);
345 	ubi_free_vid_buf(vidb);
346 	return err;
347 
348 write_error:
349 	if (err == -EIO && ++tries <= 5) {
350 		/*
351 		 * Probably this physical eraseblock went bad, try to pick
352 		 * another one.
353 		 */
354 		list_add(&new_aeb->u.list, &ai->erase);
355 		goto retry;
356 	}
357 	ubi_free_aeb(ai, new_aeb);
358 out_free:
359 	ubi_free_vid_buf(vidb);
360 	return err;
361 
362 }
363 
364 /**
365  * process_lvol - process the layout volume.
366  * @ubi: UBI device description object
367  * @ai: attaching information
368  * @av: layout volume attaching information
369  *
370  * This function is responsible for reading the layout volume, ensuring it is
371  * not corrupted, and recovering from corruptions if needed. Returns volume
372  * table in case of success and a negative error code in case of failure.
373  */
374 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
375 					    struct ubi_attach_info *ai,
376 					    struct ubi_ainf_volume *av)
377 {
378 	int err;
379 	struct rb_node *rb;
380 	struct ubi_ainf_peb *aeb;
381 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
382 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
383 
384 	/*
385 	 * UBI goes through the following steps when it changes the layout
386 	 * volume:
387 	 * a. erase LEB 0;
388 	 * b. write new data to LEB 0;
389 	 * c. erase LEB 1;
390 	 * d. write new data to LEB 1.
391 	 *
392 	 * Before the change, both LEBs contain the same data.
393 	 *
394 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
395 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
396 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
397 	 * finally, unclean reboots may result in a situation when neither LEB
398 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
399 	 * 0 contains more recent information.
400 	 *
401 	 * So the plan is to first check LEB 0. Then
402 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
403 	 *    we compare it with LEB 1, and if they are different, we copy LEB
404 	 *    0 to LEB 1;
405 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
406 	 *    to LEB 0.
407 	 */
408 
409 	dbg_gen("check layout volume");
410 
411 	/* Read both LEB 0 and LEB 1 into memory */
412 	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
413 		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
414 		if (!leb[aeb->lnum]) {
415 			err = -ENOMEM;
416 			goto out_free;
417 		}
418 
419 		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
420 				       ubi->vtbl_size);
421 		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
422 			/*
423 			 * Scrub the PEB later. Note, -EBADMSG indicates an
424 			 * uncorrectable ECC error, but we have our own CRC and
425 			 * the data will be checked later. If the data is OK,
426 			 * the PEB will be scrubbed (because we set
427 			 * aeb->scrub). If the data is not OK, the contents of
428 			 * the PEB will be recovered from the second copy, and
429 			 * aeb->scrub will be cleared in
430 			 * 'ubi_add_to_av()'.
431 			 */
432 			aeb->scrub = 1;
433 		else if (err)
434 			goto out_free;
435 	}
436 
437 	err = -EINVAL;
438 	if (leb[0]) {
439 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
440 		if (leb_corrupted[0] < 0)
441 			goto out_free;
442 	}
443 
444 	if (!leb_corrupted[0]) {
445 		/* LEB 0 is OK */
446 		if (leb[1])
447 			leb_corrupted[1] = memcmp(leb[0], leb[1],
448 						  ubi->vtbl_size);
449 		if (leb_corrupted[1]) {
450 			ubi_warn(ubi, "volume table copy #2 is corrupted");
451 			err = create_vtbl(ubi, ai, 1, leb[0]);
452 			if (err)
453 				goto out_free;
454 			ubi_msg(ubi, "volume table was restored");
455 		}
456 
457 		/* Both LEB 1 and LEB 2 are OK and consistent */
458 		vfree(leb[1]);
459 		return leb[0];
460 	} else {
461 		/* LEB 0 is corrupted or does not exist */
462 		if (leb[1]) {
463 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
464 			if (leb_corrupted[1] < 0)
465 				goto out_free;
466 		}
467 		if (leb_corrupted[1]) {
468 			/* Both LEB 0 and LEB 1 are corrupted */
469 			ubi_err(ubi, "both volume tables are corrupted");
470 			goto out_free;
471 		}
472 
473 		ubi_warn(ubi, "volume table copy #1 is corrupted");
474 		err = create_vtbl(ubi, ai, 0, leb[1]);
475 		if (err)
476 			goto out_free;
477 		ubi_msg(ubi, "volume table was restored");
478 
479 		vfree(leb[0]);
480 		return leb[1];
481 	}
482 
483 out_free:
484 	vfree(leb[0]);
485 	vfree(leb[1]);
486 	return ERR_PTR(err);
487 }
488 
489 /**
490  * create_empty_lvol - create empty layout volume.
491  * @ubi: UBI device description object
492  * @ai: attaching information
493  *
494  * This function returns volume table contents in case of success and a
495  * negative error code in case of failure.
496  */
497 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
498 						 struct ubi_attach_info *ai)
499 {
500 	int i;
501 	struct ubi_vtbl_record *vtbl;
502 
503 	vtbl = vzalloc(ubi->vtbl_size);
504 	if (!vtbl)
505 		return ERR_PTR(-ENOMEM);
506 
507 	for (i = 0; i < ubi->vtbl_slots; i++)
508 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
509 
510 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
511 		int err;
512 
513 		err = create_vtbl(ubi, ai, i, vtbl);
514 		if (err) {
515 			vfree(vtbl);
516 			return ERR_PTR(err);
517 		}
518 	}
519 
520 	return vtbl;
521 }
522 
523 /**
524  * init_volumes - initialize volume information for existing volumes.
525  * @ubi: UBI device description object
526  * @ai: scanning information
527  * @vtbl: volume table
528  *
529  * This function allocates volume description objects for existing volumes.
530  * Returns zero in case of success and a negative error code in case of
531  * failure.
532  */
533 static int init_volumes(struct ubi_device *ubi,
534 			const struct ubi_attach_info *ai,
535 			const struct ubi_vtbl_record *vtbl)
536 {
537 	int i, err, reserved_pebs = 0;
538 	struct ubi_ainf_volume *av;
539 	struct ubi_volume *vol;
540 
541 	for (i = 0; i < ubi->vtbl_slots; i++) {
542 		cond_resched();
543 
544 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
545 			continue; /* Empty record */
546 
547 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
548 		if (!vol)
549 			return -ENOMEM;
550 
551 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
552 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
553 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
554 		vol->upd_marker = vtbl[i].upd_marker;
555 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
556 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
557 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
558 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
559 		memcpy(vol->name, vtbl[i].name, vol->name_len);
560 		vol->name[vol->name_len] = '\0';
561 		vol->vol_id = i;
562 
563 		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
564 			vol->skip_check = 1;
565 
566 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
567 			/* Auto re-size flag may be set only for one volume */
568 			if (ubi->autoresize_vol_id != -1) {
569 				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
570 					ubi->autoresize_vol_id, i);
571 				kfree(vol);
572 				return -EINVAL;
573 			}
574 
575 			ubi->autoresize_vol_id = i;
576 		}
577 
578 		ubi_assert(!ubi->volumes[i]);
579 		ubi->volumes[i] = vol;
580 		ubi->vol_count += 1;
581 		vol->ubi = ubi;
582 		reserved_pebs += vol->reserved_pebs;
583 
584 		/*
585 		 * We use ubi->peb_count and not vol->reserved_pebs because
586 		 * we want to keep the code simple. Otherwise we'd have to
587 		 * resize/check the bitmap upon volume resize too.
588 		 * Allocating a few bytes more does not hurt.
589 		 */
590 		err = ubi_fastmap_init_checkmap(vol, ubi->peb_count);
591 		if (err)
592 			return err;
593 
594 		/*
595 		 * In case of dynamic volume UBI knows nothing about how many
596 		 * data is stored there. So assume the whole volume is used.
597 		 */
598 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
599 			vol->used_ebs = vol->reserved_pebs;
600 			vol->last_eb_bytes = vol->usable_leb_size;
601 			vol->used_bytes =
602 				(long long)vol->used_ebs * vol->usable_leb_size;
603 			continue;
604 		}
605 
606 		/* Static volumes only */
607 		av = ubi_find_av(ai, i);
608 		if (!av || !av->leb_count) {
609 			/*
610 			 * No eraseblocks belonging to this volume found. We
611 			 * don't actually know whether this static volume is
612 			 * completely corrupted or just contains no data. And
613 			 * we cannot know this as long as data size is not
614 			 * stored on flash. So we just assume the volume is
615 			 * empty. FIXME: this should be handled.
616 			 */
617 			continue;
618 		}
619 
620 		if (av->leb_count != av->used_ebs) {
621 			/*
622 			 * We found a static volume which misses several
623 			 * eraseblocks. Treat it as corrupted.
624 			 */
625 			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
626 				 av->vol_id, av->used_ebs - av->leb_count);
627 			vol->corrupted = 1;
628 			continue;
629 		}
630 
631 		vol->used_ebs = av->used_ebs;
632 		vol->used_bytes =
633 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
634 		vol->used_bytes += av->last_data_size;
635 		vol->last_eb_bytes = av->last_data_size;
636 	}
637 
638 	/* And add the layout volume */
639 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
640 	if (!vol)
641 		return -ENOMEM;
642 
643 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
644 	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
645 	vol->vol_type = UBI_DYNAMIC_VOLUME;
646 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
647 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
648 	vol->usable_leb_size = ubi->leb_size;
649 	vol->used_ebs = vol->reserved_pebs;
650 	vol->last_eb_bytes = vol->reserved_pebs;
651 	vol->used_bytes =
652 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
653 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
654 	vol->ref_count = 1;
655 
656 	ubi_assert(!ubi->volumes[i]);
657 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
658 	reserved_pebs += vol->reserved_pebs;
659 	ubi->vol_count += 1;
660 	vol->ubi = ubi;
661 	err = ubi_fastmap_init_checkmap(vol, UBI_LAYOUT_VOLUME_EBS);
662 	if (err)
663 		return err;
664 
665 	if (reserved_pebs > ubi->avail_pebs) {
666 		ubi_err(ubi, "not enough PEBs, required %d, available %d",
667 			reserved_pebs, ubi->avail_pebs);
668 		if (ubi->corr_peb_count)
669 			ubi_err(ubi, "%d PEBs are corrupted and not used",
670 				ubi->corr_peb_count);
671 		return -ENOSPC;
672 	}
673 	ubi->rsvd_pebs += reserved_pebs;
674 	ubi->avail_pebs -= reserved_pebs;
675 
676 	return 0;
677 }
678 
679 /**
680  * check_av - check volume attaching information.
681  * @vol: UBI volume description object
682  * @av: volume attaching information
683  *
684  * This function returns zero if the volume attaching information is consistent
685  * to the data read from the volume tabla, and %-EINVAL if not.
686  */
687 static int check_av(const struct ubi_volume *vol,
688 		    const struct ubi_ainf_volume *av)
689 {
690 	int err;
691 
692 	if (av->highest_lnum >= vol->reserved_pebs) {
693 		err = 1;
694 		goto bad;
695 	}
696 	if (av->leb_count > vol->reserved_pebs) {
697 		err = 2;
698 		goto bad;
699 	}
700 	if (av->vol_type != vol->vol_type) {
701 		err = 3;
702 		goto bad;
703 	}
704 	if (av->used_ebs > vol->reserved_pebs) {
705 		err = 4;
706 		goto bad;
707 	}
708 	if (av->data_pad != vol->data_pad) {
709 		err = 5;
710 		goto bad;
711 	}
712 	return 0;
713 
714 bad:
715 	ubi_err(vol->ubi, "bad attaching information, error %d", err);
716 	ubi_dump_av(av);
717 	ubi_dump_vol_info(vol);
718 	return -EINVAL;
719 }
720 
721 /**
722  * check_attaching_info - check that attaching information.
723  * @ubi: UBI device description object
724  * @ai: attaching information
725  *
726  * Even though we protect on-flash data by CRC checksums, we still don't trust
727  * the media. This function ensures that attaching information is consistent to
728  * the information read from the volume table. Returns zero if the attaching
729  * information is OK and %-EINVAL if it is not.
730  */
731 static int check_attaching_info(const struct ubi_device *ubi,
732 			       struct ubi_attach_info *ai)
733 {
734 	int err, i;
735 	struct ubi_ainf_volume *av;
736 	struct ubi_volume *vol;
737 
738 	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
739 		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
740 			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
741 		return -EINVAL;
742 	}
743 
744 	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
745 	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
746 		ubi_err(ubi, "too large volume ID %d found",
747 			ai->highest_vol_id);
748 		return -EINVAL;
749 	}
750 
751 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
752 		cond_resched();
753 
754 		av = ubi_find_av(ai, i);
755 		vol = ubi->volumes[i];
756 		if (!vol) {
757 			if (av)
758 				ubi_remove_av(ai, av);
759 			continue;
760 		}
761 
762 		if (vol->reserved_pebs == 0) {
763 			ubi_assert(i < ubi->vtbl_slots);
764 
765 			if (!av)
766 				continue;
767 
768 			/*
769 			 * During attaching we found a volume which does not
770 			 * exist according to the information in the volume
771 			 * table. This must have happened due to an unclean
772 			 * reboot while the volume was being removed. Discard
773 			 * these eraseblocks.
774 			 */
775 			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
776 			ubi_remove_av(ai, av);
777 		} else if (av) {
778 			err = check_av(vol, av);
779 			if (err)
780 				return err;
781 		}
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  * ubi_read_volume_table - read the volume table.
789  * @ubi: UBI device description object
790  * @ai: attaching information
791  *
792  * This function reads volume table, checks it, recover from errors if needed,
793  * or creates it if needed. Returns zero in case of success and a negative
794  * error code in case of failure.
795  */
796 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
797 {
798 	int i, err;
799 	struct ubi_ainf_volume *av;
800 
801 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
802 
803 	/*
804 	 * The number of supported volumes is limited by the eraseblock size
805 	 * and by the UBI_MAX_VOLUMES constant.
806 	 */
807 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
808 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
809 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
810 
811 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
812 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
813 
814 	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
815 	if (!av) {
816 		/*
817 		 * No logical eraseblocks belonging to the layout volume were
818 		 * found. This could mean that the flash is just empty. In
819 		 * this case we create empty layout volume.
820 		 *
821 		 * But if flash is not empty this must be a corruption or the
822 		 * MTD device just contains garbage.
823 		 */
824 		if (ai->is_empty) {
825 			ubi->vtbl = create_empty_lvol(ubi, ai);
826 			if (IS_ERR(ubi->vtbl))
827 				return PTR_ERR(ubi->vtbl);
828 		} else {
829 			ubi_err(ubi, "the layout volume was not found");
830 			return -EINVAL;
831 		}
832 	} else {
833 		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
834 			/* This must not happen with proper UBI images */
835 			ubi_err(ubi, "too many LEBs (%d) in layout volume",
836 				av->leb_count);
837 			return -EINVAL;
838 		}
839 
840 		ubi->vtbl = process_lvol(ubi, ai, av);
841 		if (IS_ERR(ubi->vtbl))
842 			return PTR_ERR(ubi->vtbl);
843 	}
844 
845 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
846 
847 	/*
848 	 * The layout volume is OK, initialize the corresponding in-RAM data
849 	 * structures.
850 	 */
851 	err = init_volumes(ubi, ai, ubi->vtbl);
852 	if (err)
853 		goto out_free;
854 
855 	/*
856 	 * Make sure that the attaching information is consistent to the
857 	 * information stored in the volume table.
858 	 */
859 	err = check_attaching_info(ubi, ai);
860 	if (err)
861 		goto out_free;
862 
863 	return 0;
864 
865 out_free:
866 	vfree(ubi->vtbl);
867 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
868 		ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
869 		kfree(ubi->volumes[i]);
870 		ubi->volumes[i] = NULL;
871 	}
872 	return err;
873 }
874 
875 /**
876  * self_vtbl_check - check volume table.
877  * @ubi: UBI device description object
878  */
879 static void self_vtbl_check(const struct ubi_device *ubi)
880 {
881 	if (!ubi_dbg_chk_gen(ubi))
882 		return;
883 
884 	if (vtbl_check(ubi, ubi->vtbl)) {
885 		ubi_err(ubi, "self-check failed");
886 		BUG();
887 	}
888 }
889