xref: /openbmc/linux/drivers/mtd/ubi/vtbl.c (revision 25985edc)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * This file includes volume table manipulation code. The volume table is an
24  * on-flash table containing volume meta-data like name, number of reserved
25  * physical eraseblocks, type, etc. The volume table is stored in the so-called
26  * "layout volume".
27  *
28  * The layout volume is an internal volume which is organized as follows. It
29  * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30  * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31  * other. This redundancy guarantees robustness to unclean reboots. The volume
32  * table is basically an array of volume table records. Each record contains
33  * full information about the volume and protected by a CRC checksum.
34  *
35  * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36  * erased, and the updated volume table is written back to LEB 0. Then same for
37  * LEB 1. This scheme guarantees recoverability from unclean reboots.
38  *
39  * In this UBI implementation the on-flash volume table does not contain any
40  * information about how many data static volumes contain. This information may
41  * be found from the scanning data.
42  *
43  * But it would still be beneficial to store this information in the volume
44  * table. For example, suppose we have a static volume X, and all its physical
45  * eraseblocks became bad for some reasons. Suppose we are attaching the
46  * corresponding MTD device, the scanning has found no logical eraseblocks
47  * corresponding to the volume X. According to the volume table volume X does
48  * exist. So we don't know whether it is just empty or all its physical
49  * eraseblocks went bad. So we cannot alarm the user about this corruption.
50  *
51  * The volume table also stores so-called "update marker", which is used for
52  * volume updates. Before updating the volume, the update marker is set, and
53  * after the update operation is finished, the update marker is cleared. So if
54  * the update operation was interrupted (e.g. by an unclean reboot) - the
55  * update marker is still there and we know that the volume's contents is
56  * damaged.
57  */
58 
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <linux/slab.h>
62 #include <asm/div64.h>
63 #include "ubi.h"
64 
65 #ifdef CONFIG_MTD_UBI_DEBUG
66 static void paranoid_vtbl_check(const struct ubi_device *ubi);
67 #else
68 #define paranoid_vtbl_check(ubi)
69 #endif
70 
71 /* Empty volume table record */
72 static struct ubi_vtbl_record empty_vtbl_record;
73 
74 /**
75  * ubi_change_vtbl_record - change volume table record.
76  * @ubi: UBI device description object
77  * @idx: table index to change
78  * @vtbl_rec: new volume table record
79  *
80  * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
81  * volume table record is written. The caller does not have to calculate CRC of
82  * the record as it is done by this function. Returns zero in case of success
83  * and a negative error code in case of failure.
84  */
85 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
86 			   struct ubi_vtbl_record *vtbl_rec)
87 {
88 	int i, err;
89 	uint32_t crc;
90 	struct ubi_volume *layout_vol;
91 
92 	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
93 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
94 
95 	if (!vtbl_rec)
96 		vtbl_rec = &empty_vtbl_record;
97 	else {
98 		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
99 		vtbl_rec->crc = cpu_to_be32(crc);
100 	}
101 
102 	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
103 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
104 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
105 		if (err)
106 			return err;
107 
108 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
109 					ubi->vtbl_size, UBI_LONGTERM);
110 		if (err)
111 			return err;
112 	}
113 
114 	paranoid_vtbl_check(ubi);
115 	return 0;
116 }
117 
118 /**
119  * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
120  * @ubi: UBI device description object
121  * @rename_list: list of &struct ubi_rename_entry objects
122  *
123  * This function re-names multiple volumes specified in @req in the volume
124  * table. Returns zero in case of success and a negative error code in case of
125  * failure.
126  */
127 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
128 			    struct list_head *rename_list)
129 {
130 	int i, err;
131 	struct ubi_rename_entry *re;
132 	struct ubi_volume *layout_vol;
133 
134 	list_for_each_entry(re, rename_list, list) {
135 		uint32_t crc;
136 		struct ubi_volume *vol = re->desc->vol;
137 		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
138 
139 		if (re->remove) {
140 			memcpy(vtbl_rec, &empty_vtbl_record,
141 			       sizeof(struct ubi_vtbl_record));
142 			continue;
143 		}
144 
145 		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
146 		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
147 		memset(vtbl_rec->name + re->new_name_len, 0,
148 		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
149 		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
150 			    UBI_VTBL_RECORD_SIZE_CRC);
151 		vtbl_rec->crc = cpu_to_be32(crc);
152 	}
153 
154 	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
155 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
156 		err = ubi_eba_unmap_leb(ubi, layout_vol, i);
157 		if (err)
158 			return err;
159 
160 		err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
161 					ubi->vtbl_size, UBI_LONGTERM);
162 		if (err)
163 			return err;
164 	}
165 
166 	return 0;
167 }
168 
169 /**
170  * vtbl_check - check if volume table is not corrupted and sensible.
171  * @ubi: UBI device description object
172  * @vtbl: volume table
173  *
174  * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
175  * and %-EINVAL if it contains inconsistent data.
176  */
177 static int vtbl_check(const struct ubi_device *ubi,
178 		      const struct ubi_vtbl_record *vtbl)
179 {
180 	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
181 	int upd_marker, err;
182 	uint32_t crc;
183 	const char *name;
184 
185 	for (i = 0; i < ubi->vtbl_slots; i++) {
186 		cond_resched();
187 
188 		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
189 		alignment = be32_to_cpu(vtbl[i].alignment);
190 		data_pad = be32_to_cpu(vtbl[i].data_pad);
191 		upd_marker = vtbl[i].upd_marker;
192 		vol_type = vtbl[i].vol_type;
193 		name_len = be16_to_cpu(vtbl[i].name_len);
194 		name = &vtbl[i].name[0];
195 
196 		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
197 		if (be32_to_cpu(vtbl[i].crc) != crc) {
198 			ubi_err("bad CRC at record %u: %#08x, not %#08x",
199 				 i, crc, be32_to_cpu(vtbl[i].crc));
200 			ubi_dbg_dump_vtbl_record(&vtbl[i], i);
201 			return 1;
202 		}
203 
204 		if (reserved_pebs == 0) {
205 			if (memcmp(&vtbl[i], &empty_vtbl_record,
206 						UBI_VTBL_RECORD_SIZE)) {
207 				err = 2;
208 				goto bad;
209 			}
210 			continue;
211 		}
212 
213 		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
214 		    name_len < 0) {
215 			err = 3;
216 			goto bad;
217 		}
218 
219 		if (alignment > ubi->leb_size || alignment == 0) {
220 			err = 4;
221 			goto bad;
222 		}
223 
224 		n = alignment & (ubi->min_io_size - 1);
225 		if (alignment != 1 && n) {
226 			err = 5;
227 			goto bad;
228 		}
229 
230 		n = ubi->leb_size % alignment;
231 		if (data_pad != n) {
232 			dbg_err("bad data_pad, has to be %d", n);
233 			err = 6;
234 			goto bad;
235 		}
236 
237 		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
238 			err = 7;
239 			goto bad;
240 		}
241 
242 		if (upd_marker != 0 && upd_marker != 1) {
243 			err = 8;
244 			goto bad;
245 		}
246 
247 		if (reserved_pebs > ubi->good_peb_count) {
248 			dbg_err("too large reserved_pebs %d, good PEBs %d",
249 				reserved_pebs, ubi->good_peb_count);
250 			err = 9;
251 			goto bad;
252 		}
253 
254 		if (name_len > UBI_VOL_NAME_MAX) {
255 			err = 10;
256 			goto bad;
257 		}
258 
259 		if (name[0] == '\0') {
260 			err = 11;
261 			goto bad;
262 		}
263 
264 		if (name_len != strnlen(name, name_len + 1)) {
265 			err = 12;
266 			goto bad;
267 		}
268 	}
269 
270 	/* Checks that all names are unique */
271 	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
272 		for (n = i + 1; n < ubi->vtbl_slots; n++) {
273 			int len1 = be16_to_cpu(vtbl[i].name_len);
274 			int len2 = be16_to_cpu(vtbl[n].name_len);
275 
276 			if (len1 > 0 && len1 == len2 &&
277 			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
278 				ubi_err("volumes %d and %d have the same name"
279 					" \"%s\"", i, n, vtbl[i].name);
280 				ubi_dbg_dump_vtbl_record(&vtbl[i], i);
281 				ubi_dbg_dump_vtbl_record(&vtbl[n], n);
282 				return -EINVAL;
283 			}
284 		}
285 	}
286 
287 	return 0;
288 
289 bad:
290 	ubi_err("volume table check failed: record %d, error %d", i, err);
291 	ubi_dbg_dump_vtbl_record(&vtbl[i], i);
292 	return -EINVAL;
293 }
294 
295 /**
296  * create_vtbl - create a copy of volume table.
297  * @ubi: UBI device description object
298  * @si: scanning information
299  * @copy: number of the volume table copy
300  * @vtbl: contents of the volume table
301  *
302  * This function returns zero in case of success and a negative error code in
303  * case of failure.
304  */
305 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
306 		       int copy, void *vtbl)
307 {
308 	int err, tries = 0;
309 	static struct ubi_vid_hdr *vid_hdr;
310 	struct ubi_scan_volume *sv;
311 	struct ubi_scan_leb *new_seb, *old_seb = NULL;
312 
313 	ubi_msg("create volume table (copy #%d)", copy + 1);
314 
315 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
316 	if (!vid_hdr)
317 		return -ENOMEM;
318 
319 	/*
320 	 * Check if there is a logical eraseblock which would have to contain
321 	 * this volume table copy was found during scanning. It has to be wiped
322 	 * out.
323 	 */
324 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
325 	if (sv)
326 		old_seb = ubi_scan_find_seb(sv, copy);
327 
328 retry:
329 	new_seb = ubi_scan_get_free_peb(ubi, si);
330 	if (IS_ERR(new_seb)) {
331 		err = PTR_ERR(new_seb);
332 		goto out_free;
333 	}
334 
335 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
336 	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
337 	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
338 	vid_hdr->data_size = vid_hdr->used_ebs =
339 			     vid_hdr->data_pad = cpu_to_be32(0);
340 	vid_hdr->lnum = cpu_to_be32(copy);
341 	vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
342 
343 	/* The EC header is already there, write the VID header */
344 	err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
345 	if (err)
346 		goto write_error;
347 
348 	/* Write the layout volume contents */
349 	err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
350 	if (err)
351 		goto write_error;
352 
353 	/*
354 	 * And add it to the scanning information. Don't delete the old
355 	 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
356 	 */
357 	err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
358 				vid_hdr, 0);
359 	kfree(new_seb);
360 	ubi_free_vid_hdr(ubi, vid_hdr);
361 	return err;
362 
363 write_error:
364 	if (err == -EIO && ++tries <= 5) {
365 		/*
366 		 * Probably this physical eraseblock went bad, try to pick
367 		 * another one.
368 		 */
369 		list_add(&new_seb->u.list, &si->erase);
370 		goto retry;
371 	}
372 	kfree(new_seb);
373 out_free:
374 	ubi_free_vid_hdr(ubi, vid_hdr);
375 	return err;
376 
377 }
378 
379 /**
380  * process_lvol - process the layout volume.
381  * @ubi: UBI device description object
382  * @si: scanning information
383  * @sv: layout volume scanning information
384  *
385  * This function is responsible for reading the layout volume, ensuring it is
386  * not corrupted, and recovering from corruptions if needed. Returns volume
387  * table in case of success and a negative error code in case of failure.
388  */
389 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
390 					    struct ubi_scan_info *si,
391 					    struct ubi_scan_volume *sv)
392 {
393 	int err;
394 	struct rb_node *rb;
395 	struct ubi_scan_leb *seb;
396 	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
397 	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
398 
399 	/*
400 	 * UBI goes through the following steps when it changes the layout
401 	 * volume:
402 	 * a. erase LEB 0;
403 	 * b. write new data to LEB 0;
404 	 * c. erase LEB 1;
405 	 * d. write new data to LEB 1.
406 	 *
407 	 * Before the change, both LEBs contain the same data.
408 	 *
409 	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
410 	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
411 	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
412 	 * finally, unclean reboots may result in a situation when neither LEB
413 	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
414 	 * 0 contains more recent information.
415 	 *
416 	 * So the plan is to first check LEB 0. Then
417 	 * a. if LEB 0 is OK, it must be containing the most recent data; then
418 	 *    we compare it with LEB 1, and if they are different, we copy LEB
419 	 *    0 to LEB 1;
420 	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
421 	 *    to LEB 0.
422 	 */
423 
424 	dbg_gen("check layout volume");
425 
426 	/* Read both LEB 0 and LEB 1 into memory */
427 	ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
428 		leb[seb->lnum] = vzalloc(ubi->vtbl_size);
429 		if (!leb[seb->lnum]) {
430 			err = -ENOMEM;
431 			goto out_free;
432 		}
433 
434 		err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
435 				       ubi->vtbl_size);
436 		if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
437 			/*
438 			 * Scrub the PEB later. Note, -EBADMSG indicates an
439 			 * uncorrectable ECC error, but we have our own CRC and
440 			 * the data will be checked later. If the data is OK,
441 			 * the PEB will be scrubbed (because we set
442 			 * seb->scrub). If the data is not OK, the contents of
443 			 * the PEB will be recovered from the second copy, and
444 			 * seb->scrub will be cleared in
445 			 * 'ubi_scan_add_used()'.
446 			 */
447 			seb->scrub = 1;
448 		else if (err)
449 			goto out_free;
450 	}
451 
452 	err = -EINVAL;
453 	if (leb[0]) {
454 		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
455 		if (leb_corrupted[0] < 0)
456 			goto out_free;
457 	}
458 
459 	if (!leb_corrupted[0]) {
460 		/* LEB 0 is OK */
461 		if (leb[1])
462 			leb_corrupted[1] = memcmp(leb[0], leb[1],
463 						  ubi->vtbl_size);
464 		if (leb_corrupted[1]) {
465 			ubi_warn("volume table copy #2 is corrupted");
466 			err = create_vtbl(ubi, si, 1, leb[0]);
467 			if (err)
468 				goto out_free;
469 			ubi_msg("volume table was restored");
470 		}
471 
472 		/* Both LEB 1 and LEB 2 are OK and consistent */
473 		vfree(leb[1]);
474 		return leb[0];
475 	} else {
476 		/* LEB 0 is corrupted or does not exist */
477 		if (leb[1]) {
478 			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
479 			if (leb_corrupted[1] < 0)
480 				goto out_free;
481 		}
482 		if (leb_corrupted[1]) {
483 			/* Both LEB 0 and LEB 1 are corrupted */
484 			ubi_err("both volume tables are corrupted");
485 			goto out_free;
486 		}
487 
488 		ubi_warn("volume table copy #1 is corrupted");
489 		err = create_vtbl(ubi, si, 0, leb[1]);
490 		if (err)
491 			goto out_free;
492 		ubi_msg("volume table was restored");
493 
494 		vfree(leb[0]);
495 		return leb[1];
496 	}
497 
498 out_free:
499 	vfree(leb[0]);
500 	vfree(leb[1]);
501 	return ERR_PTR(err);
502 }
503 
504 /**
505  * create_empty_lvol - create empty layout volume.
506  * @ubi: UBI device description object
507  * @si: scanning information
508  *
509  * This function returns volume table contents in case of success and a
510  * negative error code in case of failure.
511  */
512 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
513 						 struct ubi_scan_info *si)
514 {
515 	int i;
516 	struct ubi_vtbl_record *vtbl;
517 
518 	vtbl = vzalloc(ubi->vtbl_size);
519 	if (!vtbl)
520 		return ERR_PTR(-ENOMEM);
521 
522 	for (i = 0; i < ubi->vtbl_slots; i++)
523 		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
524 
525 	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
526 		int err;
527 
528 		err = create_vtbl(ubi, si, i, vtbl);
529 		if (err) {
530 			vfree(vtbl);
531 			return ERR_PTR(err);
532 		}
533 	}
534 
535 	return vtbl;
536 }
537 
538 /**
539  * init_volumes - initialize volume information for existing volumes.
540  * @ubi: UBI device description object
541  * @si: scanning information
542  * @vtbl: volume table
543  *
544  * This function allocates volume description objects for existing volumes.
545  * Returns zero in case of success and a negative error code in case of
546  * failure.
547  */
548 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
549 			const struct ubi_vtbl_record *vtbl)
550 {
551 	int i, reserved_pebs = 0;
552 	struct ubi_scan_volume *sv;
553 	struct ubi_volume *vol;
554 
555 	for (i = 0; i < ubi->vtbl_slots; i++) {
556 		cond_resched();
557 
558 		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
559 			continue; /* Empty record */
560 
561 		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
562 		if (!vol)
563 			return -ENOMEM;
564 
565 		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
566 		vol->alignment = be32_to_cpu(vtbl[i].alignment);
567 		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
568 		vol->upd_marker = vtbl[i].upd_marker;
569 		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
570 					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
571 		vol->name_len = be16_to_cpu(vtbl[i].name_len);
572 		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
573 		memcpy(vol->name, vtbl[i].name, vol->name_len);
574 		vol->name[vol->name_len] = '\0';
575 		vol->vol_id = i;
576 
577 		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
578 			/* Auto re-size flag may be set only for one volume */
579 			if (ubi->autoresize_vol_id != -1) {
580 				ubi_err("more than one auto-resize volume (%d "
581 					"and %d)", ubi->autoresize_vol_id, i);
582 				kfree(vol);
583 				return -EINVAL;
584 			}
585 
586 			ubi->autoresize_vol_id = i;
587 		}
588 
589 		ubi_assert(!ubi->volumes[i]);
590 		ubi->volumes[i] = vol;
591 		ubi->vol_count += 1;
592 		vol->ubi = ubi;
593 		reserved_pebs += vol->reserved_pebs;
594 
595 		/*
596 		 * In case of dynamic volume UBI knows nothing about how many
597 		 * data is stored there. So assume the whole volume is used.
598 		 */
599 		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
600 			vol->used_ebs = vol->reserved_pebs;
601 			vol->last_eb_bytes = vol->usable_leb_size;
602 			vol->used_bytes =
603 				(long long)vol->used_ebs * vol->usable_leb_size;
604 			continue;
605 		}
606 
607 		/* Static volumes only */
608 		sv = ubi_scan_find_sv(si, i);
609 		if (!sv) {
610 			/*
611 			 * No eraseblocks belonging to this volume found. We
612 			 * don't actually know whether this static volume is
613 			 * completely corrupted or just contains no data. And
614 			 * we cannot know this as long as data size is not
615 			 * stored on flash. So we just assume the volume is
616 			 * empty. FIXME: this should be handled.
617 			 */
618 			continue;
619 		}
620 
621 		if (sv->leb_count != sv->used_ebs) {
622 			/*
623 			 * We found a static volume which misses several
624 			 * eraseblocks. Treat it as corrupted.
625 			 */
626 			ubi_warn("static volume %d misses %d LEBs - corrupted",
627 				 sv->vol_id, sv->used_ebs - sv->leb_count);
628 			vol->corrupted = 1;
629 			continue;
630 		}
631 
632 		vol->used_ebs = sv->used_ebs;
633 		vol->used_bytes =
634 			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
635 		vol->used_bytes += sv->last_data_size;
636 		vol->last_eb_bytes = sv->last_data_size;
637 	}
638 
639 	/* And add the layout volume */
640 	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
641 	if (!vol)
642 		return -ENOMEM;
643 
644 	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
645 	vol->alignment = 1;
646 	vol->vol_type = UBI_DYNAMIC_VOLUME;
647 	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
648 	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
649 	vol->usable_leb_size = ubi->leb_size;
650 	vol->used_ebs = vol->reserved_pebs;
651 	vol->last_eb_bytes = vol->reserved_pebs;
652 	vol->used_bytes =
653 		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
654 	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
655 	vol->ref_count = 1;
656 
657 	ubi_assert(!ubi->volumes[i]);
658 	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
659 	reserved_pebs += vol->reserved_pebs;
660 	ubi->vol_count += 1;
661 	vol->ubi = ubi;
662 
663 	if (reserved_pebs > ubi->avail_pebs) {
664 		ubi_err("not enough PEBs, required %d, available %d",
665 			reserved_pebs, ubi->avail_pebs);
666 		if (ubi->corr_peb_count)
667 			ubi_err("%d PEBs are corrupted and not used",
668 				ubi->corr_peb_count);
669 	}
670 	ubi->rsvd_pebs += reserved_pebs;
671 	ubi->avail_pebs -= reserved_pebs;
672 
673 	return 0;
674 }
675 
676 /**
677  * check_sv - check volume scanning information.
678  * @vol: UBI volume description object
679  * @sv: volume scanning information
680  *
681  * This function returns zero if the volume scanning information is consistent
682  * to the data read from the volume tabla, and %-EINVAL if not.
683  */
684 static int check_sv(const struct ubi_volume *vol,
685 		    const struct ubi_scan_volume *sv)
686 {
687 	int err;
688 
689 	if (sv->highest_lnum >= vol->reserved_pebs) {
690 		err = 1;
691 		goto bad;
692 	}
693 	if (sv->leb_count > vol->reserved_pebs) {
694 		err = 2;
695 		goto bad;
696 	}
697 	if (sv->vol_type != vol->vol_type) {
698 		err = 3;
699 		goto bad;
700 	}
701 	if (sv->used_ebs > vol->reserved_pebs) {
702 		err = 4;
703 		goto bad;
704 	}
705 	if (sv->data_pad != vol->data_pad) {
706 		err = 5;
707 		goto bad;
708 	}
709 	return 0;
710 
711 bad:
712 	ubi_err("bad scanning information, error %d", err);
713 	ubi_dbg_dump_sv(sv);
714 	ubi_dbg_dump_vol_info(vol);
715 	return -EINVAL;
716 }
717 
718 /**
719  * check_scanning_info - check that scanning information.
720  * @ubi: UBI device description object
721  * @si: scanning information
722  *
723  * Even though we protect on-flash data by CRC checksums, we still don't trust
724  * the media. This function ensures that scanning information is consistent to
725  * the information read from the volume table. Returns zero if the scanning
726  * information is OK and %-EINVAL if it is not.
727  */
728 static int check_scanning_info(const struct ubi_device *ubi,
729 			       struct ubi_scan_info *si)
730 {
731 	int err, i;
732 	struct ubi_scan_volume *sv;
733 	struct ubi_volume *vol;
734 
735 	if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
736 		ubi_err("scanning found %d volumes, maximum is %d + %d",
737 			si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
738 		return -EINVAL;
739 	}
740 
741 	if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
742 	    si->highest_vol_id < UBI_INTERNAL_VOL_START) {
743 		ubi_err("too large volume ID %d found by scanning",
744 			si->highest_vol_id);
745 		return -EINVAL;
746 	}
747 
748 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
749 		cond_resched();
750 
751 		sv = ubi_scan_find_sv(si, i);
752 		vol = ubi->volumes[i];
753 		if (!vol) {
754 			if (sv)
755 				ubi_scan_rm_volume(si, sv);
756 			continue;
757 		}
758 
759 		if (vol->reserved_pebs == 0) {
760 			ubi_assert(i < ubi->vtbl_slots);
761 
762 			if (!sv)
763 				continue;
764 
765 			/*
766 			 * During scanning we found a volume which does not
767 			 * exist according to the information in the volume
768 			 * table. This must have happened due to an unclean
769 			 * reboot while the volume was being removed. Discard
770 			 * these eraseblocks.
771 			 */
772 			ubi_msg("finish volume %d removal", sv->vol_id);
773 			ubi_scan_rm_volume(si, sv);
774 		} else if (sv) {
775 			err = check_sv(vol, sv);
776 			if (err)
777 				return err;
778 		}
779 	}
780 
781 	return 0;
782 }
783 
784 /**
785  * ubi_read_volume_table - read the volume table.
786  * @ubi: UBI device description object
787  * @si: scanning information
788  *
789  * This function reads volume table, checks it, recover from errors if needed,
790  * or creates it if needed. Returns zero in case of success and a negative
791  * error code in case of failure.
792  */
793 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
794 {
795 	int i, err;
796 	struct ubi_scan_volume *sv;
797 
798 	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
799 
800 	/*
801 	 * The number of supported volumes is limited by the eraseblock size
802 	 * and by the UBI_MAX_VOLUMES constant.
803 	 */
804 	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
805 	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
806 		ubi->vtbl_slots = UBI_MAX_VOLUMES;
807 
808 	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
809 	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
810 
811 	sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
812 	if (!sv) {
813 		/*
814 		 * No logical eraseblocks belonging to the layout volume were
815 		 * found. This could mean that the flash is just empty. In
816 		 * this case we create empty layout volume.
817 		 *
818 		 * But if flash is not empty this must be a corruption or the
819 		 * MTD device just contains garbage.
820 		 */
821 		if (si->is_empty) {
822 			ubi->vtbl = create_empty_lvol(ubi, si);
823 			if (IS_ERR(ubi->vtbl))
824 				return PTR_ERR(ubi->vtbl);
825 		} else {
826 			ubi_err("the layout volume was not found");
827 			return -EINVAL;
828 		}
829 	} else {
830 		if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
831 			/* This must not happen with proper UBI images */
832 			dbg_err("too many LEBs (%d) in layout volume",
833 				sv->leb_count);
834 			return -EINVAL;
835 		}
836 
837 		ubi->vtbl = process_lvol(ubi, si, sv);
838 		if (IS_ERR(ubi->vtbl))
839 			return PTR_ERR(ubi->vtbl);
840 	}
841 
842 	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
843 
844 	/*
845 	 * The layout volume is OK, initialize the corresponding in-RAM data
846 	 * structures.
847 	 */
848 	err = init_volumes(ubi, si, ubi->vtbl);
849 	if (err)
850 		goto out_free;
851 
852 	/*
853 	 * Make sure that the scanning information is consistent to the
854 	 * information stored in the volume table.
855 	 */
856 	err = check_scanning_info(ubi, si);
857 	if (err)
858 		goto out_free;
859 
860 	return 0;
861 
862 out_free:
863 	vfree(ubi->vtbl);
864 	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
865 		kfree(ubi->volumes[i]);
866 		ubi->volumes[i] = NULL;
867 	}
868 	return err;
869 }
870 
871 #ifdef CONFIG_MTD_UBI_DEBUG
872 
873 /**
874  * paranoid_vtbl_check - check volume table.
875  * @ubi: UBI device description object
876  */
877 static void paranoid_vtbl_check(const struct ubi_device *ubi)
878 {
879 	if (!(ubi_chk_flags & UBI_CHK_GEN))
880 		return;
881 
882 	if (vtbl_check(ubi, ubi->vtbl)) {
883 		ubi_err("paranoid check failed");
884 		BUG();
885 	}
886 }
887 
888 #endif /* CONFIG_MTD_UBI_DEBUG */
889