xref: /openbmc/linux/drivers/mtd/ubi/upd.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2006
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  *
8  * Jan 2007: Alexander Schmidt, hacked per-volume update.
9  */
10 
11 /*
12  * This file contains implementation of the volume update and atomic LEB change
13  * functionality.
14  *
15  * The update operation is based on the per-volume update marker which is
16  * stored in the volume table. The update marker is set before the update
17  * starts, and removed after the update has been finished. So if the update was
18  * interrupted by an unclean re-boot or due to some other reasons, the update
19  * marker stays on the flash media and UBI finds it when it attaches the MTD
20  * device next time. If the update marker is set for a volume, the volume is
21  * treated as damaged and most I/O operations are prohibited. Only a new update
22  * operation is allowed.
23  *
24  * Note, in general it is possible to implement the update operation as a
25  * transaction with a roll-back capability.
26  */
27 
28 #include <linux/err.h>
29 #include <linux/uaccess.h>
30 #include <linux/math64.h>
31 #include "ubi.h"
32 
33 /**
34  * set_update_marker - set update marker.
35  * @ubi: UBI device description object
36  * @vol: volume description object
37  *
38  * This function sets the update marker flag for volume @vol. Returns zero
39  * in case of success and a negative error code in case of failure.
40  */
41 static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
42 {
43 	int err;
44 	struct ubi_vtbl_record vtbl_rec;
45 
46 	dbg_gen("set update marker for volume %d", vol->vol_id);
47 
48 	if (vol->upd_marker) {
49 		ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
50 		dbg_gen("already set");
51 		return 0;
52 	}
53 
54 	vtbl_rec = ubi->vtbl[vol->vol_id];
55 	vtbl_rec.upd_marker = 1;
56 
57 	mutex_lock(&ubi->device_mutex);
58 	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
59 	vol->upd_marker = 1;
60 	mutex_unlock(&ubi->device_mutex);
61 	return err;
62 }
63 
64 /**
65  * clear_update_marker - clear update marker.
66  * @ubi: UBI device description object
67  * @vol: volume description object
68  * @bytes: new data size in bytes
69  *
70  * This function clears the update marker for volume @vol, sets new volume
71  * data size and clears the "corrupted" flag (static volumes only). Returns
72  * zero in case of success and a negative error code in case of failure.
73  */
74 static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
75 			       long long bytes)
76 {
77 	int err;
78 	struct ubi_vtbl_record vtbl_rec;
79 
80 	dbg_gen("clear update marker for volume %d", vol->vol_id);
81 
82 	vtbl_rec = ubi->vtbl[vol->vol_id];
83 	ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
84 	vtbl_rec.upd_marker = 0;
85 
86 	if (vol->vol_type == UBI_STATIC_VOLUME) {
87 		vol->corrupted = 0;
88 		vol->used_bytes = bytes;
89 		vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
90 					    &vol->last_eb_bytes);
91 		if (vol->last_eb_bytes)
92 			vol->used_ebs += 1;
93 		else
94 			vol->last_eb_bytes = vol->usable_leb_size;
95 	}
96 
97 	mutex_lock(&ubi->device_mutex);
98 	err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
99 	vol->upd_marker = 0;
100 	mutex_unlock(&ubi->device_mutex);
101 	return err;
102 }
103 
104 /**
105  * ubi_start_update - start volume update.
106  * @ubi: UBI device description object
107  * @vol: volume description object
108  * @bytes: update bytes
109  *
110  * This function starts volume update operation. If @bytes is zero, the volume
111  * is just wiped out. Returns zero in case of success and a negative error code
112  * in case of failure.
113  */
114 int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
115 		     long long bytes)
116 {
117 	int i, err;
118 
119 	dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
120 	ubi_assert(!vol->updating && !vol->changing_leb);
121 	vol->updating = 1;
122 
123 	vol->upd_buf = vmalloc(ubi->leb_size);
124 	if (!vol->upd_buf)
125 		return -ENOMEM;
126 
127 	err = set_update_marker(ubi, vol);
128 	if (err)
129 		return err;
130 
131 	/* Before updating - wipe out the volume */
132 	for (i = 0; i < vol->reserved_pebs; i++) {
133 		err = ubi_eba_unmap_leb(ubi, vol, i);
134 		if (err)
135 			return err;
136 	}
137 
138 	err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
139 	if (err)
140 		return err;
141 
142 	if (bytes == 0) {
143 		err = clear_update_marker(ubi, vol, 0);
144 		if (err)
145 			return err;
146 
147 		vfree(vol->upd_buf);
148 		vol->updating = 0;
149 		return 0;
150 	}
151 
152 	vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
153 			       vol->usable_leb_size);
154 	vol->upd_bytes = bytes;
155 	vol->upd_received = 0;
156 	return 0;
157 }
158 
159 /**
160  * ubi_start_leb_change - start atomic LEB change.
161  * @ubi: UBI device description object
162  * @vol: volume description object
163  * @req: operation request
164  *
165  * This function starts atomic LEB change operation. Returns zero in case of
166  * success and a negative error code in case of failure.
167  */
168 int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
169 			 const struct ubi_leb_change_req *req)
170 {
171 	ubi_assert(!vol->updating && !vol->changing_leb);
172 
173 	dbg_gen("start changing LEB %d:%d, %u bytes",
174 		vol->vol_id, req->lnum, req->bytes);
175 	if (req->bytes == 0)
176 		return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0);
177 
178 	vol->upd_bytes = req->bytes;
179 	vol->upd_received = 0;
180 	vol->changing_leb = 1;
181 	vol->ch_lnum = req->lnum;
182 
183 	vol->upd_buf = vmalloc(ALIGN((int)req->bytes, ubi->min_io_size));
184 	if (!vol->upd_buf)
185 		return -ENOMEM;
186 
187 	return 0;
188 }
189 
190 /**
191  * write_leb - write update data.
192  * @ubi: UBI device description object
193  * @vol: volume description object
194  * @lnum: logical eraseblock number
195  * @buf: data to write
196  * @len: data size
197  * @used_ebs: how many logical eraseblocks will this volume contain (static
198  * volumes only)
199  *
200  * This function writes update data to corresponding logical eraseblock. In
201  * case of dynamic volume, this function checks if the data contains 0xFF bytes
202  * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
203  * buffer contains only 0xFF bytes, the LEB is left unmapped.
204  *
205  * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
206  * that we want to make sure that more data may be appended to the logical
207  * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
208  * this PEB won't be writable anymore. So if one writes the file-system image
209  * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
210  * space is writable after the update.
211  *
212  * We do not do this for static volumes because they are read-only. But this
213  * also cannot be done because we have to store per-LEB CRC and the correct
214  * data length.
215  *
216  * This function returns zero in case of success and a negative error code in
217  * case of failure.
218  */
219 static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
220 		     void *buf, int len, int used_ebs)
221 {
222 	int err;
223 
224 	if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
225 		int l = ALIGN(len, ubi->min_io_size);
226 
227 		memset(buf + len, 0xFF, l - len);
228 		len = ubi_calc_data_len(ubi, buf, l);
229 		if (len == 0) {
230 			dbg_gen("all %d bytes contain 0xFF - skip", len);
231 			return 0;
232 		}
233 
234 		err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len);
235 	} else {
236 		/*
237 		 * When writing static volume, and this is the last logical
238 		 * eraseblock, the length (@len) does not have to be aligned to
239 		 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
240 		 * function accepts exact (unaligned) length and stores it in
241 		 * the VID header. And it takes care of proper alignment by
242 		 * padding the buffer. Here we just make sure the padding will
243 		 * contain zeros, not random trash.
244 		 */
245 		memset(buf + len, 0, vol->usable_leb_size - len);
246 		err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len, used_ebs);
247 	}
248 
249 	return err;
250 }
251 
252 /**
253  * ubi_more_update_data - write more update data.
254  * @ubi: UBI device description object
255  * @vol: volume description object
256  * @buf: write data (user-space memory buffer)
257  * @count: how much bytes to write
258  *
259  * This function writes more data to the volume which is being updated. It may
260  * be called arbitrary number of times until all the update data arriveis. This
261  * function returns %0 in case of success, number of bytes written during the
262  * last call if the whole volume update has been successfully finished, and a
263  * negative error code in case of failure.
264  */
265 int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
266 			 const void __user *buf, int count)
267 {
268 	int lnum, offs, err = 0, len, to_write = count;
269 
270 	dbg_gen("write %d of %lld bytes, %lld already passed",
271 		count, vol->upd_bytes, vol->upd_received);
272 
273 	if (ubi->ro_mode)
274 		return -EROFS;
275 
276 	lnum = div_u64_rem(vol->upd_received,  vol->usable_leb_size, &offs);
277 	if (vol->upd_received + count > vol->upd_bytes)
278 		to_write = count = vol->upd_bytes - vol->upd_received;
279 
280 	/*
281 	 * When updating volumes, we accumulate whole logical eraseblock of
282 	 * data and write it at once.
283 	 */
284 	if (offs != 0) {
285 		/*
286 		 * This is a write to the middle of the logical eraseblock. We
287 		 * copy the data to our update buffer and wait for more data or
288 		 * flush it if the whole eraseblock is written or the update
289 		 * is finished.
290 		 */
291 
292 		len = vol->usable_leb_size - offs;
293 		if (len > count)
294 			len = count;
295 
296 		err = copy_from_user(vol->upd_buf + offs, buf, len);
297 		if (err)
298 			return -EFAULT;
299 
300 		if (offs + len == vol->usable_leb_size ||
301 		    vol->upd_received + len == vol->upd_bytes) {
302 			int flush_len = offs + len;
303 
304 			/*
305 			 * OK, we gathered either the whole eraseblock or this
306 			 * is the last chunk, it's time to flush the buffer.
307 			 */
308 			ubi_assert(flush_len <= vol->usable_leb_size);
309 			err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
310 					vol->upd_ebs);
311 			if (err)
312 				return err;
313 		}
314 
315 		vol->upd_received += len;
316 		count -= len;
317 		buf += len;
318 		lnum += 1;
319 	}
320 
321 	/*
322 	 * If we've got more to write, let's continue. At this point we know we
323 	 * are starting from the beginning of an eraseblock.
324 	 */
325 	while (count) {
326 		if (count > vol->usable_leb_size)
327 			len = vol->usable_leb_size;
328 		else
329 			len = count;
330 
331 		err = copy_from_user(vol->upd_buf, buf, len);
332 		if (err)
333 			return -EFAULT;
334 
335 		if (len == vol->usable_leb_size ||
336 		    vol->upd_received + len == vol->upd_bytes) {
337 			err = write_leb(ubi, vol, lnum, vol->upd_buf,
338 					len, vol->upd_ebs);
339 			if (err)
340 				break;
341 		}
342 
343 		vol->upd_received += len;
344 		count -= len;
345 		lnum += 1;
346 		buf += len;
347 	}
348 
349 	ubi_assert(vol->upd_received <= vol->upd_bytes);
350 	if (vol->upd_received == vol->upd_bytes) {
351 		err = ubi_wl_flush(ubi, UBI_ALL, UBI_ALL);
352 		if (err)
353 			return err;
354 		/* The update is finished, clear the update marker */
355 		err = clear_update_marker(ubi, vol, vol->upd_bytes);
356 		if (err)
357 			return err;
358 		vol->updating = 0;
359 		err = to_write;
360 		vfree(vol->upd_buf);
361 	}
362 
363 	return err;
364 }
365 
366 /**
367  * ubi_more_leb_change_data - accept more data for atomic LEB change.
368  * @ubi: UBI device description object
369  * @vol: volume description object
370  * @buf: write data (user-space memory buffer)
371  * @count: how much bytes to write
372  *
373  * This function accepts more data to the volume which is being under the
374  * "atomic LEB change" operation. It may be called arbitrary number of times
375  * until all data arrives. This function returns %0 in case of success, number
376  * of bytes written during the last call if the whole "atomic LEB change"
377  * operation has been successfully finished, and a negative error code in case
378  * of failure.
379  */
380 int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
381 			     const void __user *buf, int count)
382 {
383 	int err;
384 
385 	dbg_gen("write %d of %lld bytes, %lld already passed",
386 		count, vol->upd_bytes, vol->upd_received);
387 
388 	if (ubi->ro_mode)
389 		return -EROFS;
390 
391 	if (vol->upd_received + count > vol->upd_bytes)
392 		count = vol->upd_bytes - vol->upd_received;
393 
394 	err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
395 	if (err)
396 		return -EFAULT;
397 
398 	vol->upd_received += count;
399 
400 	if (vol->upd_received == vol->upd_bytes) {
401 		int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
402 
403 		memset(vol->upd_buf + vol->upd_bytes, 0xFF,
404 		       len - vol->upd_bytes);
405 		len = ubi_calc_data_len(ubi, vol->upd_buf, len);
406 		err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
407 						vol->upd_buf, len);
408 		if (err)
409 			return err;
410 	}
411 
412 	ubi_assert(vol->upd_received <= vol->upd_bytes);
413 	if (vol->upd_received == vol->upd_bytes) {
414 		vol->changing_leb = 0;
415 		err = count;
416 		vfree(vol->upd_buf);
417 	}
418 
419 	return err;
420 }
421