xref: /openbmc/linux/drivers/mtd/ubi/kapi.c (revision 47aab533)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /* This file mostly implements UBI kernel API functions */
9 
10 #include <linux/module.h>
11 #include <linux/err.h>
12 #include <linux/slab.h>
13 #include <linux/namei.h>
14 #include <linux/fs.h>
15 #include <asm/div64.h>
16 #include "ubi.h"
17 
18 /**
19  * ubi_do_get_device_info - get information about UBI device.
20  * @ubi: UBI device description object
21  * @di: the information is stored here
22  *
23  * This function is the same as 'ubi_get_device_info()', but it assumes the UBI
24  * device is locked and cannot disappear.
25  */
26 void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di)
27 {
28 	di->ubi_num = ubi->ubi_num;
29 	di->leb_size = ubi->leb_size;
30 	di->leb_start = ubi->leb_start;
31 	di->min_io_size = ubi->min_io_size;
32 	di->max_write_size = ubi->max_write_size;
33 	di->ro_mode = ubi->ro_mode;
34 	di->cdev = ubi->cdev.dev;
35 }
36 EXPORT_SYMBOL_GPL(ubi_do_get_device_info);
37 
38 /**
39  * ubi_get_device_info - get information about UBI device.
40  * @ubi_num: UBI device number
41  * @di: the information is stored here
42  *
43  * This function returns %0 in case of success, %-EINVAL if the UBI device
44  * number is invalid, and %-ENODEV if there is no such UBI device.
45  */
46 int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
47 {
48 	struct ubi_device *ubi;
49 
50 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
51 		return -EINVAL;
52 	ubi = ubi_get_device(ubi_num);
53 	if (!ubi)
54 		return -ENODEV;
55 	ubi_do_get_device_info(ubi, di);
56 	ubi_put_device(ubi);
57 	return 0;
58 }
59 EXPORT_SYMBOL_GPL(ubi_get_device_info);
60 
61 /**
62  * ubi_do_get_volume_info - get information about UBI volume.
63  * @ubi: UBI device description object
64  * @vol: volume description object
65  * @vi: the information is stored here
66  */
67 void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol,
68 			    struct ubi_volume_info *vi)
69 {
70 	vi->vol_id = vol->vol_id;
71 	vi->ubi_num = ubi->ubi_num;
72 	vi->size = vol->reserved_pebs;
73 	vi->used_bytes = vol->used_bytes;
74 	vi->vol_type = vol->vol_type;
75 	vi->corrupted = vol->corrupted;
76 	vi->upd_marker = vol->upd_marker;
77 	vi->alignment = vol->alignment;
78 	vi->usable_leb_size = vol->usable_leb_size;
79 	vi->name_len = vol->name_len;
80 	vi->name = vol->name;
81 	vi->cdev = vol->cdev.dev;
82 	vi->dev = &vol->dev;
83 }
84 
85 /**
86  * ubi_get_volume_info - get information about UBI volume.
87  * @desc: volume descriptor
88  * @vi: the information is stored here
89  */
90 void ubi_get_volume_info(struct ubi_volume_desc *desc,
91 			 struct ubi_volume_info *vi)
92 {
93 	ubi_do_get_volume_info(desc->vol->ubi, desc->vol, vi);
94 }
95 EXPORT_SYMBOL_GPL(ubi_get_volume_info);
96 
97 /**
98  * ubi_open_volume - open UBI volume.
99  * @ubi_num: UBI device number
100  * @vol_id: volume ID
101  * @mode: open mode
102  *
103  * The @mode parameter specifies if the volume should be opened in read-only
104  * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
105  * nobody else will be able to open this volume. UBI allows to have many volume
106  * readers and one writer at a time.
107  *
108  * If a static volume is being opened for the first time since boot, it will be
109  * checked by this function, which means it will be fully read and the CRC
110  * checksum of each logical eraseblock will be checked.
111  *
112  * This function returns volume descriptor in case of success and a negative
113  * error code in case of failure.
114  */
115 struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
116 {
117 	int err;
118 	struct ubi_volume_desc *desc;
119 	struct ubi_device *ubi;
120 	struct ubi_volume *vol;
121 
122 	dbg_gen("open device %d, volume %d, mode %d", ubi_num, vol_id, mode);
123 
124 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
125 		return ERR_PTR(-EINVAL);
126 
127 	if (mode != UBI_READONLY && mode != UBI_READWRITE &&
128 	    mode != UBI_EXCLUSIVE && mode != UBI_METAONLY)
129 		return ERR_PTR(-EINVAL);
130 
131 	/*
132 	 * First of all, we have to get the UBI device to prevent its removal.
133 	 */
134 	ubi = ubi_get_device(ubi_num);
135 	if (!ubi)
136 		return ERR_PTR(-ENODEV);
137 
138 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots) {
139 		err = -EINVAL;
140 		goto out_put_ubi;
141 	}
142 
143 	desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
144 	if (!desc) {
145 		err = -ENOMEM;
146 		goto out_put_ubi;
147 	}
148 
149 	err = -ENODEV;
150 	if (!try_module_get(THIS_MODULE))
151 		goto out_free;
152 
153 	spin_lock(&ubi->volumes_lock);
154 	vol = ubi->volumes[vol_id];
155 	if (!vol)
156 		goto out_unlock;
157 
158 	err = -EBUSY;
159 	switch (mode) {
160 	case UBI_READONLY:
161 		if (vol->exclusive)
162 			goto out_unlock;
163 		vol->readers += 1;
164 		break;
165 
166 	case UBI_READWRITE:
167 		if (vol->exclusive || vol->writers > 0)
168 			goto out_unlock;
169 		vol->writers += 1;
170 		break;
171 
172 	case UBI_EXCLUSIVE:
173 		if (vol->exclusive || vol->writers || vol->readers ||
174 		    vol->metaonly)
175 			goto out_unlock;
176 		vol->exclusive = 1;
177 		break;
178 
179 	case UBI_METAONLY:
180 		if (vol->metaonly || vol->exclusive)
181 			goto out_unlock;
182 		vol->metaonly = 1;
183 		break;
184 	}
185 	get_device(&vol->dev);
186 	vol->ref_count += 1;
187 	spin_unlock(&ubi->volumes_lock);
188 
189 	desc->vol = vol;
190 	desc->mode = mode;
191 
192 	mutex_lock(&ubi->ckvol_mutex);
193 	if (!vol->checked && !vol->skip_check) {
194 		/* This is the first open - check the volume */
195 		err = ubi_check_volume(ubi, vol_id);
196 		if (err < 0) {
197 			mutex_unlock(&ubi->ckvol_mutex);
198 			ubi_close_volume(desc);
199 			return ERR_PTR(err);
200 		}
201 		if (err == 1) {
202 			ubi_warn(ubi, "volume %d on UBI device %d is corrupted",
203 				 vol_id, ubi->ubi_num);
204 			vol->corrupted = 1;
205 		}
206 		vol->checked = 1;
207 	}
208 	mutex_unlock(&ubi->ckvol_mutex);
209 
210 	return desc;
211 
212 out_unlock:
213 	spin_unlock(&ubi->volumes_lock);
214 	module_put(THIS_MODULE);
215 out_free:
216 	kfree(desc);
217 out_put_ubi:
218 	ubi_err(ubi, "cannot open device %d, volume %d, error %d",
219 		ubi_num, vol_id, err);
220 	ubi_put_device(ubi);
221 	return ERR_PTR(err);
222 }
223 EXPORT_SYMBOL_GPL(ubi_open_volume);
224 
225 /**
226  * ubi_open_volume_nm - open UBI volume by name.
227  * @ubi_num: UBI device number
228  * @name: volume name
229  * @mode: open mode
230  *
231  * This function is similar to 'ubi_open_volume()', but opens a volume by name.
232  */
233 struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
234 					   int mode)
235 {
236 	int i, vol_id = -1, len;
237 	struct ubi_device *ubi;
238 	struct ubi_volume_desc *ret;
239 
240 	dbg_gen("open device %d, volume %s, mode %d", ubi_num, name, mode);
241 
242 	if (!name)
243 		return ERR_PTR(-EINVAL);
244 
245 	len = strnlen(name, UBI_VOL_NAME_MAX + 1);
246 	if (len > UBI_VOL_NAME_MAX)
247 		return ERR_PTR(-EINVAL);
248 
249 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
250 		return ERR_PTR(-EINVAL);
251 
252 	ubi = ubi_get_device(ubi_num);
253 	if (!ubi)
254 		return ERR_PTR(-ENODEV);
255 
256 	spin_lock(&ubi->volumes_lock);
257 	/* Walk all volumes of this UBI device */
258 	for (i = 0; i < ubi->vtbl_slots; i++) {
259 		struct ubi_volume *vol = ubi->volumes[i];
260 
261 		if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
262 			vol_id = i;
263 			break;
264 		}
265 	}
266 	spin_unlock(&ubi->volumes_lock);
267 
268 	if (vol_id >= 0)
269 		ret = ubi_open_volume(ubi_num, vol_id, mode);
270 	else
271 		ret = ERR_PTR(-ENODEV);
272 
273 	/*
274 	 * We should put the UBI device even in case of success, because
275 	 * 'ubi_open_volume()' took a reference as well.
276 	 */
277 	ubi_put_device(ubi);
278 	return ret;
279 }
280 EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
281 
282 /**
283  * ubi_open_volume_path - open UBI volume by its character device node path.
284  * @pathname: volume character device node path
285  * @mode: open mode
286  *
287  * This function is similar to 'ubi_open_volume()', but opens a volume the path
288  * to its character device node.
289  */
290 struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode)
291 {
292 	int error, ubi_num, vol_id;
293 	struct path path;
294 	struct kstat stat;
295 
296 	dbg_gen("open volume %s, mode %d", pathname, mode);
297 
298 	if (!pathname || !*pathname)
299 		return ERR_PTR(-EINVAL);
300 
301 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
302 	if (error)
303 		return ERR_PTR(error);
304 
305 	error = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
306 	path_put(&path);
307 	if (error)
308 		return ERR_PTR(error);
309 
310 	if (!S_ISCHR(stat.mode))
311 		return ERR_PTR(-EINVAL);
312 
313 	ubi_num = ubi_major2num(MAJOR(stat.rdev));
314 	vol_id = MINOR(stat.rdev) - 1;
315 
316 	if (vol_id >= 0 && ubi_num >= 0)
317 		return ubi_open_volume(ubi_num, vol_id, mode);
318 	return ERR_PTR(-ENODEV);
319 }
320 EXPORT_SYMBOL_GPL(ubi_open_volume_path);
321 
322 /**
323  * ubi_close_volume - close UBI volume.
324  * @desc: volume descriptor
325  */
326 void ubi_close_volume(struct ubi_volume_desc *desc)
327 {
328 	struct ubi_volume *vol = desc->vol;
329 	struct ubi_device *ubi = vol->ubi;
330 
331 	dbg_gen("close device %d, volume %d, mode %d",
332 		ubi->ubi_num, vol->vol_id, desc->mode);
333 
334 	spin_lock(&ubi->volumes_lock);
335 	switch (desc->mode) {
336 	case UBI_READONLY:
337 		vol->readers -= 1;
338 		break;
339 	case UBI_READWRITE:
340 		vol->writers -= 1;
341 		break;
342 	case UBI_EXCLUSIVE:
343 		vol->exclusive = 0;
344 		break;
345 	case UBI_METAONLY:
346 		vol->metaonly = 0;
347 		break;
348 	}
349 	vol->ref_count -= 1;
350 	spin_unlock(&ubi->volumes_lock);
351 
352 	kfree(desc);
353 	put_device(&vol->dev);
354 	ubi_put_device(ubi);
355 	module_put(THIS_MODULE);
356 }
357 EXPORT_SYMBOL_GPL(ubi_close_volume);
358 
359 /**
360  * leb_read_sanity_check - does sanity checks on read requests.
361  * @desc: volume descriptor
362  * @lnum: logical eraseblock number to read from
363  * @offset: offset within the logical eraseblock to read from
364  * @len: how many bytes to read
365  *
366  * This function is used by ubi_leb_read() and ubi_leb_read_sg()
367  * to perform sanity checks.
368  */
369 static int leb_read_sanity_check(struct ubi_volume_desc *desc, int lnum,
370 				 int offset, int len)
371 {
372 	struct ubi_volume *vol = desc->vol;
373 	struct ubi_device *ubi = vol->ubi;
374 	int vol_id = vol->vol_id;
375 
376 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
377 	    lnum >= vol->used_ebs || offset < 0 || len < 0 ||
378 	    offset + len > vol->usable_leb_size)
379 		return -EINVAL;
380 
381 	if (vol->vol_type == UBI_STATIC_VOLUME) {
382 		if (vol->used_ebs == 0)
383 			/* Empty static UBI volume */
384 			return 0;
385 		if (lnum == vol->used_ebs - 1 &&
386 		    offset + len > vol->last_eb_bytes)
387 			return -EINVAL;
388 	}
389 
390 	if (vol->upd_marker)
391 		return -EBADF;
392 
393 	return 0;
394 }
395 
396 /**
397  * ubi_leb_read - read data.
398  * @desc: volume descriptor
399  * @lnum: logical eraseblock number to read from
400  * @buf: buffer where to store the read data
401  * @offset: offset within the logical eraseblock to read from
402  * @len: how many bytes to read
403  * @check: whether UBI has to check the read data's CRC or not.
404  *
405  * This function reads data from offset @offset of logical eraseblock @lnum and
406  * stores the data at @buf. When reading from static volumes, @check specifies
407  * whether the data has to be checked or not. If yes, the whole logical
408  * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
409  * checksum is per-eraseblock). So checking may substantially slow down the
410  * read speed. The @check argument is ignored for dynamic volumes.
411  *
412  * In case of success, this function returns zero. In case of failure, this
413  * function returns a negative error code.
414  *
415  * %-EBADMSG error code is returned:
416  * o for both static and dynamic volumes if MTD driver has detected a data
417  *   integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
418  * o for static volumes in case of data CRC mismatch.
419  *
420  * If the volume is damaged because of an interrupted update this function just
421  * returns immediately with %-EBADF error code.
422  */
423 int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
424 		 int len, int check)
425 {
426 	struct ubi_volume *vol = desc->vol;
427 	struct ubi_device *ubi = vol->ubi;
428 	int err, vol_id = vol->vol_id;
429 
430 	dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
431 
432 	err = leb_read_sanity_check(desc, lnum, offset, len);
433 	if (err < 0)
434 		return err;
435 
436 	if (len == 0)
437 		return 0;
438 
439 	err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check);
440 	if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
441 		ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
442 		vol->corrupted = 1;
443 	}
444 
445 	return err;
446 }
447 EXPORT_SYMBOL_GPL(ubi_leb_read);
448 
449 
450 /**
451  * ubi_leb_read_sg - read data into a scatter gather list.
452  * @desc: volume descriptor
453  * @lnum: logical eraseblock number to read from
454  * @sgl: UBI scatter gather list to store the read data
455  * @offset: offset within the logical eraseblock to read from
456  * @len: how many bytes to read
457  * @check: whether UBI has to check the read data's CRC or not.
458  *
459  * This function works exactly like ubi_leb_read_sg(). But instead of
460  * storing the read data into a buffer it writes to an UBI scatter gather
461  * list.
462  */
463 int ubi_leb_read_sg(struct ubi_volume_desc *desc, int lnum, struct ubi_sgl *sgl,
464 		    int offset, int len, int check)
465 {
466 	struct ubi_volume *vol = desc->vol;
467 	struct ubi_device *ubi = vol->ubi;
468 	int err, vol_id = vol->vol_id;
469 
470 	dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
471 
472 	err = leb_read_sanity_check(desc, lnum, offset, len);
473 	if (err < 0)
474 		return err;
475 
476 	if (len == 0)
477 		return 0;
478 
479 	err = ubi_eba_read_leb_sg(ubi, vol, sgl, lnum, offset, len, check);
480 	if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
481 		ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
482 		vol->corrupted = 1;
483 	}
484 
485 	return err;
486 }
487 EXPORT_SYMBOL_GPL(ubi_leb_read_sg);
488 
489 /**
490  * ubi_leb_write - write data.
491  * @desc: volume descriptor
492  * @lnum: logical eraseblock number to write to
493  * @buf: data to write
494  * @offset: offset within the logical eraseblock where to write
495  * @len: how many bytes to write
496  *
497  * This function writes @len bytes of data from @buf to offset @offset of
498  * logical eraseblock @lnum.
499  *
500  * This function takes care of physical eraseblock write failures. If write to
501  * the physical eraseblock write operation fails, the logical eraseblock is
502  * re-mapped to another physical eraseblock, the data is recovered, and the
503  * write finishes. UBI has a pool of reserved physical eraseblocks for this.
504  *
505  * If all the data were successfully written, zero is returned. If an error
506  * occurred and UBI has not been able to recover from it, this function returns
507  * a negative error code. Note, in case of an error, it is possible that
508  * something was still written to the flash media, but that may be some
509  * garbage.
510  *
511  * If the volume is damaged because of an interrupted update this function just
512  * returns immediately with %-EBADF code.
513  */
514 int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
515 		  int offset, int len)
516 {
517 	struct ubi_volume *vol = desc->vol;
518 	struct ubi_device *ubi = vol->ubi;
519 	int vol_id = vol->vol_id;
520 
521 	dbg_gen("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
522 
523 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
524 		return -EINVAL;
525 
526 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
527 		return -EROFS;
528 
529 	if (!ubi_leb_valid(vol, lnum) || offset < 0 || len < 0 ||
530 	    offset + len > vol->usable_leb_size ||
531 	    offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1))
532 		return -EINVAL;
533 
534 	if (vol->upd_marker)
535 		return -EBADF;
536 
537 	if (len == 0)
538 		return 0;
539 
540 	return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len);
541 }
542 EXPORT_SYMBOL_GPL(ubi_leb_write);
543 
544 /*
545  * ubi_leb_change - change logical eraseblock atomically.
546  * @desc: volume descriptor
547  * @lnum: logical eraseblock number to change
548  * @buf: data to write
549  * @len: how many bytes to write
550  *
551  * This function changes the contents of a logical eraseblock atomically. @buf
552  * has to contain new logical eraseblock data, and @len - the length of the
553  * data, which has to be aligned. The length may be shorter than the logical
554  * eraseblock size, ant the logical eraseblock may be appended to more times
555  * later on. This function guarantees that in case of an unclean reboot the old
556  * contents is preserved. Returns zero in case of success and a negative error
557  * code in case of failure.
558  */
559 int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
560 		   int len)
561 {
562 	struct ubi_volume *vol = desc->vol;
563 	struct ubi_device *ubi = vol->ubi;
564 	int vol_id = vol->vol_id;
565 
566 	dbg_gen("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
567 
568 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
569 		return -EINVAL;
570 
571 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
572 		return -EROFS;
573 
574 	if (!ubi_leb_valid(vol, lnum) || len < 0 ||
575 	    len > vol->usable_leb_size || len & (ubi->min_io_size - 1))
576 		return -EINVAL;
577 
578 	if (vol->upd_marker)
579 		return -EBADF;
580 
581 	if (len == 0)
582 		return 0;
583 
584 	return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len);
585 }
586 EXPORT_SYMBOL_GPL(ubi_leb_change);
587 
588 /**
589  * ubi_leb_erase - erase logical eraseblock.
590  * @desc: volume descriptor
591  * @lnum: logical eraseblock number
592  *
593  * This function un-maps logical eraseblock @lnum and synchronously erases the
594  * correspondent physical eraseblock. Returns zero in case of success and a
595  * negative error code in case of failure.
596  *
597  * If the volume is damaged because of an interrupted update this function just
598  * returns immediately with %-EBADF code.
599  */
600 int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
601 {
602 	struct ubi_volume *vol = desc->vol;
603 	struct ubi_device *ubi = vol->ubi;
604 	int err;
605 
606 	dbg_gen("erase LEB %d:%d", vol->vol_id, lnum);
607 
608 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
609 		return -EROFS;
610 
611 	if (!ubi_leb_valid(vol, lnum))
612 		return -EINVAL;
613 
614 	if (vol->upd_marker)
615 		return -EBADF;
616 
617 	err = ubi_eba_unmap_leb(ubi, vol, lnum);
618 	if (err)
619 		return err;
620 
621 	return ubi_wl_flush(ubi, vol->vol_id, lnum);
622 }
623 EXPORT_SYMBOL_GPL(ubi_leb_erase);
624 
625 /**
626  * ubi_leb_unmap - un-map logical eraseblock.
627  * @desc: volume descriptor
628  * @lnum: logical eraseblock number
629  *
630  * This function un-maps logical eraseblock @lnum and schedules the
631  * corresponding physical eraseblock for erasure, so that it will eventually be
632  * physically erased in background. This operation is much faster than the
633  * erase operation.
634  *
635  * Unlike erase, the un-map operation does not guarantee that the logical
636  * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
637  * example, if several logical eraseblocks are un-mapped, and an unclean reboot
638  * happens after this, the logical eraseblocks will not necessarily be
639  * un-mapped again when this MTD device is attached. They may actually be
640  * mapped to the same physical eraseblocks again. So, this function has to be
641  * used with care.
642  *
643  * In other words, when un-mapping a logical eraseblock, UBI does not store
644  * any information about this on the flash media, it just marks the logical
645  * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
646  * eraseblock is physically erased, it will be mapped again to the same logical
647  * eraseblock when the MTD device is attached again.
648  *
649  * The main and obvious use-case of this function is when the contents of a
650  * logical eraseblock has to be re-written. Then it is much more efficient to
651  * first un-map it, then write new data, rather than first erase it, then write
652  * new data. Note, once new data has been written to the logical eraseblock,
653  * UBI guarantees that the old contents has gone forever. In other words, if an
654  * unclean reboot happens after the logical eraseblock has been un-mapped and
655  * then written to, it will contain the last written data.
656  *
657  * This function returns zero in case of success and a negative error code in
658  * case of failure. If the volume is damaged because of an interrupted update
659  * this function just returns immediately with %-EBADF code.
660  */
661 int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
662 {
663 	struct ubi_volume *vol = desc->vol;
664 	struct ubi_device *ubi = vol->ubi;
665 
666 	dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum);
667 
668 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
669 		return -EROFS;
670 
671 	if (!ubi_leb_valid(vol, lnum))
672 		return -EINVAL;
673 
674 	if (vol->upd_marker)
675 		return -EBADF;
676 
677 	return ubi_eba_unmap_leb(ubi, vol, lnum);
678 }
679 EXPORT_SYMBOL_GPL(ubi_leb_unmap);
680 
681 /**
682  * ubi_leb_map - map logical eraseblock to a physical eraseblock.
683  * @desc: volume descriptor
684  * @lnum: logical eraseblock number
685  *
686  * This function maps an un-mapped logical eraseblock @lnum to a physical
687  * eraseblock. This means, that after a successful invocation of this
688  * function the logical eraseblock @lnum will be empty (contain only %0xFF
689  * bytes) and be mapped to a physical eraseblock, even if an unclean reboot
690  * happens.
691  *
692  * This function returns zero in case of success, %-EBADF if the volume is
693  * damaged because of an interrupted update, %-EBADMSG if the logical
694  * eraseblock is already mapped, and other negative error codes in case of
695  * other failures.
696  */
697 int ubi_leb_map(struct ubi_volume_desc *desc, int lnum)
698 {
699 	struct ubi_volume *vol = desc->vol;
700 	struct ubi_device *ubi = vol->ubi;
701 
702 	dbg_gen("map LEB %d:%d", vol->vol_id, lnum);
703 
704 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
705 		return -EROFS;
706 
707 	if (!ubi_leb_valid(vol, lnum))
708 		return -EINVAL;
709 
710 	if (vol->upd_marker)
711 		return -EBADF;
712 
713 	if (ubi_eba_is_mapped(vol, lnum))
714 		return -EBADMSG;
715 
716 	return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
717 }
718 EXPORT_SYMBOL_GPL(ubi_leb_map);
719 
720 /**
721  * ubi_is_mapped - check if logical eraseblock is mapped.
722  * @desc: volume descriptor
723  * @lnum: logical eraseblock number
724  *
725  * This function checks if logical eraseblock @lnum is mapped to a physical
726  * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
727  * mean it will still be un-mapped after the UBI device is re-attached. The
728  * logical eraseblock may become mapped to the physical eraseblock it was last
729  * mapped to.
730  *
731  * This function returns %1 if the LEB is mapped, %0 if not, and a negative
732  * error code in case of failure. If the volume is damaged because of an
733  * interrupted update this function just returns immediately with %-EBADF error
734  * code.
735  */
736 int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
737 {
738 	struct ubi_volume *vol = desc->vol;
739 
740 	dbg_gen("test LEB %d:%d", vol->vol_id, lnum);
741 
742 	if (!ubi_leb_valid(vol, lnum))
743 		return -EINVAL;
744 
745 	if (vol->upd_marker)
746 		return -EBADF;
747 
748 	return ubi_eba_is_mapped(vol, lnum);
749 }
750 EXPORT_SYMBOL_GPL(ubi_is_mapped);
751 
752 /**
753  * ubi_sync - synchronize UBI device buffers.
754  * @ubi_num: UBI device to synchronize
755  *
756  * The underlying MTD device may cache data in hardware or in software. This
757  * function ensures the caches are flushed. Returns zero in case of success and
758  * a negative error code in case of failure.
759  */
760 int ubi_sync(int ubi_num)
761 {
762 	struct ubi_device *ubi;
763 
764 	ubi = ubi_get_device(ubi_num);
765 	if (!ubi)
766 		return -ENODEV;
767 
768 	mtd_sync(ubi->mtd);
769 	ubi_put_device(ubi);
770 	return 0;
771 }
772 EXPORT_SYMBOL_GPL(ubi_sync);
773 
774 /**
775  * ubi_flush - flush UBI work queue.
776  * @ubi_num: UBI device to flush work queue
777  * @vol_id: volume id to flush for
778  * @lnum: logical eraseblock number to flush for
779  *
780  * This function executes all pending works for a particular volume id / logical
781  * eraseblock number pair. If either value is set to %UBI_ALL, then it acts as
782  * a wildcard for all of the corresponding volume numbers or logical
783  * eraseblock numbers. It returns zero in case of success and a negative error
784  * code in case of failure.
785  */
786 int ubi_flush(int ubi_num, int vol_id, int lnum)
787 {
788 	struct ubi_device *ubi;
789 	int err = 0;
790 
791 	ubi = ubi_get_device(ubi_num);
792 	if (!ubi)
793 		return -ENODEV;
794 
795 	err = ubi_wl_flush(ubi, vol_id, lnum);
796 	ubi_put_device(ubi);
797 	return err;
798 }
799 EXPORT_SYMBOL_GPL(ubi_flush);
800 
801 BLOCKING_NOTIFIER_HEAD(ubi_notifiers);
802 
803 /**
804  * ubi_register_volume_notifier - register a volume notifier.
805  * @nb: the notifier description object
806  * @ignore_existing: if non-zero, do not send "added" notification for all
807  *                   already existing volumes
808  *
809  * This function registers a volume notifier, which means that
810  * 'nb->notifier_call()' will be invoked when an UBI  volume is created,
811  * removed, re-sized, re-named, or updated. The first argument of the function
812  * is the notification type. The second argument is pointer to a
813  * &struct ubi_notification object which describes the notification event.
814  * Using UBI API from the volume notifier is prohibited.
815  *
816  * This function returns zero in case of success and a negative error code
817  * in case of failure.
818  */
819 int ubi_register_volume_notifier(struct notifier_block *nb,
820 				 int ignore_existing)
821 {
822 	int err;
823 
824 	err = blocking_notifier_chain_register(&ubi_notifiers, nb);
825 	if (err != 0)
826 		return err;
827 	if (ignore_existing)
828 		return 0;
829 
830 	/*
831 	 * We are going to walk all UBI devices and all volumes, and
832 	 * notify the user about existing volumes by the %UBI_VOLUME_ADDED
833 	 * event. We have to lock the @ubi_devices_mutex to make sure UBI
834 	 * devices do not disappear.
835 	 */
836 	mutex_lock(&ubi_devices_mutex);
837 	ubi_enumerate_volumes(nb);
838 	mutex_unlock(&ubi_devices_mutex);
839 
840 	return err;
841 }
842 EXPORT_SYMBOL_GPL(ubi_register_volume_notifier);
843 
844 /**
845  * ubi_unregister_volume_notifier - unregister the volume notifier.
846  * @nb: the notifier description object
847  *
848  * This function unregisters volume notifier @nm and returns zero in case of
849  * success and a negative error code in case of failure.
850  */
851 int ubi_unregister_volume_notifier(struct notifier_block *nb)
852 {
853 	return blocking_notifier_chain_unregister(&ubi_notifiers, nb);
854 }
855 EXPORT_SYMBOL_GPL(ubi_unregister_volume_notifier);
856