1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 #ifdef CONFIG_MTD_UBI_DEBUG 95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); 96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 98 const struct ubi_ec_hdr *ec_hdr); 99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 101 const struct ubi_vid_hdr *vid_hdr); 102 #else 103 #define paranoid_check_not_bad(ubi, pnum) 0 104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 108 #endif 109 110 /** 111 * ubi_io_read - read data from a physical eraseblock. 112 * @ubi: UBI device description object 113 * @buf: buffer where to store the read data 114 * @pnum: physical eraseblock number to read from 115 * @offset: offset within the physical eraseblock from where to read 116 * @len: how many bytes to read 117 * 118 * This function reads data from offset @offset of physical eraseblock @pnum 119 * and stores the read data in the @buf buffer. The following return codes are 120 * possible: 121 * 122 * o %0 if all the requested data were successfully read; 123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 124 * correctable bit-flips were detected; this is harmless but may indicate 125 * that this eraseblock may become bad soon (but do not have to); 126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 127 * example it can be an ECC error in case of NAND; this most probably means 128 * that the data is corrupted; 129 * o %-EIO if some I/O error occurred; 130 * o other negative error codes in case of other errors. 131 */ 132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 133 int len) 134 { 135 int err, retries = 0; 136 size_t read; 137 loff_t addr; 138 139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 140 141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 143 ubi_assert(len > 0); 144 145 err = paranoid_check_not_bad(ubi, pnum); 146 if (err) 147 return err; 148 149 /* 150 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 151 * do not do this, the following may happen: 152 * 1. The buffer contains data from previous operation, e.g., read from 153 * another PEB previously. The data looks like expected, e.g., if we 154 * just do not read anything and return - the caller would not 155 * notice this. E.g., if we are reading a VID header, the buffer may 156 * contain a valid VID header from another PEB. 157 * 2. The driver is buggy and returns us success or -EBADMSG or 158 * -EUCLEAN, but it does not actually put any data to the buffer. 159 * 160 * This may confuse UBI or upper layers - they may think the buffer 161 * contains valid data while in fact it is just old data. This is 162 * especially possible because UBI (and UBIFS) relies on CRC, and 163 * treats data as correct even in case of ECC errors if the CRC is 164 * correct. 165 * 166 * Try to prevent this situation by changing the first byte of the 167 * buffer. 168 */ 169 *((uint8_t *)buf) ^= 0xFF; 170 171 addr = (loff_t)pnum * ubi->peb_size + offset; 172 retry: 173 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 174 if (err) { 175 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : ""; 176 177 if (err == -EUCLEAN) { 178 /* 179 * -EUCLEAN is reported if there was a bit-flip which 180 * was corrected, so this is harmless. 181 * 182 * We do not report about it here unless debugging is 183 * enabled. A corresponding message will be printed 184 * later, when it is has been scrubbed. 185 */ 186 dbg_msg("fixable bit-flip detected at PEB %d", pnum); 187 ubi_assert(len == read); 188 return UBI_IO_BITFLIPS; 189 } 190 191 if (retries++ < UBI_IO_RETRIES) { 192 dbg_io("error %d%s while reading %d bytes from PEB %d:%d," 193 " read only %zd bytes, retry", 194 err, errstr, len, pnum, offset, read); 195 yield(); 196 goto retry; 197 } 198 199 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " 200 "read %zd bytes", err, errstr, len, pnum, offset, read); 201 ubi_dbg_dump_stack(); 202 203 /* 204 * The driver should never return -EBADMSG if it failed to read 205 * all the requested data. But some buggy drivers might do 206 * this, so we change it to -EIO. 207 */ 208 if (read != len && err == -EBADMSG) { 209 ubi_assert(0); 210 err = -EIO; 211 } 212 } else { 213 ubi_assert(len == read); 214 215 if (ubi_dbg_is_bitflip()) { 216 dbg_gen("bit-flip (emulated)"); 217 err = UBI_IO_BITFLIPS; 218 } 219 } 220 221 return err; 222 } 223 224 /** 225 * ubi_io_write - write data to a physical eraseblock. 226 * @ubi: UBI device description object 227 * @buf: buffer with the data to write 228 * @pnum: physical eraseblock number to write to 229 * @offset: offset within the physical eraseblock where to write 230 * @len: how many bytes to write 231 * 232 * This function writes @len bytes of data from buffer @buf to offset @offset 233 * of physical eraseblock @pnum. If all the data were successfully written, 234 * zero is returned. If an error occurred, this function returns a negative 235 * error code. If %-EIO is returned, the physical eraseblock most probably went 236 * bad. 237 * 238 * Note, in case of an error, it is possible that something was still written 239 * to the flash media, but may be some garbage. 240 */ 241 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 242 int len) 243 { 244 int err; 245 size_t written; 246 loff_t addr; 247 248 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 249 250 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 251 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 252 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 253 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 254 255 if (ubi->ro_mode) { 256 ubi_err("read-only mode"); 257 return -EROFS; 258 } 259 260 /* The below has to be compiled out if paranoid checks are disabled */ 261 262 err = paranoid_check_not_bad(ubi, pnum); 263 if (err) 264 return err; 265 266 /* The area we are writing to has to contain all 0xFF bytes */ 267 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 268 if (err) 269 return err; 270 271 if (offset >= ubi->leb_start) { 272 /* 273 * We write to the data area of the physical eraseblock. Make 274 * sure it has valid EC and VID headers. 275 */ 276 err = paranoid_check_peb_ec_hdr(ubi, pnum); 277 if (err) 278 return err; 279 err = paranoid_check_peb_vid_hdr(ubi, pnum); 280 if (err) 281 return err; 282 } 283 284 if (ubi_dbg_is_write_failure()) { 285 dbg_err("cannot write %d bytes to PEB %d:%d " 286 "(emulated)", len, pnum, offset); 287 ubi_dbg_dump_stack(); 288 return -EIO; 289 } 290 291 addr = (loff_t)pnum * ubi->peb_size + offset; 292 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); 293 if (err) { 294 ubi_err("error %d while writing %d bytes to PEB %d:%d, written " 295 "%zd bytes", err, len, pnum, offset, written); 296 ubi_dbg_dump_stack(); 297 ubi_dbg_dump_flash(ubi, pnum, offset, len); 298 } else 299 ubi_assert(written == len); 300 301 if (!err) { 302 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); 303 if (err) 304 return err; 305 306 /* 307 * Since we always write sequentially, the rest of the PEB has 308 * to contain only 0xFF bytes. 309 */ 310 offset += len; 311 len = ubi->peb_size - offset; 312 if (len) 313 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 314 } 315 316 return err; 317 } 318 319 /** 320 * erase_callback - MTD erasure call-back. 321 * @ei: MTD erase information object. 322 * 323 * Note, even though MTD erase interface is asynchronous, all the current 324 * implementations are synchronous anyway. 325 */ 326 static void erase_callback(struct erase_info *ei) 327 { 328 wake_up_interruptible((wait_queue_head_t *)ei->priv); 329 } 330 331 /** 332 * do_sync_erase - synchronously erase a physical eraseblock. 333 * @ubi: UBI device description object 334 * @pnum: the physical eraseblock number to erase 335 * 336 * This function synchronously erases physical eraseblock @pnum and returns 337 * zero in case of success and a negative error code in case of failure. If 338 * %-EIO is returned, the physical eraseblock most probably went bad. 339 */ 340 static int do_sync_erase(struct ubi_device *ubi, int pnum) 341 { 342 int err, retries = 0; 343 struct erase_info ei; 344 wait_queue_head_t wq; 345 346 dbg_io("erase PEB %d", pnum); 347 348 retry: 349 init_waitqueue_head(&wq); 350 memset(&ei, 0, sizeof(struct erase_info)); 351 352 ei.mtd = ubi->mtd; 353 ei.addr = (loff_t)pnum * ubi->peb_size; 354 ei.len = ubi->peb_size; 355 ei.callback = erase_callback; 356 ei.priv = (unsigned long)&wq; 357 358 err = ubi->mtd->erase(ubi->mtd, &ei); 359 if (err) { 360 if (retries++ < UBI_IO_RETRIES) { 361 dbg_io("error %d while erasing PEB %d, retry", 362 err, pnum); 363 yield(); 364 goto retry; 365 } 366 ubi_err("cannot erase PEB %d, error %d", pnum, err); 367 ubi_dbg_dump_stack(); 368 return err; 369 } 370 371 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 372 ei.state == MTD_ERASE_FAILED); 373 if (err) { 374 ubi_err("interrupted PEB %d erasure", pnum); 375 return -EINTR; 376 } 377 378 if (ei.state == MTD_ERASE_FAILED) { 379 if (retries++ < UBI_IO_RETRIES) { 380 dbg_io("error while erasing PEB %d, retry", pnum); 381 yield(); 382 goto retry; 383 } 384 ubi_err("cannot erase PEB %d", pnum); 385 ubi_dbg_dump_stack(); 386 return -EIO; 387 } 388 389 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); 390 if (err) 391 return err; 392 393 if (ubi_dbg_is_erase_failure() && !err) { 394 dbg_err("cannot erase PEB %d (emulated)", pnum); 395 return -EIO; 396 } 397 398 return 0; 399 } 400 401 /* Patterns to write to a physical eraseblock when torturing it */ 402 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 403 404 /** 405 * torture_peb - test a supposedly bad physical eraseblock. 406 * @ubi: UBI device description object 407 * @pnum: the physical eraseblock number to test 408 * 409 * This function returns %-EIO if the physical eraseblock did not pass the 410 * test, a positive number of erase operations done if the test was 411 * successfully passed, and other negative error codes in case of other errors. 412 */ 413 static int torture_peb(struct ubi_device *ubi, int pnum) 414 { 415 int err, i, patt_count; 416 417 ubi_msg("run torture test for PEB %d", pnum); 418 patt_count = ARRAY_SIZE(patterns); 419 ubi_assert(patt_count > 0); 420 421 mutex_lock(&ubi->buf_mutex); 422 for (i = 0; i < patt_count; i++) { 423 err = do_sync_erase(ubi, pnum); 424 if (err) 425 goto out; 426 427 /* Make sure the PEB contains only 0xFF bytes */ 428 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 429 if (err) 430 goto out; 431 432 err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); 433 if (err == 0) { 434 ubi_err("erased PEB %d, but a non-0xFF byte found", 435 pnum); 436 err = -EIO; 437 goto out; 438 } 439 440 /* Write a pattern and check it */ 441 memset(ubi->peb_buf1, patterns[i], ubi->peb_size); 442 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 443 if (err) 444 goto out; 445 446 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); 447 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 448 if (err) 449 goto out; 450 451 err = ubi_check_pattern(ubi->peb_buf1, patterns[i], 452 ubi->peb_size); 453 if (err == 0) { 454 ubi_err("pattern %x checking failed for PEB %d", 455 patterns[i], pnum); 456 err = -EIO; 457 goto out; 458 } 459 } 460 461 err = patt_count; 462 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum); 463 464 out: 465 mutex_unlock(&ubi->buf_mutex); 466 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { 467 /* 468 * If a bit-flip or data integrity error was detected, the test 469 * has not passed because it happened on a freshly erased 470 * physical eraseblock which means something is wrong with it. 471 */ 472 ubi_err("read problems on freshly erased PEB %d, must be bad", 473 pnum); 474 err = -EIO; 475 } 476 return err; 477 } 478 479 /** 480 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 481 * @ubi: UBI device description object 482 * @pnum: physical eraseblock number to prepare 483 * 484 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 485 * algorithm: the PEB is first filled with zeroes, then it is erased. And 486 * filling with zeroes starts from the end of the PEB. This was observed with 487 * Spansion S29GL512N NOR flash. 488 * 489 * This means that in case of a power cut we may end up with intact data at the 490 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 491 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 492 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 493 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 494 * 495 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 496 * magic numbers in order to invalidate them and prevent the failures. Returns 497 * zero in case of success and a negative error code in case of failure. 498 */ 499 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 500 { 501 int err, err1; 502 size_t written; 503 loff_t addr; 504 uint32_t data = 0; 505 /* 506 * Note, we cannot generally define VID header buffers on stack, 507 * because of the way we deal with these buffers (see the header 508 * comment in this file). But we know this is a NOR-specific piece of 509 * code, so we can do this. But yes, this is error-prone and we should 510 * (pre-)allocate VID header buffer instead. 511 */ 512 struct ubi_vid_hdr vid_hdr; 513 514 /* 515 * It is important to first invalidate the EC header, and then the VID 516 * header. Otherwise a power cut may lead to valid EC header and 517 * invalid VID header, in which case UBI will treat this PEB as 518 * corrupted and will try to preserve it, and print scary warnings (see 519 * the header comment in scan.c for more information). 520 */ 521 addr = (loff_t)pnum * ubi->peb_size; 522 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); 523 if (!err) { 524 addr += ubi->vid_hdr_aloffset; 525 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, 526 (void *)&data); 527 if (!err) 528 return 0; 529 } 530 531 /* 532 * We failed to write to the media. This was observed with Spansion 533 * S29GL512N NOR flash. Most probably the previously eraseblock erasure 534 * was interrupted at a very inappropriate moment, so it became 535 * unwritable. In this case we probably anyway have garbage in this 536 * PEB. 537 */ 538 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 539 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 540 err1 == UBI_IO_FF) { 541 struct ubi_ec_hdr ec_hdr; 542 543 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 544 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 545 err1 == UBI_IO_FF) 546 /* 547 * Both VID and EC headers are corrupted, so we can 548 * safely erase this PEB and not afraid that it will be 549 * treated as a valid PEB in case of an unclean reboot. 550 */ 551 return 0; 552 } 553 554 /* 555 * The PEB contains a valid VID header, but we cannot invalidate it. 556 * Supposedly the flash media or the driver is screwed up, so return an 557 * error. 558 */ 559 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", 560 pnum, err, err1); 561 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); 562 return -EIO; 563 } 564 565 /** 566 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 567 * @ubi: UBI device description object 568 * @pnum: physical eraseblock number to erase 569 * @torture: if this physical eraseblock has to be tortured 570 * 571 * This function synchronously erases physical eraseblock @pnum. If @torture 572 * flag is not zero, the physical eraseblock is checked by means of writing 573 * different patterns to it and reading them back. If the torturing is enabled, 574 * the physical eraseblock is erased more than once. 575 * 576 * This function returns the number of erasures made in case of success, %-EIO 577 * if the erasure failed or the torturing test failed, and other negative error 578 * codes in case of other errors. Note, %-EIO means that the physical 579 * eraseblock is bad. 580 */ 581 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 582 { 583 int err, ret = 0; 584 585 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 586 587 err = paranoid_check_not_bad(ubi, pnum); 588 if (err != 0) 589 return err; 590 591 if (ubi->ro_mode) { 592 ubi_err("read-only mode"); 593 return -EROFS; 594 } 595 596 if (ubi->nor_flash) { 597 err = nor_erase_prepare(ubi, pnum); 598 if (err) 599 return err; 600 } 601 602 if (torture) { 603 ret = torture_peb(ubi, pnum); 604 if (ret < 0) 605 return ret; 606 } 607 608 err = do_sync_erase(ubi, pnum); 609 if (err) 610 return err; 611 612 return ret + 1; 613 } 614 615 /** 616 * ubi_io_is_bad - check if a physical eraseblock is bad. 617 * @ubi: UBI device description object 618 * @pnum: the physical eraseblock number to check 619 * 620 * This function returns a positive number if the physical eraseblock is bad, 621 * zero if not, and a negative error code if an error occurred. 622 */ 623 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 624 { 625 struct mtd_info *mtd = ubi->mtd; 626 627 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 628 629 if (ubi->bad_allowed) { 630 int ret; 631 632 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 633 if (ret < 0) 634 ubi_err("error %d while checking if PEB %d is bad", 635 ret, pnum); 636 else if (ret) 637 dbg_io("PEB %d is bad", pnum); 638 return ret; 639 } 640 641 return 0; 642 } 643 644 /** 645 * ubi_io_mark_bad - mark a physical eraseblock as bad. 646 * @ubi: UBI device description object 647 * @pnum: the physical eraseblock number to mark 648 * 649 * This function returns zero in case of success and a negative error code in 650 * case of failure. 651 */ 652 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 653 { 654 int err; 655 struct mtd_info *mtd = ubi->mtd; 656 657 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 658 659 if (ubi->ro_mode) { 660 ubi_err("read-only mode"); 661 return -EROFS; 662 } 663 664 if (!ubi->bad_allowed) 665 return 0; 666 667 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 668 if (err) 669 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 670 return err; 671 } 672 673 /** 674 * validate_ec_hdr - validate an erase counter header. 675 * @ubi: UBI device description object 676 * @ec_hdr: the erase counter header to check 677 * 678 * This function returns zero if the erase counter header is OK, and %1 if 679 * not. 680 */ 681 static int validate_ec_hdr(const struct ubi_device *ubi, 682 const struct ubi_ec_hdr *ec_hdr) 683 { 684 long long ec; 685 int vid_hdr_offset, leb_start; 686 687 ec = be64_to_cpu(ec_hdr->ec); 688 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 689 leb_start = be32_to_cpu(ec_hdr->data_offset); 690 691 if (ec_hdr->version != UBI_VERSION) { 692 ubi_err("node with incompatible UBI version found: " 693 "this UBI version is %d, image version is %d", 694 UBI_VERSION, (int)ec_hdr->version); 695 goto bad; 696 } 697 698 if (vid_hdr_offset != ubi->vid_hdr_offset) { 699 ubi_err("bad VID header offset %d, expected %d", 700 vid_hdr_offset, ubi->vid_hdr_offset); 701 goto bad; 702 } 703 704 if (leb_start != ubi->leb_start) { 705 ubi_err("bad data offset %d, expected %d", 706 leb_start, ubi->leb_start); 707 goto bad; 708 } 709 710 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 711 ubi_err("bad erase counter %lld", ec); 712 goto bad; 713 } 714 715 return 0; 716 717 bad: 718 ubi_err("bad EC header"); 719 ubi_dbg_dump_ec_hdr(ec_hdr); 720 ubi_dbg_dump_stack(); 721 return 1; 722 } 723 724 /** 725 * ubi_io_read_ec_hdr - read and check an erase counter header. 726 * @ubi: UBI device description object 727 * @pnum: physical eraseblock to read from 728 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 729 * header 730 * @verbose: be verbose if the header is corrupted or was not found 731 * 732 * This function reads erase counter header from physical eraseblock @pnum and 733 * stores it in @ec_hdr. This function also checks CRC checksum of the read 734 * erase counter header. The following codes may be returned: 735 * 736 * o %0 if the CRC checksum is correct and the header was successfully read; 737 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 738 * and corrected by the flash driver; this is harmless but may indicate that 739 * this eraseblock may become bad soon (but may be not); 740 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 741 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 742 * a data integrity error (uncorrectable ECC error in case of NAND); 743 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 744 * o a negative error code in case of failure. 745 */ 746 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 747 struct ubi_ec_hdr *ec_hdr, int verbose) 748 { 749 int err, read_err; 750 uint32_t crc, magic, hdr_crc; 751 752 dbg_io("read EC header from PEB %d", pnum); 753 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 754 755 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 756 if (read_err) { 757 if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) 758 return read_err; 759 760 /* 761 * We read all the data, but either a correctable bit-flip 762 * occurred, or MTD reported a data integrity error 763 * (uncorrectable ECC error in case of NAND). The former is 764 * harmless, the later may mean that the read data is 765 * corrupted. But we have a CRC check-sum and we will detect 766 * this. If the EC header is still OK, we just report this as 767 * there was a bit-flip, to force scrubbing. 768 */ 769 } 770 771 magic = be32_to_cpu(ec_hdr->magic); 772 if (magic != UBI_EC_HDR_MAGIC) { 773 if (read_err == -EBADMSG) 774 return UBI_IO_BAD_HDR_EBADMSG; 775 776 /* 777 * The magic field is wrong. Let's check if we have read all 778 * 0xFF. If yes, this physical eraseblock is assumed to be 779 * empty. 780 */ 781 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 782 /* The physical eraseblock is supposedly empty */ 783 if (verbose) 784 ubi_warn("no EC header found at PEB %d, " 785 "only 0xFF bytes", pnum); 786 dbg_bld("no EC header found at PEB %d, " 787 "only 0xFF bytes", pnum); 788 if (!read_err) 789 return UBI_IO_FF; 790 else 791 return UBI_IO_FF_BITFLIPS; 792 } 793 794 /* 795 * This is not a valid erase counter header, and these are not 796 * 0xFF bytes. Report that the header is corrupted. 797 */ 798 if (verbose) { 799 ubi_warn("bad magic number at PEB %d: %08x instead of " 800 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 801 ubi_dbg_dump_ec_hdr(ec_hdr); 802 } 803 dbg_bld("bad magic number at PEB %d: %08x instead of " 804 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 805 return UBI_IO_BAD_HDR; 806 } 807 808 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 809 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 810 811 if (hdr_crc != crc) { 812 if (verbose) { 813 ubi_warn("bad EC header CRC at PEB %d, calculated " 814 "%#08x, read %#08x", pnum, crc, hdr_crc); 815 ubi_dbg_dump_ec_hdr(ec_hdr); 816 } 817 dbg_bld("bad EC header CRC at PEB %d, calculated " 818 "%#08x, read %#08x", pnum, crc, hdr_crc); 819 820 if (!read_err) 821 return UBI_IO_BAD_HDR; 822 else 823 return UBI_IO_BAD_HDR_EBADMSG; 824 } 825 826 /* And of course validate what has just been read from the media */ 827 err = validate_ec_hdr(ubi, ec_hdr); 828 if (err) { 829 ubi_err("validation failed for PEB %d", pnum); 830 return -EINVAL; 831 } 832 833 /* 834 * If there was %-EBADMSG, but the header CRC is still OK, report about 835 * a bit-flip to force scrubbing on this PEB. 836 */ 837 return read_err ? UBI_IO_BITFLIPS : 0; 838 } 839 840 /** 841 * ubi_io_write_ec_hdr - write an erase counter header. 842 * @ubi: UBI device description object 843 * @pnum: physical eraseblock to write to 844 * @ec_hdr: the erase counter header to write 845 * 846 * This function writes erase counter header described by @ec_hdr to physical 847 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 848 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 849 * field. 850 * 851 * This function returns zero in case of success and a negative error code in 852 * case of failure. If %-EIO is returned, the physical eraseblock most probably 853 * went bad. 854 */ 855 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 856 struct ubi_ec_hdr *ec_hdr) 857 { 858 int err; 859 uint32_t crc; 860 861 dbg_io("write EC header to PEB %d", pnum); 862 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 863 864 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 865 ec_hdr->version = UBI_VERSION; 866 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 867 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 868 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 869 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 870 ec_hdr->hdr_crc = cpu_to_be32(crc); 871 872 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 873 if (err) 874 return err; 875 876 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 877 return err; 878 } 879 880 /** 881 * validate_vid_hdr - validate a volume identifier header. 882 * @ubi: UBI device description object 883 * @vid_hdr: the volume identifier header to check 884 * 885 * This function checks that data stored in the volume identifier header 886 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 887 */ 888 static int validate_vid_hdr(const struct ubi_device *ubi, 889 const struct ubi_vid_hdr *vid_hdr) 890 { 891 int vol_type = vid_hdr->vol_type; 892 int copy_flag = vid_hdr->copy_flag; 893 int vol_id = be32_to_cpu(vid_hdr->vol_id); 894 int lnum = be32_to_cpu(vid_hdr->lnum); 895 int compat = vid_hdr->compat; 896 int data_size = be32_to_cpu(vid_hdr->data_size); 897 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 898 int data_pad = be32_to_cpu(vid_hdr->data_pad); 899 int data_crc = be32_to_cpu(vid_hdr->data_crc); 900 int usable_leb_size = ubi->leb_size - data_pad; 901 902 if (copy_flag != 0 && copy_flag != 1) { 903 dbg_err("bad copy_flag"); 904 goto bad; 905 } 906 907 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 908 data_pad < 0) { 909 dbg_err("negative values"); 910 goto bad; 911 } 912 913 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 914 dbg_err("bad vol_id"); 915 goto bad; 916 } 917 918 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 919 dbg_err("bad compat"); 920 goto bad; 921 } 922 923 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 924 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 925 compat != UBI_COMPAT_REJECT) { 926 dbg_err("bad compat"); 927 goto bad; 928 } 929 930 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 931 dbg_err("bad vol_type"); 932 goto bad; 933 } 934 935 if (data_pad >= ubi->leb_size / 2) { 936 dbg_err("bad data_pad"); 937 goto bad; 938 } 939 940 if (vol_type == UBI_VID_STATIC) { 941 /* 942 * Although from high-level point of view static volumes may 943 * contain zero bytes of data, but no VID headers can contain 944 * zero at these fields, because they empty volumes do not have 945 * mapped logical eraseblocks. 946 */ 947 if (used_ebs == 0) { 948 dbg_err("zero used_ebs"); 949 goto bad; 950 } 951 if (data_size == 0) { 952 dbg_err("zero data_size"); 953 goto bad; 954 } 955 if (lnum < used_ebs - 1) { 956 if (data_size != usable_leb_size) { 957 dbg_err("bad data_size"); 958 goto bad; 959 } 960 } else if (lnum == used_ebs - 1) { 961 if (data_size == 0) { 962 dbg_err("bad data_size at last LEB"); 963 goto bad; 964 } 965 } else { 966 dbg_err("too high lnum"); 967 goto bad; 968 } 969 } else { 970 if (copy_flag == 0) { 971 if (data_crc != 0) { 972 dbg_err("non-zero data CRC"); 973 goto bad; 974 } 975 if (data_size != 0) { 976 dbg_err("non-zero data_size"); 977 goto bad; 978 } 979 } else { 980 if (data_size == 0) { 981 dbg_err("zero data_size of copy"); 982 goto bad; 983 } 984 } 985 if (used_ebs != 0) { 986 dbg_err("bad used_ebs"); 987 goto bad; 988 } 989 } 990 991 return 0; 992 993 bad: 994 ubi_err("bad VID header"); 995 ubi_dbg_dump_vid_hdr(vid_hdr); 996 ubi_dbg_dump_stack(); 997 return 1; 998 } 999 1000 /** 1001 * ubi_io_read_vid_hdr - read and check a volume identifier header. 1002 * @ubi: UBI device description object 1003 * @pnum: physical eraseblock number to read from 1004 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 1005 * identifier header 1006 * @verbose: be verbose if the header is corrupted or wasn't found 1007 * 1008 * This function reads the volume identifier header from physical eraseblock 1009 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 1010 * volume identifier header. The error codes are the same as in 1011 * 'ubi_io_read_ec_hdr()'. 1012 * 1013 * Note, the implementation of this function is also very similar to 1014 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 1015 */ 1016 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1017 struct ubi_vid_hdr *vid_hdr, int verbose) 1018 { 1019 int err, read_err; 1020 uint32_t crc, magic, hdr_crc; 1021 void *p; 1022 1023 dbg_io("read VID header from PEB %d", pnum); 1024 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1025 1026 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1027 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1028 ubi->vid_hdr_alsize); 1029 if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) 1030 return read_err; 1031 1032 magic = be32_to_cpu(vid_hdr->magic); 1033 if (magic != UBI_VID_HDR_MAGIC) { 1034 if (read_err == -EBADMSG) 1035 return UBI_IO_BAD_HDR_EBADMSG; 1036 1037 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1038 if (verbose) 1039 ubi_warn("no VID header found at PEB %d, " 1040 "only 0xFF bytes", pnum); 1041 dbg_bld("no VID header found at PEB %d, " 1042 "only 0xFF bytes", pnum); 1043 if (!read_err) 1044 return UBI_IO_FF; 1045 else 1046 return UBI_IO_FF_BITFLIPS; 1047 } 1048 1049 if (verbose) { 1050 ubi_warn("bad magic number at PEB %d: %08x instead of " 1051 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1052 ubi_dbg_dump_vid_hdr(vid_hdr); 1053 } 1054 dbg_bld("bad magic number at PEB %d: %08x instead of " 1055 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1056 return UBI_IO_BAD_HDR; 1057 } 1058 1059 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1060 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1061 1062 if (hdr_crc != crc) { 1063 if (verbose) { 1064 ubi_warn("bad CRC at PEB %d, calculated %#08x, " 1065 "read %#08x", pnum, crc, hdr_crc); 1066 ubi_dbg_dump_vid_hdr(vid_hdr); 1067 } 1068 dbg_bld("bad CRC at PEB %d, calculated %#08x, " 1069 "read %#08x", pnum, crc, hdr_crc); 1070 if (!read_err) 1071 return UBI_IO_BAD_HDR; 1072 else 1073 return UBI_IO_BAD_HDR_EBADMSG; 1074 } 1075 1076 err = validate_vid_hdr(ubi, vid_hdr); 1077 if (err) { 1078 ubi_err("validation failed for PEB %d", pnum); 1079 return -EINVAL; 1080 } 1081 1082 return read_err ? UBI_IO_BITFLIPS : 0; 1083 } 1084 1085 /** 1086 * ubi_io_write_vid_hdr - write a volume identifier header. 1087 * @ubi: UBI device description object 1088 * @pnum: the physical eraseblock number to write to 1089 * @vid_hdr: the volume identifier header to write 1090 * 1091 * This function writes the volume identifier header described by @vid_hdr to 1092 * physical eraseblock @pnum. This function automatically fills the 1093 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1094 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1095 * 1096 * This function returns zero in case of success and a negative error code in 1097 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1098 * bad. 1099 */ 1100 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1101 struct ubi_vid_hdr *vid_hdr) 1102 { 1103 int err; 1104 uint32_t crc; 1105 void *p; 1106 1107 dbg_io("write VID header to PEB %d", pnum); 1108 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1109 1110 err = paranoid_check_peb_ec_hdr(ubi, pnum); 1111 if (err) 1112 return err; 1113 1114 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1115 vid_hdr->version = UBI_VERSION; 1116 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1117 vid_hdr->hdr_crc = cpu_to_be32(crc); 1118 1119 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1120 if (err) 1121 return err; 1122 1123 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1124 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1125 ubi->vid_hdr_alsize); 1126 return err; 1127 } 1128 1129 #ifdef CONFIG_MTD_UBI_DEBUG 1130 1131 /** 1132 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. 1133 * @ubi: UBI device description object 1134 * @pnum: physical eraseblock number to check 1135 * 1136 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1137 * it is bad and a negative error code if an error occurred. 1138 */ 1139 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) 1140 { 1141 int err; 1142 1143 if (!(ubi_chk_flags & UBI_CHK_IO)) 1144 return 0; 1145 1146 err = ubi_io_is_bad(ubi, pnum); 1147 if (!err) 1148 return err; 1149 1150 ubi_err("paranoid check failed for PEB %d", pnum); 1151 ubi_dbg_dump_stack(); 1152 return err > 0 ? -EINVAL : err; 1153 } 1154 1155 /** 1156 * paranoid_check_ec_hdr - check if an erase counter header is all right. 1157 * @ubi: UBI device description object 1158 * @pnum: physical eraseblock number the erase counter header belongs to 1159 * @ec_hdr: the erase counter header to check 1160 * 1161 * This function returns zero if the erase counter header contains valid 1162 * values, and %-EINVAL if not. 1163 */ 1164 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1165 const struct ubi_ec_hdr *ec_hdr) 1166 { 1167 int err; 1168 uint32_t magic; 1169 1170 if (!(ubi_chk_flags & UBI_CHK_IO)) 1171 return 0; 1172 1173 magic = be32_to_cpu(ec_hdr->magic); 1174 if (magic != UBI_EC_HDR_MAGIC) { 1175 ubi_err("bad magic %#08x, must be %#08x", 1176 magic, UBI_EC_HDR_MAGIC); 1177 goto fail; 1178 } 1179 1180 err = validate_ec_hdr(ubi, ec_hdr); 1181 if (err) { 1182 ubi_err("paranoid check failed for PEB %d", pnum); 1183 goto fail; 1184 } 1185 1186 return 0; 1187 1188 fail: 1189 ubi_dbg_dump_ec_hdr(ec_hdr); 1190 ubi_dbg_dump_stack(); 1191 return -EINVAL; 1192 } 1193 1194 /** 1195 * paranoid_check_peb_ec_hdr - check erase counter header. 1196 * @ubi: UBI device description object 1197 * @pnum: the physical eraseblock number to check 1198 * 1199 * This function returns zero if the erase counter header is all right and and 1200 * a negative error code if not or if an error occurred. 1201 */ 1202 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1203 { 1204 int err; 1205 uint32_t crc, hdr_crc; 1206 struct ubi_ec_hdr *ec_hdr; 1207 1208 if (!(ubi_chk_flags & UBI_CHK_IO)) 1209 return 0; 1210 1211 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1212 if (!ec_hdr) 1213 return -ENOMEM; 1214 1215 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1216 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1217 goto exit; 1218 1219 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1220 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1221 if (hdr_crc != crc) { 1222 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1223 ubi_err("paranoid check failed for PEB %d", pnum); 1224 ubi_dbg_dump_ec_hdr(ec_hdr); 1225 ubi_dbg_dump_stack(); 1226 err = -EINVAL; 1227 goto exit; 1228 } 1229 1230 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 1231 1232 exit: 1233 kfree(ec_hdr); 1234 return err; 1235 } 1236 1237 /** 1238 * paranoid_check_vid_hdr - check that a volume identifier header is all right. 1239 * @ubi: UBI device description object 1240 * @pnum: physical eraseblock number the volume identifier header belongs to 1241 * @vid_hdr: the volume identifier header to check 1242 * 1243 * This function returns zero if the volume identifier header is all right, and 1244 * %-EINVAL if not. 1245 */ 1246 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1247 const struct ubi_vid_hdr *vid_hdr) 1248 { 1249 int err; 1250 uint32_t magic; 1251 1252 if (!(ubi_chk_flags & UBI_CHK_IO)) 1253 return 0; 1254 1255 magic = be32_to_cpu(vid_hdr->magic); 1256 if (magic != UBI_VID_HDR_MAGIC) { 1257 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1258 magic, pnum, UBI_VID_HDR_MAGIC); 1259 goto fail; 1260 } 1261 1262 err = validate_vid_hdr(ubi, vid_hdr); 1263 if (err) { 1264 ubi_err("paranoid check failed for PEB %d", pnum); 1265 goto fail; 1266 } 1267 1268 return err; 1269 1270 fail: 1271 ubi_err("paranoid check failed for PEB %d", pnum); 1272 ubi_dbg_dump_vid_hdr(vid_hdr); 1273 ubi_dbg_dump_stack(); 1274 return -EINVAL; 1275 1276 } 1277 1278 /** 1279 * paranoid_check_peb_vid_hdr - check volume identifier header. 1280 * @ubi: UBI device description object 1281 * @pnum: the physical eraseblock number to check 1282 * 1283 * This function returns zero if the volume identifier header is all right, 1284 * and a negative error code if not or if an error occurred. 1285 */ 1286 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1287 { 1288 int err; 1289 uint32_t crc, hdr_crc; 1290 struct ubi_vid_hdr *vid_hdr; 1291 void *p; 1292 1293 if (!(ubi_chk_flags & UBI_CHK_IO)) 1294 return 0; 1295 1296 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1297 if (!vid_hdr) 1298 return -ENOMEM; 1299 1300 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1301 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1302 ubi->vid_hdr_alsize); 1303 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1304 goto exit; 1305 1306 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1307 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1308 if (hdr_crc != crc) { 1309 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " 1310 "read %#08x", pnum, crc, hdr_crc); 1311 ubi_err("paranoid check failed for PEB %d", pnum); 1312 ubi_dbg_dump_vid_hdr(vid_hdr); 1313 ubi_dbg_dump_stack(); 1314 err = -EINVAL; 1315 goto exit; 1316 } 1317 1318 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1319 1320 exit: 1321 ubi_free_vid_hdr(ubi, vid_hdr); 1322 return err; 1323 } 1324 1325 /** 1326 * ubi_dbg_check_write - make sure write succeeded. 1327 * @ubi: UBI device description object 1328 * @buf: buffer with data which were written 1329 * @pnum: physical eraseblock number the data were written to 1330 * @offset: offset within the physical eraseblock the data were written to 1331 * @len: how many bytes were written 1332 * 1333 * This functions reads data which were recently written and compares it with 1334 * the original data buffer - the data have to match. Returns zero if the data 1335 * match and a negative error code if not or in case of failure. 1336 */ 1337 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1338 int offset, int len) 1339 { 1340 int err, i; 1341 size_t read; 1342 void *buf1; 1343 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1344 1345 if (!(ubi_chk_flags & UBI_CHK_IO)) 1346 return 0; 1347 1348 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1349 if (!buf1) { 1350 ubi_err("cannot allocate memory to check writes"); 1351 return 0; 1352 } 1353 1354 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1); 1355 if (err && err != -EUCLEAN) 1356 goto out_free; 1357 1358 for (i = 0; i < len; i++) { 1359 uint8_t c = ((uint8_t *)buf)[i]; 1360 uint8_t c1 = ((uint8_t *)buf1)[i]; 1361 int dump_len; 1362 1363 if (c == c1) 1364 continue; 1365 1366 ubi_err("paranoid check failed for PEB %d:%d, len %d", 1367 pnum, offset, len); 1368 ubi_msg("data differ at position %d", i); 1369 dump_len = max_t(int, 128, len - i); 1370 ubi_msg("hex dump of the original buffer from %d to %d", 1371 i, i + dump_len); 1372 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1373 buf + i, dump_len, 1); 1374 ubi_msg("hex dump of the read buffer from %d to %d", 1375 i, i + dump_len); 1376 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1377 buf1 + i, dump_len, 1); 1378 ubi_dbg_dump_stack(); 1379 err = -EINVAL; 1380 goto out_free; 1381 } 1382 1383 vfree(buf1); 1384 return 0; 1385 1386 out_free: 1387 vfree(buf1); 1388 return err; 1389 } 1390 1391 /** 1392 * ubi_dbg_check_all_ff - check that a region of flash is empty. 1393 * @ubi: UBI device description object 1394 * @pnum: the physical eraseblock number to check 1395 * @offset: the starting offset within the physical eraseblock to check 1396 * @len: the length of the region to check 1397 * 1398 * This function returns zero if only 0xFF bytes are present at offset 1399 * @offset of the physical eraseblock @pnum, and a negative error code if not 1400 * or if an error occurred. 1401 */ 1402 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1403 { 1404 size_t read; 1405 int err; 1406 void *buf; 1407 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1408 1409 if (!(ubi_chk_flags & UBI_CHK_IO)) 1410 return 0; 1411 1412 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1413 if (!buf) { 1414 ubi_err("cannot allocate memory to check for 0xFFs"); 1415 return 0; 1416 } 1417 1418 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 1419 if (err && err != -EUCLEAN) { 1420 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 1421 "read %zd bytes", err, len, pnum, offset, read); 1422 goto error; 1423 } 1424 1425 err = ubi_check_pattern(buf, 0xFF, len); 1426 if (err == 0) { 1427 ubi_err("flash region at PEB %d:%d, length %d does not " 1428 "contain all 0xFF bytes", pnum, offset, len); 1429 goto fail; 1430 } 1431 1432 vfree(buf); 1433 return 0; 1434 1435 fail: 1436 ubi_err("paranoid check failed for PEB %d", pnum); 1437 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1438 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1439 err = -EINVAL; 1440 error: 1441 ubi_dbg_dump_stack(); 1442 vfree(buf); 1443 return err; 1444 } 1445 1446 #endif /* CONFIG_MTD_UBI_DEBUG */ 1447