xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision fcb8918fd242f39496090dbbd6789ab24098295b)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 #ifdef CONFIG_MTD_UBI_DEBUG
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 				 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 				  const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109 
110 /**
111  * ubi_io_read - read data from a physical eraseblock.
112  * @ubi: UBI device description object
113  * @buf: buffer where to store the read data
114  * @pnum: physical eraseblock number to read from
115  * @offset: offset within the physical eraseblock from where to read
116  * @len: how many bytes to read
117  *
118  * This function reads data from offset @offset of physical eraseblock @pnum
119  * and stores the read data in the @buf buffer. The following return codes are
120  * possible:
121  *
122  * o %0 if all the requested data were successfully read;
123  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124  *   correctable bit-flips were detected; this is harmless but may indicate
125  *   that this eraseblock may become bad soon (but do not have to);
126  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127  *   example it can be an ECC error in case of NAND; this most probably means
128  *   that the data is corrupted;
129  * o %-EIO if some I/O error occurred;
130  * o other negative error codes in case of other errors.
131  */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 		int len)
134 {
135 	int err, retries = 0;
136 	size_t read;
137 	loff_t addr;
138 
139 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 
141 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 	ubi_assert(len > 0);
144 
145 	err = paranoid_check_not_bad(ubi, pnum);
146 	if (err)
147 		return err;
148 
149 	/*
150 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
151 	 * do not do this, the following may happen:
152 	 * 1. The buffer contains data from previous operation, e.g., read from
153 	 *    another PEB previously. The data looks like expected, e.g., if we
154 	 *    just do not read anything and return - the caller would not
155 	 *    notice this. E.g., if we are reading a VID header, the buffer may
156 	 *    contain a valid VID header from another PEB.
157 	 * 2. The driver is buggy and returns us success or -EBADMSG or
158 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
159 	 *
160 	 * This may confuse UBI or upper layers - they may think the buffer
161 	 * contains valid data while in fact it is just old data. This is
162 	 * especially possible because UBI (and UBIFS) relies on CRC, and
163 	 * treats data as correct even in case of ECC errors if the CRC is
164 	 * correct.
165 	 *
166 	 * Try to prevent this situation by changing the first byte of the
167 	 * buffer.
168 	 */
169 	*((uint8_t *)buf) ^= 0xFF;
170 
171 	addr = (loff_t)pnum * ubi->peb_size + offset;
172 retry:
173 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
174 	if (err) {
175 		const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
176 
177 		if (err == -EUCLEAN) {
178 			/*
179 			 * -EUCLEAN is reported if there was a bit-flip which
180 			 * was corrected, so this is harmless.
181 			 *
182 			 * We do not report about it here unless debugging is
183 			 * enabled. A corresponding message will be printed
184 			 * later, when it is has been scrubbed.
185 			 */
186 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
187 			ubi_assert(len == read);
188 			return UBI_IO_BITFLIPS;
189 		}
190 
191 		if (retries++ < UBI_IO_RETRIES) {
192 			dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
193 			       " read only %zd bytes, retry",
194 			       err, errstr, len, pnum, offset, read);
195 			yield();
196 			goto retry;
197 		}
198 
199 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
200 			"read %zd bytes", err, errstr, len, pnum, offset, read);
201 		ubi_dbg_dump_stack();
202 
203 		/*
204 		 * The driver should never return -EBADMSG if it failed to read
205 		 * all the requested data. But some buggy drivers might do
206 		 * this, so we change it to -EIO.
207 		 */
208 		if (read != len && err == -EBADMSG) {
209 			ubi_assert(0);
210 			err = -EIO;
211 		}
212 	} else {
213 		ubi_assert(len == read);
214 
215 		if (ubi_dbg_is_bitflip()) {
216 			dbg_gen("bit-flip (emulated)");
217 			err = UBI_IO_BITFLIPS;
218 		}
219 	}
220 
221 	return err;
222 }
223 
224 /**
225  * ubi_io_write - write data to a physical eraseblock.
226  * @ubi: UBI device description object
227  * @buf: buffer with the data to write
228  * @pnum: physical eraseblock number to write to
229  * @offset: offset within the physical eraseblock where to write
230  * @len: how many bytes to write
231  *
232  * This function writes @len bytes of data from buffer @buf to offset @offset
233  * of physical eraseblock @pnum. If all the data were successfully written,
234  * zero is returned. If an error occurred, this function returns a negative
235  * error code. If %-EIO is returned, the physical eraseblock most probably went
236  * bad.
237  *
238  * Note, in case of an error, it is possible that something was still written
239  * to the flash media, but may be some garbage.
240  */
241 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
242 		 int len)
243 {
244 	int err;
245 	size_t written;
246 	loff_t addr;
247 
248 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
249 
250 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
251 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
252 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
253 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
254 
255 	if (ubi->ro_mode) {
256 		ubi_err("read-only mode");
257 		return -EROFS;
258 	}
259 
260 	/* The below has to be compiled out if paranoid checks are disabled */
261 
262 	err = paranoid_check_not_bad(ubi, pnum);
263 	if (err)
264 		return err;
265 
266 	/* The area we are writing to has to contain all 0xFF bytes */
267 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
268 	if (err)
269 		return err;
270 
271 	if (offset >= ubi->leb_start) {
272 		/*
273 		 * We write to the data area of the physical eraseblock. Make
274 		 * sure it has valid EC and VID headers.
275 		 */
276 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
277 		if (err)
278 			return err;
279 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
280 		if (err)
281 			return err;
282 	}
283 
284 	if (ubi_dbg_is_write_failure()) {
285 		dbg_err("cannot write %d bytes to PEB %d:%d "
286 			"(emulated)", len, pnum, offset);
287 		ubi_dbg_dump_stack();
288 		return -EIO;
289 	}
290 
291 	addr = (loff_t)pnum * ubi->peb_size + offset;
292 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
293 	if (err) {
294 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
295 			"%zd bytes", err, len, pnum, offset, written);
296 		ubi_dbg_dump_stack();
297 		ubi_dbg_dump_flash(ubi, pnum, offset, len);
298 	} else
299 		ubi_assert(written == len);
300 
301 	if (!err) {
302 		err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
303 		if (err)
304 			return err;
305 
306 		/*
307 		 * Since we always write sequentially, the rest of the PEB has
308 		 * to contain only 0xFF bytes.
309 		 */
310 		offset += len;
311 		len = ubi->peb_size - offset;
312 		if (len)
313 			err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
314 	}
315 
316 	return err;
317 }
318 
319 /**
320  * erase_callback - MTD erasure call-back.
321  * @ei: MTD erase information object.
322  *
323  * Note, even though MTD erase interface is asynchronous, all the current
324  * implementations are synchronous anyway.
325  */
326 static void erase_callback(struct erase_info *ei)
327 {
328 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
329 }
330 
331 /**
332  * do_sync_erase - synchronously erase a physical eraseblock.
333  * @ubi: UBI device description object
334  * @pnum: the physical eraseblock number to erase
335  *
336  * This function synchronously erases physical eraseblock @pnum and returns
337  * zero in case of success and a negative error code in case of failure. If
338  * %-EIO is returned, the physical eraseblock most probably went bad.
339  */
340 static int do_sync_erase(struct ubi_device *ubi, int pnum)
341 {
342 	int err, retries = 0;
343 	struct erase_info ei;
344 	wait_queue_head_t wq;
345 
346 	dbg_io("erase PEB %d", pnum);
347 
348 retry:
349 	init_waitqueue_head(&wq);
350 	memset(&ei, 0, sizeof(struct erase_info));
351 
352 	ei.mtd      = ubi->mtd;
353 	ei.addr     = (loff_t)pnum * ubi->peb_size;
354 	ei.len      = ubi->peb_size;
355 	ei.callback = erase_callback;
356 	ei.priv     = (unsigned long)&wq;
357 
358 	err = ubi->mtd->erase(ubi->mtd, &ei);
359 	if (err) {
360 		if (retries++ < UBI_IO_RETRIES) {
361 			dbg_io("error %d while erasing PEB %d, retry",
362 			       err, pnum);
363 			yield();
364 			goto retry;
365 		}
366 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
367 		ubi_dbg_dump_stack();
368 		return err;
369 	}
370 
371 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
372 					   ei.state == MTD_ERASE_FAILED);
373 	if (err) {
374 		ubi_err("interrupted PEB %d erasure", pnum);
375 		return -EINTR;
376 	}
377 
378 	if (ei.state == MTD_ERASE_FAILED) {
379 		if (retries++ < UBI_IO_RETRIES) {
380 			dbg_io("error while erasing PEB %d, retry", pnum);
381 			yield();
382 			goto retry;
383 		}
384 		ubi_err("cannot erase PEB %d", pnum);
385 		ubi_dbg_dump_stack();
386 		return -EIO;
387 	}
388 
389 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
390 	if (err)
391 		return err;
392 
393 	if (ubi_dbg_is_erase_failure() && !err) {
394 		dbg_err("cannot erase PEB %d (emulated)", pnum);
395 		return -EIO;
396 	}
397 
398 	return 0;
399 }
400 
401 /* Patterns to write to a physical eraseblock when torturing it */
402 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
403 
404 /**
405  * torture_peb - test a supposedly bad physical eraseblock.
406  * @ubi: UBI device description object
407  * @pnum: the physical eraseblock number to test
408  *
409  * This function returns %-EIO if the physical eraseblock did not pass the
410  * test, a positive number of erase operations done if the test was
411  * successfully passed, and other negative error codes in case of other errors.
412  */
413 static int torture_peb(struct ubi_device *ubi, int pnum)
414 {
415 	int err, i, patt_count;
416 
417 	ubi_msg("run torture test for PEB %d", pnum);
418 	patt_count = ARRAY_SIZE(patterns);
419 	ubi_assert(patt_count > 0);
420 
421 	mutex_lock(&ubi->buf_mutex);
422 	for (i = 0; i < patt_count; i++) {
423 		err = do_sync_erase(ubi, pnum);
424 		if (err)
425 			goto out;
426 
427 		/* Make sure the PEB contains only 0xFF bytes */
428 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
429 		if (err)
430 			goto out;
431 
432 		err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
433 		if (err == 0) {
434 			ubi_err("erased PEB %d, but a non-0xFF byte found",
435 				pnum);
436 			err = -EIO;
437 			goto out;
438 		}
439 
440 		/* Write a pattern and check it */
441 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
442 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
443 		if (err)
444 			goto out;
445 
446 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
447 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
448 		if (err)
449 			goto out;
450 
451 		err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
452 					ubi->peb_size);
453 		if (err == 0) {
454 			ubi_err("pattern %x checking failed for PEB %d",
455 				patterns[i], pnum);
456 			err = -EIO;
457 			goto out;
458 		}
459 	}
460 
461 	err = patt_count;
462 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
463 
464 out:
465 	mutex_unlock(&ubi->buf_mutex);
466 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
467 		/*
468 		 * If a bit-flip or data integrity error was detected, the test
469 		 * has not passed because it happened on a freshly erased
470 		 * physical eraseblock which means something is wrong with it.
471 		 */
472 		ubi_err("read problems on freshly erased PEB %d, must be bad",
473 			pnum);
474 		err = -EIO;
475 	}
476 	return err;
477 }
478 
479 /**
480  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
481  * @ubi: UBI device description object
482  * @pnum: physical eraseblock number to prepare
483  *
484  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
485  * algorithm: the PEB is first filled with zeroes, then it is erased. And
486  * filling with zeroes starts from the end of the PEB. This was observed with
487  * Spansion S29GL512N NOR flash.
488  *
489  * This means that in case of a power cut we may end up with intact data at the
490  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
491  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
492  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
493  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
494  *
495  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
496  * magic numbers in order to invalidate them and prevent the failures. Returns
497  * zero in case of success and a negative error code in case of failure.
498  */
499 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
500 {
501 	int err, err1;
502 	size_t written;
503 	loff_t addr;
504 	uint32_t data = 0;
505 	/*
506 	 * Note, we cannot generally define VID header buffers on stack,
507 	 * because of the way we deal with these buffers (see the header
508 	 * comment in this file). But we know this is a NOR-specific piece of
509 	 * code, so we can do this. But yes, this is error-prone and we should
510 	 * (pre-)allocate VID header buffer instead.
511 	 */
512 	struct ubi_vid_hdr vid_hdr;
513 
514 	/*
515 	 * It is important to first invalidate the EC header, and then the VID
516 	 * header. Otherwise a power cut may lead to valid EC header and
517 	 * invalid VID header, in which case UBI will treat this PEB as
518 	 * corrupted and will try to preserve it, and print scary warnings (see
519 	 * the header comment in scan.c for more information).
520 	 */
521 	addr = (loff_t)pnum * ubi->peb_size;
522 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
523 	if (!err) {
524 		addr += ubi->vid_hdr_aloffset;
525 		err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
526 				      (void *)&data);
527 		if (!err)
528 			return 0;
529 	}
530 
531 	/*
532 	 * We failed to write to the media. This was observed with Spansion
533 	 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
534 	 * was interrupted at a very inappropriate moment, so it became
535 	 * unwritable. In this case we probably anyway have garbage in this
536 	 * PEB.
537 	 */
538 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
539 	if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
540 	    err1 == UBI_IO_FF) {
541 		struct ubi_ec_hdr ec_hdr;
542 
543 		err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
544 		if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
545 		    err1 == UBI_IO_FF)
546 			/*
547 			 * Both VID and EC headers are corrupted, so we can
548 			 * safely erase this PEB and not afraid that it will be
549 			 * treated as a valid PEB in case of an unclean reboot.
550 			 */
551 			return 0;
552 	}
553 
554 	/*
555 	 * The PEB contains a valid VID header, but we cannot invalidate it.
556 	 * Supposedly the flash media or the driver is screwed up, so return an
557 	 * error.
558 	 */
559 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
560 		pnum, err, err1);
561 	ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
562 	return -EIO;
563 }
564 
565 /**
566  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
567  * @ubi: UBI device description object
568  * @pnum: physical eraseblock number to erase
569  * @torture: if this physical eraseblock has to be tortured
570  *
571  * This function synchronously erases physical eraseblock @pnum. If @torture
572  * flag is not zero, the physical eraseblock is checked by means of writing
573  * different patterns to it and reading them back. If the torturing is enabled,
574  * the physical eraseblock is erased more than once.
575  *
576  * This function returns the number of erasures made in case of success, %-EIO
577  * if the erasure failed or the torturing test failed, and other negative error
578  * codes in case of other errors. Note, %-EIO means that the physical
579  * eraseblock is bad.
580  */
581 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
582 {
583 	int err, ret = 0;
584 
585 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
586 
587 	err = paranoid_check_not_bad(ubi, pnum);
588 	if (err != 0)
589 		return err;
590 
591 	if (ubi->ro_mode) {
592 		ubi_err("read-only mode");
593 		return -EROFS;
594 	}
595 
596 	if (ubi->nor_flash) {
597 		err = nor_erase_prepare(ubi, pnum);
598 		if (err)
599 			return err;
600 	}
601 
602 	if (torture) {
603 		ret = torture_peb(ubi, pnum);
604 		if (ret < 0)
605 			return ret;
606 	}
607 
608 	err = do_sync_erase(ubi, pnum);
609 	if (err)
610 		return err;
611 
612 	return ret + 1;
613 }
614 
615 /**
616  * ubi_io_is_bad - check if a physical eraseblock is bad.
617  * @ubi: UBI device description object
618  * @pnum: the physical eraseblock number to check
619  *
620  * This function returns a positive number if the physical eraseblock is bad,
621  * zero if not, and a negative error code if an error occurred.
622  */
623 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
624 {
625 	struct mtd_info *mtd = ubi->mtd;
626 
627 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
628 
629 	if (ubi->bad_allowed) {
630 		int ret;
631 
632 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
633 		if (ret < 0)
634 			ubi_err("error %d while checking if PEB %d is bad",
635 				ret, pnum);
636 		else if (ret)
637 			dbg_io("PEB %d is bad", pnum);
638 		return ret;
639 	}
640 
641 	return 0;
642 }
643 
644 /**
645  * ubi_io_mark_bad - mark a physical eraseblock as bad.
646  * @ubi: UBI device description object
647  * @pnum: the physical eraseblock number to mark
648  *
649  * This function returns zero in case of success and a negative error code in
650  * case of failure.
651  */
652 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
653 {
654 	int err;
655 	struct mtd_info *mtd = ubi->mtd;
656 
657 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
658 
659 	if (ubi->ro_mode) {
660 		ubi_err("read-only mode");
661 		return -EROFS;
662 	}
663 
664 	if (!ubi->bad_allowed)
665 		return 0;
666 
667 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
668 	if (err)
669 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
670 	return err;
671 }
672 
673 /**
674  * validate_ec_hdr - validate an erase counter header.
675  * @ubi: UBI device description object
676  * @ec_hdr: the erase counter header to check
677  *
678  * This function returns zero if the erase counter header is OK, and %1 if
679  * not.
680  */
681 static int validate_ec_hdr(const struct ubi_device *ubi,
682 			   const struct ubi_ec_hdr *ec_hdr)
683 {
684 	long long ec;
685 	int vid_hdr_offset, leb_start;
686 
687 	ec = be64_to_cpu(ec_hdr->ec);
688 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
689 	leb_start = be32_to_cpu(ec_hdr->data_offset);
690 
691 	if (ec_hdr->version != UBI_VERSION) {
692 		ubi_err("node with incompatible UBI version found: "
693 			"this UBI version is %d, image version is %d",
694 			UBI_VERSION, (int)ec_hdr->version);
695 		goto bad;
696 	}
697 
698 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
699 		ubi_err("bad VID header offset %d, expected %d",
700 			vid_hdr_offset, ubi->vid_hdr_offset);
701 		goto bad;
702 	}
703 
704 	if (leb_start != ubi->leb_start) {
705 		ubi_err("bad data offset %d, expected %d",
706 			leb_start, ubi->leb_start);
707 		goto bad;
708 	}
709 
710 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
711 		ubi_err("bad erase counter %lld", ec);
712 		goto bad;
713 	}
714 
715 	return 0;
716 
717 bad:
718 	ubi_err("bad EC header");
719 	ubi_dbg_dump_ec_hdr(ec_hdr);
720 	ubi_dbg_dump_stack();
721 	return 1;
722 }
723 
724 /**
725  * ubi_io_read_ec_hdr - read and check an erase counter header.
726  * @ubi: UBI device description object
727  * @pnum: physical eraseblock to read from
728  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
729  * header
730  * @verbose: be verbose if the header is corrupted or was not found
731  *
732  * This function reads erase counter header from physical eraseblock @pnum and
733  * stores it in @ec_hdr. This function also checks CRC checksum of the read
734  * erase counter header. The following codes may be returned:
735  *
736  * o %0 if the CRC checksum is correct and the header was successfully read;
737  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
738  *   and corrected by the flash driver; this is harmless but may indicate that
739  *   this eraseblock may become bad soon (but may be not);
740  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
741  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
742  *   a data integrity error (uncorrectable ECC error in case of NAND);
743  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
744  * o a negative error code in case of failure.
745  */
746 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
747 		       struct ubi_ec_hdr *ec_hdr, int verbose)
748 {
749 	int err, read_err;
750 	uint32_t crc, magic, hdr_crc;
751 
752 	dbg_io("read EC header from PEB %d", pnum);
753 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
754 
755 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
756 	if (read_err) {
757 		if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
758 			return read_err;
759 
760 		/*
761 		 * We read all the data, but either a correctable bit-flip
762 		 * occurred, or MTD reported a data integrity error
763 		 * (uncorrectable ECC error in case of NAND). The former is
764 		 * harmless, the later may mean that the read data is
765 		 * corrupted. But we have a CRC check-sum and we will detect
766 		 * this. If the EC header is still OK, we just report this as
767 		 * there was a bit-flip, to force scrubbing.
768 		 */
769 	}
770 
771 	magic = be32_to_cpu(ec_hdr->magic);
772 	if (magic != UBI_EC_HDR_MAGIC) {
773 		if (read_err == -EBADMSG)
774 			return UBI_IO_BAD_HDR_EBADMSG;
775 
776 		/*
777 		 * The magic field is wrong. Let's check if we have read all
778 		 * 0xFF. If yes, this physical eraseblock is assumed to be
779 		 * empty.
780 		 */
781 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
782 			/* The physical eraseblock is supposedly empty */
783 			if (verbose)
784 				ubi_warn("no EC header found at PEB %d, "
785 					 "only 0xFF bytes", pnum);
786 			dbg_bld("no EC header found at PEB %d, "
787 				"only 0xFF bytes", pnum);
788 			if (!read_err)
789 				return UBI_IO_FF;
790 			else
791 				return UBI_IO_FF_BITFLIPS;
792 		}
793 
794 		/*
795 		 * This is not a valid erase counter header, and these are not
796 		 * 0xFF bytes. Report that the header is corrupted.
797 		 */
798 		if (verbose) {
799 			ubi_warn("bad magic number at PEB %d: %08x instead of "
800 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
801 			ubi_dbg_dump_ec_hdr(ec_hdr);
802 		}
803 		dbg_bld("bad magic number at PEB %d: %08x instead of "
804 			"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
805 		return UBI_IO_BAD_HDR;
806 	}
807 
808 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
809 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
810 
811 	if (hdr_crc != crc) {
812 		if (verbose) {
813 			ubi_warn("bad EC header CRC at PEB %d, calculated "
814 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
815 			ubi_dbg_dump_ec_hdr(ec_hdr);
816 		}
817 		dbg_bld("bad EC header CRC at PEB %d, calculated "
818 			"%#08x, read %#08x", pnum, crc, hdr_crc);
819 
820 		if (!read_err)
821 			return UBI_IO_BAD_HDR;
822 		else
823 			return UBI_IO_BAD_HDR_EBADMSG;
824 	}
825 
826 	/* And of course validate what has just been read from the media */
827 	err = validate_ec_hdr(ubi, ec_hdr);
828 	if (err) {
829 		ubi_err("validation failed for PEB %d", pnum);
830 		return -EINVAL;
831 	}
832 
833 	/*
834 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
835 	 * a bit-flip to force scrubbing on this PEB.
836 	 */
837 	return read_err ? UBI_IO_BITFLIPS : 0;
838 }
839 
840 /**
841  * ubi_io_write_ec_hdr - write an erase counter header.
842  * @ubi: UBI device description object
843  * @pnum: physical eraseblock to write to
844  * @ec_hdr: the erase counter header to write
845  *
846  * This function writes erase counter header described by @ec_hdr to physical
847  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
848  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
849  * field.
850  *
851  * This function returns zero in case of success and a negative error code in
852  * case of failure. If %-EIO is returned, the physical eraseblock most probably
853  * went bad.
854  */
855 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
856 			struct ubi_ec_hdr *ec_hdr)
857 {
858 	int err;
859 	uint32_t crc;
860 
861 	dbg_io("write EC header to PEB %d", pnum);
862 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
863 
864 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
865 	ec_hdr->version = UBI_VERSION;
866 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
867 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
868 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
869 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
870 	ec_hdr->hdr_crc = cpu_to_be32(crc);
871 
872 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
873 	if (err)
874 		return err;
875 
876 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
877 	return err;
878 }
879 
880 /**
881  * validate_vid_hdr - validate a volume identifier header.
882  * @ubi: UBI device description object
883  * @vid_hdr: the volume identifier header to check
884  *
885  * This function checks that data stored in the volume identifier header
886  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
887  */
888 static int validate_vid_hdr(const struct ubi_device *ubi,
889 			    const struct ubi_vid_hdr *vid_hdr)
890 {
891 	int vol_type = vid_hdr->vol_type;
892 	int copy_flag = vid_hdr->copy_flag;
893 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
894 	int lnum = be32_to_cpu(vid_hdr->lnum);
895 	int compat = vid_hdr->compat;
896 	int data_size = be32_to_cpu(vid_hdr->data_size);
897 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
898 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
899 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
900 	int usable_leb_size = ubi->leb_size - data_pad;
901 
902 	if (copy_flag != 0 && copy_flag != 1) {
903 		dbg_err("bad copy_flag");
904 		goto bad;
905 	}
906 
907 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
908 	    data_pad < 0) {
909 		dbg_err("negative values");
910 		goto bad;
911 	}
912 
913 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
914 		dbg_err("bad vol_id");
915 		goto bad;
916 	}
917 
918 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
919 		dbg_err("bad compat");
920 		goto bad;
921 	}
922 
923 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
924 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
925 	    compat != UBI_COMPAT_REJECT) {
926 		dbg_err("bad compat");
927 		goto bad;
928 	}
929 
930 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
931 		dbg_err("bad vol_type");
932 		goto bad;
933 	}
934 
935 	if (data_pad >= ubi->leb_size / 2) {
936 		dbg_err("bad data_pad");
937 		goto bad;
938 	}
939 
940 	if (vol_type == UBI_VID_STATIC) {
941 		/*
942 		 * Although from high-level point of view static volumes may
943 		 * contain zero bytes of data, but no VID headers can contain
944 		 * zero at these fields, because they empty volumes do not have
945 		 * mapped logical eraseblocks.
946 		 */
947 		if (used_ebs == 0) {
948 			dbg_err("zero used_ebs");
949 			goto bad;
950 		}
951 		if (data_size == 0) {
952 			dbg_err("zero data_size");
953 			goto bad;
954 		}
955 		if (lnum < used_ebs - 1) {
956 			if (data_size != usable_leb_size) {
957 				dbg_err("bad data_size");
958 				goto bad;
959 			}
960 		} else if (lnum == used_ebs - 1) {
961 			if (data_size == 0) {
962 				dbg_err("bad data_size at last LEB");
963 				goto bad;
964 			}
965 		} else {
966 			dbg_err("too high lnum");
967 			goto bad;
968 		}
969 	} else {
970 		if (copy_flag == 0) {
971 			if (data_crc != 0) {
972 				dbg_err("non-zero data CRC");
973 				goto bad;
974 			}
975 			if (data_size != 0) {
976 				dbg_err("non-zero data_size");
977 				goto bad;
978 			}
979 		} else {
980 			if (data_size == 0) {
981 				dbg_err("zero data_size of copy");
982 				goto bad;
983 			}
984 		}
985 		if (used_ebs != 0) {
986 			dbg_err("bad used_ebs");
987 			goto bad;
988 		}
989 	}
990 
991 	return 0;
992 
993 bad:
994 	ubi_err("bad VID header");
995 	ubi_dbg_dump_vid_hdr(vid_hdr);
996 	ubi_dbg_dump_stack();
997 	return 1;
998 }
999 
1000 /**
1001  * ubi_io_read_vid_hdr - read and check a volume identifier header.
1002  * @ubi: UBI device description object
1003  * @pnum: physical eraseblock number to read from
1004  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1005  * identifier header
1006  * @verbose: be verbose if the header is corrupted or wasn't found
1007  *
1008  * This function reads the volume identifier header from physical eraseblock
1009  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1010  * volume identifier header. The error codes are the same as in
1011  * 'ubi_io_read_ec_hdr()'.
1012  *
1013  * Note, the implementation of this function is also very similar to
1014  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1015  */
1016 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1017 			struct ubi_vid_hdr *vid_hdr, int verbose)
1018 {
1019 	int err, read_err;
1020 	uint32_t crc, magic, hdr_crc;
1021 	void *p;
1022 
1023 	dbg_io("read VID header from PEB %d", pnum);
1024 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1025 
1026 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1027 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1028 			  ubi->vid_hdr_alsize);
1029 	if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
1030 		return read_err;
1031 
1032 	magic = be32_to_cpu(vid_hdr->magic);
1033 	if (magic != UBI_VID_HDR_MAGIC) {
1034 		if (read_err == -EBADMSG)
1035 			return UBI_IO_BAD_HDR_EBADMSG;
1036 
1037 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1038 			if (verbose)
1039 				ubi_warn("no VID header found at PEB %d, "
1040 					 "only 0xFF bytes", pnum);
1041 			dbg_bld("no VID header found at PEB %d, "
1042 				"only 0xFF bytes", pnum);
1043 			if (!read_err)
1044 				return UBI_IO_FF;
1045 			else
1046 				return UBI_IO_FF_BITFLIPS;
1047 		}
1048 
1049 		if (verbose) {
1050 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1051 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1052 			ubi_dbg_dump_vid_hdr(vid_hdr);
1053 		}
1054 		dbg_bld("bad magic number at PEB %d: %08x instead of "
1055 			"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1056 		return UBI_IO_BAD_HDR;
1057 	}
1058 
1059 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1060 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1061 
1062 	if (hdr_crc != crc) {
1063 		if (verbose) {
1064 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1065 				 "read %#08x", pnum, crc, hdr_crc);
1066 			ubi_dbg_dump_vid_hdr(vid_hdr);
1067 		}
1068 		dbg_bld("bad CRC at PEB %d, calculated %#08x, "
1069 			"read %#08x", pnum, crc, hdr_crc);
1070 		if (!read_err)
1071 			return UBI_IO_BAD_HDR;
1072 		else
1073 			return UBI_IO_BAD_HDR_EBADMSG;
1074 	}
1075 
1076 	err = validate_vid_hdr(ubi, vid_hdr);
1077 	if (err) {
1078 		ubi_err("validation failed for PEB %d", pnum);
1079 		return -EINVAL;
1080 	}
1081 
1082 	return read_err ? UBI_IO_BITFLIPS : 0;
1083 }
1084 
1085 /**
1086  * ubi_io_write_vid_hdr - write a volume identifier header.
1087  * @ubi: UBI device description object
1088  * @pnum: the physical eraseblock number to write to
1089  * @vid_hdr: the volume identifier header to write
1090  *
1091  * This function writes the volume identifier header described by @vid_hdr to
1092  * physical eraseblock @pnum. This function automatically fills the
1093  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1094  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1095  *
1096  * This function returns zero in case of success and a negative error code in
1097  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1098  * bad.
1099  */
1100 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1101 			 struct ubi_vid_hdr *vid_hdr)
1102 {
1103 	int err;
1104 	uint32_t crc;
1105 	void *p;
1106 
1107 	dbg_io("write VID header to PEB %d", pnum);
1108 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1109 
1110 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1111 	if (err)
1112 		return err;
1113 
1114 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1115 	vid_hdr->version = UBI_VERSION;
1116 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1117 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1118 
1119 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1120 	if (err)
1121 		return err;
1122 
1123 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1124 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1125 			   ubi->vid_hdr_alsize);
1126 	return err;
1127 }
1128 
1129 #ifdef CONFIG_MTD_UBI_DEBUG
1130 
1131 /**
1132  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1133  * @ubi: UBI device description object
1134  * @pnum: physical eraseblock number to check
1135  *
1136  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1137  * it is bad and a negative error code if an error occurred.
1138  */
1139 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1140 {
1141 	int err;
1142 
1143 	if (!(ubi_chk_flags & UBI_CHK_IO))
1144 		return 0;
1145 
1146 	err = ubi_io_is_bad(ubi, pnum);
1147 	if (!err)
1148 		return err;
1149 
1150 	ubi_err("paranoid check failed for PEB %d", pnum);
1151 	ubi_dbg_dump_stack();
1152 	return err > 0 ? -EINVAL : err;
1153 }
1154 
1155 /**
1156  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1157  * @ubi: UBI device description object
1158  * @pnum: physical eraseblock number the erase counter header belongs to
1159  * @ec_hdr: the erase counter header to check
1160  *
1161  * This function returns zero if the erase counter header contains valid
1162  * values, and %-EINVAL if not.
1163  */
1164 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1165 				 const struct ubi_ec_hdr *ec_hdr)
1166 {
1167 	int err;
1168 	uint32_t magic;
1169 
1170 	if (!(ubi_chk_flags & UBI_CHK_IO))
1171 		return 0;
1172 
1173 	magic = be32_to_cpu(ec_hdr->magic);
1174 	if (magic != UBI_EC_HDR_MAGIC) {
1175 		ubi_err("bad magic %#08x, must be %#08x",
1176 			magic, UBI_EC_HDR_MAGIC);
1177 		goto fail;
1178 	}
1179 
1180 	err = validate_ec_hdr(ubi, ec_hdr);
1181 	if (err) {
1182 		ubi_err("paranoid check failed for PEB %d", pnum);
1183 		goto fail;
1184 	}
1185 
1186 	return 0;
1187 
1188 fail:
1189 	ubi_dbg_dump_ec_hdr(ec_hdr);
1190 	ubi_dbg_dump_stack();
1191 	return -EINVAL;
1192 }
1193 
1194 /**
1195  * paranoid_check_peb_ec_hdr - check erase counter header.
1196  * @ubi: UBI device description object
1197  * @pnum: the physical eraseblock number to check
1198  *
1199  * This function returns zero if the erase counter header is all right and and
1200  * a negative error code if not or if an error occurred.
1201  */
1202 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1203 {
1204 	int err;
1205 	uint32_t crc, hdr_crc;
1206 	struct ubi_ec_hdr *ec_hdr;
1207 
1208 	if (!(ubi_chk_flags & UBI_CHK_IO))
1209 		return 0;
1210 
1211 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1212 	if (!ec_hdr)
1213 		return -ENOMEM;
1214 
1215 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1216 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1217 		goto exit;
1218 
1219 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1220 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1221 	if (hdr_crc != crc) {
1222 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1223 		ubi_err("paranoid check failed for PEB %d", pnum);
1224 		ubi_dbg_dump_ec_hdr(ec_hdr);
1225 		ubi_dbg_dump_stack();
1226 		err = -EINVAL;
1227 		goto exit;
1228 	}
1229 
1230 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1231 
1232 exit:
1233 	kfree(ec_hdr);
1234 	return err;
1235 }
1236 
1237 /**
1238  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1239  * @ubi: UBI device description object
1240  * @pnum: physical eraseblock number the volume identifier header belongs to
1241  * @vid_hdr: the volume identifier header to check
1242  *
1243  * This function returns zero if the volume identifier header is all right, and
1244  * %-EINVAL if not.
1245  */
1246 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1247 				  const struct ubi_vid_hdr *vid_hdr)
1248 {
1249 	int err;
1250 	uint32_t magic;
1251 
1252 	if (!(ubi_chk_flags & UBI_CHK_IO))
1253 		return 0;
1254 
1255 	magic = be32_to_cpu(vid_hdr->magic);
1256 	if (magic != UBI_VID_HDR_MAGIC) {
1257 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1258 			magic, pnum, UBI_VID_HDR_MAGIC);
1259 		goto fail;
1260 	}
1261 
1262 	err = validate_vid_hdr(ubi, vid_hdr);
1263 	if (err) {
1264 		ubi_err("paranoid check failed for PEB %d", pnum);
1265 		goto fail;
1266 	}
1267 
1268 	return err;
1269 
1270 fail:
1271 	ubi_err("paranoid check failed for PEB %d", pnum);
1272 	ubi_dbg_dump_vid_hdr(vid_hdr);
1273 	ubi_dbg_dump_stack();
1274 	return -EINVAL;
1275 
1276 }
1277 
1278 /**
1279  * paranoid_check_peb_vid_hdr - check volume identifier header.
1280  * @ubi: UBI device description object
1281  * @pnum: the physical eraseblock number to check
1282  *
1283  * This function returns zero if the volume identifier header is all right,
1284  * and a negative error code if not or if an error occurred.
1285  */
1286 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1287 {
1288 	int err;
1289 	uint32_t crc, hdr_crc;
1290 	struct ubi_vid_hdr *vid_hdr;
1291 	void *p;
1292 
1293 	if (!(ubi_chk_flags & UBI_CHK_IO))
1294 		return 0;
1295 
1296 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1297 	if (!vid_hdr)
1298 		return -ENOMEM;
1299 
1300 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1301 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1302 			  ubi->vid_hdr_alsize);
1303 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1304 		goto exit;
1305 
1306 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1307 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1308 	if (hdr_crc != crc) {
1309 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1310 			"read %#08x", pnum, crc, hdr_crc);
1311 		ubi_err("paranoid check failed for PEB %d", pnum);
1312 		ubi_dbg_dump_vid_hdr(vid_hdr);
1313 		ubi_dbg_dump_stack();
1314 		err = -EINVAL;
1315 		goto exit;
1316 	}
1317 
1318 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1319 
1320 exit:
1321 	ubi_free_vid_hdr(ubi, vid_hdr);
1322 	return err;
1323 }
1324 
1325 /**
1326  * ubi_dbg_check_write - make sure write succeeded.
1327  * @ubi: UBI device description object
1328  * @buf: buffer with data which were written
1329  * @pnum: physical eraseblock number the data were written to
1330  * @offset: offset within the physical eraseblock the data were written to
1331  * @len: how many bytes were written
1332  *
1333  * This functions reads data which were recently written and compares it with
1334  * the original data buffer - the data have to match. Returns zero if the data
1335  * match and a negative error code if not or in case of failure.
1336  */
1337 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1338 			int offset, int len)
1339 {
1340 	int err, i;
1341 	size_t read;
1342 	void *buf1;
1343 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1344 
1345 	if (!(ubi_chk_flags & UBI_CHK_IO))
1346 		return 0;
1347 
1348 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1349 	if (!buf1) {
1350 		ubi_err("cannot allocate memory to check writes");
1351 		return 0;
1352 	}
1353 
1354 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1);
1355 	if (err && err != -EUCLEAN)
1356 		goto out_free;
1357 
1358 	for (i = 0; i < len; i++) {
1359 		uint8_t c = ((uint8_t *)buf)[i];
1360 		uint8_t c1 = ((uint8_t *)buf1)[i];
1361 		int dump_len;
1362 
1363 		if (c == c1)
1364 			continue;
1365 
1366 		ubi_err("paranoid check failed for PEB %d:%d, len %d",
1367 			pnum, offset, len);
1368 		ubi_msg("data differ at position %d", i);
1369 		dump_len = max_t(int, 128, len - i);
1370 		ubi_msg("hex dump of the original buffer from %d to %d",
1371 			i, i + dump_len);
1372 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1373 			       buf + i, dump_len, 1);
1374 		ubi_msg("hex dump of the read buffer from %d to %d",
1375 			i, i + dump_len);
1376 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1377 			       buf1 + i, dump_len, 1);
1378 		ubi_dbg_dump_stack();
1379 		err = -EINVAL;
1380 		goto out_free;
1381 	}
1382 
1383 	vfree(buf1);
1384 	return 0;
1385 
1386 out_free:
1387 	vfree(buf1);
1388 	return err;
1389 }
1390 
1391 /**
1392  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1393  * @ubi: UBI device description object
1394  * @pnum: the physical eraseblock number to check
1395  * @offset: the starting offset within the physical eraseblock to check
1396  * @len: the length of the region to check
1397  *
1398  * This function returns zero if only 0xFF bytes are present at offset
1399  * @offset of the physical eraseblock @pnum, and a negative error code if not
1400  * or if an error occurred.
1401  */
1402 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1403 {
1404 	size_t read;
1405 	int err;
1406 	void *buf;
1407 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1408 
1409 	if (!(ubi_chk_flags & UBI_CHK_IO))
1410 		return 0;
1411 
1412 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1413 	if (!buf) {
1414 		ubi_err("cannot allocate memory to check for 0xFFs");
1415 		return 0;
1416 	}
1417 
1418 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
1419 	if (err && err != -EUCLEAN) {
1420 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1421 			"read %zd bytes", err, len, pnum, offset, read);
1422 		goto error;
1423 	}
1424 
1425 	err = ubi_check_pattern(buf, 0xFF, len);
1426 	if (err == 0) {
1427 		ubi_err("flash region at PEB %d:%d, length %d does not "
1428 			"contain all 0xFF bytes", pnum, offset, len);
1429 		goto fail;
1430 	}
1431 
1432 	vfree(buf);
1433 	return 0;
1434 
1435 fail:
1436 	ubi_err("paranoid check failed for PEB %d", pnum);
1437 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1438 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1439 	err = -EINVAL;
1440 error:
1441 	ubi_dbg_dump_stack();
1442 	vfree(buf);
1443 	return err;
1444 }
1445 
1446 #endif /* CONFIG_MTD_UBI_DEBUG */
1447