xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision f220d3eb)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 			     const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 			      const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 			    int offset, int len);
103 
104 /**
105  * ubi_io_read - read data from a physical eraseblock.
106  * @ubi: UBI device description object
107  * @buf: buffer where to store the read data
108  * @pnum: physical eraseblock number to read from
109  * @offset: offset within the physical eraseblock from where to read
110  * @len: how many bytes to read
111  *
112  * This function reads data from offset @offset of physical eraseblock @pnum
113  * and stores the read data in the @buf buffer. The following return codes are
114  * possible:
115  *
116  * o %0 if all the requested data were successfully read;
117  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118  *   correctable bit-flips were detected; this is harmless but may indicate
119  *   that this eraseblock may become bad soon (but do not have to);
120  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121  *   example it can be an ECC error in case of NAND; this most probably means
122  *   that the data is corrupted;
123  * o %-EIO if some I/O error occurred;
124  * o other negative error codes in case of other errors.
125  */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 		int len)
128 {
129 	int err, retries = 0;
130 	size_t read;
131 	loff_t addr;
132 
133 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134 
135 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 	ubi_assert(len > 0);
138 
139 	err = self_check_not_bad(ubi, pnum);
140 	if (err)
141 		return err;
142 
143 	/*
144 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 	 * do not do this, the following may happen:
146 	 * 1. The buffer contains data from previous operation, e.g., read from
147 	 *    another PEB previously. The data looks like expected, e.g., if we
148 	 *    just do not read anything and return - the caller would not
149 	 *    notice this. E.g., if we are reading a VID header, the buffer may
150 	 *    contain a valid VID header from another PEB.
151 	 * 2. The driver is buggy and returns us success or -EBADMSG or
152 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
153 	 *
154 	 * This may confuse UBI or upper layers - they may think the buffer
155 	 * contains valid data while in fact it is just old data. This is
156 	 * especially possible because UBI (and UBIFS) relies on CRC, and
157 	 * treats data as correct even in case of ECC errors if the CRC is
158 	 * correct.
159 	 *
160 	 * Try to prevent this situation by changing the first byte of the
161 	 * buffer.
162 	 */
163 	*((uint8_t *)buf) ^= 0xFF;
164 
165 	addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 	if (err) {
169 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170 
171 		if (mtd_is_bitflip(err)) {
172 			/*
173 			 * -EUCLEAN is reported if there was a bit-flip which
174 			 * was corrected, so this is harmless.
175 			 *
176 			 * We do not report about it here unless debugging is
177 			 * enabled. A corresponding message will be printed
178 			 * later, when it is has been scrubbed.
179 			 */
180 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
181 				pnum);
182 			ubi_assert(len == read);
183 			return UBI_IO_BITFLIPS;
184 		}
185 
186 		if (retries++ < UBI_IO_RETRIES) {
187 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188 				 err, errstr, len, pnum, offset, read);
189 			yield();
190 			goto retry;
191 		}
192 
193 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194 			err, errstr, len, pnum, offset, read);
195 		dump_stack();
196 
197 		/*
198 		 * The driver should never return -EBADMSG if it failed to read
199 		 * all the requested data. But some buggy drivers might do
200 		 * this, so we change it to -EIO.
201 		 */
202 		if (read != len && mtd_is_eccerr(err)) {
203 			ubi_assert(0);
204 			err = -EIO;
205 		}
206 	} else {
207 		ubi_assert(len == read);
208 
209 		if (ubi_dbg_is_bitflip(ubi)) {
210 			dbg_gen("bit-flip (emulated)");
211 			err = UBI_IO_BITFLIPS;
212 		}
213 	}
214 
215 	return err;
216 }
217 
218 /**
219  * ubi_io_write - write data to a physical eraseblock.
220  * @ubi: UBI device description object
221  * @buf: buffer with the data to write
222  * @pnum: physical eraseblock number to write to
223  * @offset: offset within the physical eraseblock where to write
224  * @len: how many bytes to write
225  *
226  * This function writes @len bytes of data from buffer @buf to offset @offset
227  * of physical eraseblock @pnum. If all the data were successfully written,
228  * zero is returned. If an error occurred, this function returns a negative
229  * error code. If %-EIO is returned, the physical eraseblock most probably went
230  * bad.
231  *
232  * Note, in case of an error, it is possible that something was still written
233  * to the flash media, but may be some garbage.
234  */
235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 		 int len)
237 {
238 	int err;
239 	size_t written;
240 	loff_t addr;
241 
242 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243 
244 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248 
249 	if (ubi->ro_mode) {
250 		ubi_err(ubi, "read-only mode");
251 		return -EROFS;
252 	}
253 
254 	err = self_check_not_bad(ubi, pnum);
255 	if (err)
256 		return err;
257 
258 	/* The area we are writing to has to contain all 0xFF bytes */
259 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260 	if (err)
261 		return err;
262 
263 	if (offset >= ubi->leb_start) {
264 		/*
265 		 * We write to the data area of the physical eraseblock. Make
266 		 * sure it has valid EC and VID headers.
267 		 */
268 		err = self_check_peb_ec_hdr(ubi, pnum);
269 		if (err)
270 			return err;
271 		err = self_check_peb_vid_hdr(ubi, pnum);
272 		if (err)
273 			return err;
274 	}
275 
276 	if (ubi_dbg_is_write_failure(ubi)) {
277 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
278 			len, pnum, offset);
279 		dump_stack();
280 		return -EIO;
281 	}
282 
283 	addr = (loff_t)pnum * ubi->peb_size + offset;
284 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
285 	if (err) {
286 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287 			err, len, pnum, offset, written);
288 		dump_stack();
289 		ubi_dump_flash(ubi, pnum, offset, len);
290 	} else
291 		ubi_assert(written == len);
292 
293 	if (!err) {
294 		err = self_check_write(ubi, buf, pnum, offset, len);
295 		if (err)
296 			return err;
297 
298 		/*
299 		 * Since we always write sequentially, the rest of the PEB has
300 		 * to contain only 0xFF bytes.
301 		 */
302 		offset += len;
303 		len = ubi->peb_size - offset;
304 		if (len)
305 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
306 	}
307 
308 	return err;
309 }
310 
311 /**
312  * do_sync_erase - synchronously erase a physical eraseblock.
313  * @ubi: UBI device description object
314  * @pnum: the physical eraseblock number to erase
315  *
316  * This function synchronously erases physical eraseblock @pnum and returns
317  * zero in case of success and a negative error code in case of failure. If
318  * %-EIO is returned, the physical eraseblock most probably went bad.
319  */
320 static int do_sync_erase(struct ubi_device *ubi, int pnum)
321 {
322 	int err, retries = 0;
323 	struct erase_info ei;
324 
325 	dbg_io("erase PEB %d", pnum);
326 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
327 
328 	if (ubi->ro_mode) {
329 		ubi_err(ubi, "read-only mode");
330 		return -EROFS;
331 	}
332 
333 retry:
334 	memset(&ei, 0, sizeof(struct erase_info));
335 
336 	ei.addr     = (loff_t)pnum * ubi->peb_size;
337 	ei.len      = ubi->peb_size;
338 
339 	err = mtd_erase(ubi->mtd, &ei);
340 	if (err) {
341 		if (retries++ < UBI_IO_RETRIES) {
342 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
343 				 err, pnum);
344 			yield();
345 			goto retry;
346 		}
347 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
348 		dump_stack();
349 		return err;
350 	}
351 
352 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
353 	if (err)
354 		return err;
355 
356 	if (ubi_dbg_is_erase_failure(ubi)) {
357 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
358 		return -EIO;
359 	}
360 
361 	return 0;
362 }
363 
364 /* Patterns to write to a physical eraseblock when torturing it */
365 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
366 
367 /**
368  * torture_peb - test a supposedly bad physical eraseblock.
369  * @ubi: UBI device description object
370  * @pnum: the physical eraseblock number to test
371  *
372  * This function returns %-EIO if the physical eraseblock did not pass the
373  * test, a positive number of erase operations done if the test was
374  * successfully passed, and other negative error codes in case of other errors.
375  */
376 static int torture_peb(struct ubi_device *ubi, int pnum)
377 {
378 	int err, i, patt_count;
379 
380 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
381 	patt_count = ARRAY_SIZE(patterns);
382 	ubi_assert(patt_count > 0);
383 
384 	mutex_lock(&ubi->buf_mutex);
385 	for (i = 0; i < patt_count; i++) {
386 		err = do_sync_erase(ubi, pnum);
387 		if (err)
388 			goto out;
389 
390 		/* Make sure the PEB contains only 0xFF bytes */
391 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
392 		if (err)
393 			goto out;
394 
395 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
396 		if (err == 0) {
397 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
398 				pnum);
399 			err = -EIO;
400 			goto out;
401 		}
402 
403 		/* Write a pattern and check it */
404 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
405 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
406 		if (err)
407 			goto out;
408 
409 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
410 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
411 		if (err)
412 			goto out;
413 
414 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
415 					ubi->peb_size);
416 		if (err == 0) {
417 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
418 				patterns[i], pnum);
419 			err = -EIO;
420 			goto out;
421 		}
422 	}
423 
424 	err = patt_count;
425 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
426 
427 out:
428 	mutex_unlock(&ubi->buf_mutex);
429 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
430 		/*
431 		 * If a bit-flip or data integrity error was detected, the test
432 		 * has not passed because it happened on a freshly erased
433 		 * physical eraseblock which means something is wrong with it.
434 		 */
435 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
436 			pnum);
437 		err = -EIO;
438 	}
439 	return err;
440 }
441 
442 /**
443  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
444  * @ubi: UBI device description object
445  * @pnum: physical eraseblock number to prepare
446  *
447  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
448  * algorithm: the PEB is first filled with zeroes, then it is erased. And
449  * filling with zeroes starts from the end of the PEB. This was observed with
450  * Spansion S29GL512N NOR flash.
451  *
452  * This means that in case of a power cut we may end up with intact data at the
453  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
454  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
455  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
456  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
457  *
458  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
459  * magic numbers in order to invalidate them and prevent the failures. Returns
460  * zero in case of success and a negative error code in case of failure.
461  */
462 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
463 {
464 	int err;
465 	size_t written;
466 	loff_t addr;
467 	uint32_t data = 0;
468 	struct ubi_ec_hdr ec_hdr;
469 	struct ubi_vid_io_buf vidb;
470 
471 	/*
472 	 * Note, we cannot generally define VID header buffers on stack,
473 	 * because of the way we deal with these buffers (see the header
474 	 * comment in this file). But we know this is a NOR-specific piece of
475 	 * code, so we can do this. But yes, this is error-prone and we should
476 	 * (pre-)allocate VID header buffer instead.
477 	 */
478 	struct ubi_vid_hdr vid_hdr;
479 
480 	/*
481 	 * If VID or EC is valid, we have to corrupt them before erasing.
482 	 * It is important to first invalidate the EC header, and then the VID
483 	 * header. Otherwise a power cut may lead to valid EC header and
484 	 * invalid VID header, in which case UBI will treat this PEB as
485 	 * corrupted and will try to preserve it, and print scary warnings.
486 	 */
487 	addr = (loff_t)pnum * ubi->peb_size;
488 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
489 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
490 	    err != UBI_IO_FF){
491 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
492 		if(err)
493 			goto error;
494 	}
495 
496 	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
497 	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
498 
499 	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
500 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
501 	    err != UBI_IO_FF){
502 		addr += ubi->vid_hdr_aloffset;
503 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
504 		if (err)
505 			goto error;
506 	}
507 	return 0;
508 
509 error:
510 	/*
511 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
512 	 * it. Supposedly the flash media or the driver is screwed up, so
513 	 * return an error.
514 	 */
515 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
516 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
517 	return -EIO;
518 }
519 
520 /**
521  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
522  * @ubi: UBI device description object
523  * @pnum: physical eraseblock number to erase
524  * @torture: if this physical eraseblock has to be tortured
525  *
526  * This function synchronously erases physical eraseblock @pnum. If @torture
527  * flag is not zero, the physical eraseblock is checked by means of writing
528  * different patterns to it and reading them back. If the torturing is enabled,
529  * the physical eraseblock is erased more than once.
530  *
531  * This function returns the number of erasures made in case of success, %-EIO
532  * if the erasure failed or the torturing test failed, and other negative error
533  * codes in case of other errors. Note, %-EIO means that the physical
534  * eraseblock is bad.
535  */
536 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
537 {
538 	int err, ret = 0;
539 
540 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
541 
542 	err = self_check_not_bad(ubi, pnum);
543 	if (err != 0)
544 		return err;
545 
546 	if (ubi->ro_mode) {
547 		ubi_err(ubi, "read-only mode");
548 		return -EROFS;
549 	}
550 
551 	if (ubi->nor_flash) {
552 		err = nor_erase_prepare(ubi, pnum);
553 		if (err)
554 			return err;
555 	}
556 
557 	if (torture) {
558 		ret = torture_peb(ubi, pnum);
559 		if (ret < 0)
560 			return ret;
561 	}
562 
563 	err = do_sync_erase(ubi, pnum);
564 	if (err)
565 		return err;
566 
567 	return ret + 1;
568 }
569 
570 /**
571  * ubi_io_is_bad - check if a physical eraseblock is bad.
572  * @ubi: UBI device description object
573  * @pnum: the physical eraseblock number to check
574  *
575  * This function returns a positive number if the physical eraseblock is bad,
576  * zero if not, and a negative error code if an error occurred.
577  */
578 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
579 {
580 	struct mtd_info *mtd = ubi->mtd;
581 
582 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
583 
584 	if (ubi->bad_allowed) {
585 		int ret;
586 
587 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
588 		if (ret < 0)
589 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
590 				ret, pnum);
591 		else if (ret)
592 			dbg_io("PEB %d is bad", pnum);
593 		return ret;
594 	}
595 
596 	return 0;
597 }
598 
599 /**
600  * ubi_io_mark_bad - mark a physical eraseblock as bad.
601  * @ubi: UBI device description object
602  * @pnum: the physical eraseblock number to mark
603  *
604  * This function returns zero in case of success and a negative error code in
605  * case of failure.
606  */
607 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
608 {
609 	int err;
610 	struct mtd_info *mtd = ubi->mtd;
611 
612 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
613 
614 	if (ubi->ro_mode) {
615 		ubi_err(ubi, "read-only mode");
616 		return -EROFS;
617 	}
618 
619 	if (!ubi->bad_allowed)
620 		return 0;
621 
622 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
623 	if (err)
624 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
625 	return err;
626 }
627 
628 /**
629  * validate_ec_hdr - validate an erase counter header.
630  * @ubi: UBI device description object
631  * @ec_hdr: the erase counter header to check
632  *
633  * This function returns zero if the erase counter header is OK, and %1 if
634  * not.
635  */
636 static int validate_ec_hdr(const struct ubi_device *ubi,
637 			   const struct ubi_ec_hdr *ec_hdr)
638 {
639 	long long ec;
640 	int vid_hdr_offset, leb_start;
641 
642 	ec = be64_to_cpu(ec_hdr->ec);
643 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
644 	leb_start = be32_to_cpu(ec_hdr->data_offset);
645 
646 	if (ec_hdr->version != UBI_VERSION) {
647 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
648 			UBI_VERSION, (int)ec_hdr->version);
649 		goto bad;
650 	}
651 
652 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
653 		ubi_err(ubi, "bad VID header offset %d, expected %d",
654 			vid_hdr_offset, ubi->vid_hdr_offset);
655 		goto bad;
656 	}
657 
658 	if (leb_start != ubi->leb_start) {
659 		ubi_err(ubi, "bad data offset %d, expected %d",
660 			leb_start, ubi->leb_start);
661 		goto bad;
662 	}
663 
664 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
665 		ubi_err(ubi, "bad erase counter %lld", ec);
666 		goto bad;
667 	}
668 
669 	return 0;
670 
671 bad:
672 	ubi_err(ubi, "bad EC header");
673 	ubi_dump_ec_hdr(ec_hdr);
674 	dump_stack();
675 	return 1;
676 }
677 
678 /**
679  * ubi_io_read_ec_hdr - read and check an erase counter header.
680  * @ubi: UBI device description object
681  * @pnum: physical eraseblock to read from
682  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
683  * header
684  * @verbose: be verbose if the header is corrupted or was not found
685  *
686  * This function reads erase counter header from physical eraseblock @pnum and
687  * stores it in @ec_hdr. This function also checks CRC checksum of the read
688  * erase counter header. The following codes may be returned:
689  *
690  * o %0 if the CRC checksum is correct and the header was successfully read;
691  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
692  *   and corrected by the flash driver; this is harmless but may indicate that
693  *   this eraseblock may become bad soon (but may be not);
694  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
695  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
696  *   a data integrity error (uncorrectable ECC error in case of NAND);
697  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
698  * o a negative error code in case of failure.
699  */
700 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
701 		       struct ubi_ec_hdr *ec_hdr, int verbose)
702 {
703 	int err, read_err;
704 	uint32_t crc, magic, hdr_crc;
705 
706 	dbg_io("read EC header from PEB %d", pnum);
707 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
708 
709 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
710 	if (read_err) {
711 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
712 			return read_err;
713 
714 		/*
715 		 * We read all the data, but either a correctable bit-flip
716 		 * occurred, or MTD reported a data integrity error
717 		 * (uncorrectable ECC error in case of NAND). The former is
718 		 * harmless, the later may mean that the read data is
719 		 * corrupted. But we have a CRC check-sum and we will detect
720 		 * this. If the EC header is still OK, we just report this as
721 		 * there was a bit-flip, to force scrubbing.
722 		 */
723 	}
724 
725 	magic = be32_to_cpu(ec_hdr->magic);
726 	if (magic != UBI_EC_HDR_MAGIC) {
727 		if (mtd_is_eccerr(read_err))
728 			return UBI_IO_BAD_HDR_EBADMSG;
729 
730 		/*
731 		 * The magic field is wrong. Let's check if we have read all
732 		 * 0xFF. If yes, this physical eraseblock is assumed to be
733 		 * empty.
734 		 */
735 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
736 			/* The physical eraseblock is supposedly empty */
737 			if (verbose)
738 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
739 					 pnum);
740 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
741 				pnum);
742 			if (!read_err)
743 				return UBI_IO_FF;
744 			else
745 				return UBI_IO_FF_BITFLIPS;
746 		}
747 
748 		/*
749 		 * This is not a valid erase counter header, and these are not
750 		 * 0xFF bytes. Report that the header is corrupted.
751 		 */
752 		if (verbose) {
753 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
754 				 pnum, magic, UBI_EC_HDR_MAGIC);
755 			ubi_dump_ec_hdr(ec_hdr);
756 		}
757 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
758 			pnum, magic, UBI_EC_HDR_MAGIC);
759 		return UBI_IO_BAD_HDR;
760 	}
761 
762 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
763 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
764 
765 	if (hdr_crc != crc) {
766 		if (verbose) {
767 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
768 				 pnum, crc, hdr_crc);
769 			ubi_dump_ec_hdr(ec_hdr);
770 		}
771 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
772 			pnum, crc, hdr_crc);
773 
774 		if (!read_err)
775 			return UBI_IO_BAD_HDR;
776 		else
777 			return UBI_IO_BAD_HDR_EBADMSG;
778 	}
779 
780 	/* And of course validate what has just been read from the media */
781 	err = validate_ec_hdr(ubi, ec_hdr);
782 	if (err) {
783 		ubi_err(ubi, "validation failed for PEB %d", pnum);
784 		return -EINVAL;
785 	}
786 
787 	/*
788 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
789 	 * a bit-flip to force scrubbing on this PEB.
790 	 */
791 	return read_err ? UBI_IO_BITFLIPS : 0;
792 }
793 
794 /**
795  * ubi_io_write_ec_hdr - write an erase counter header.
796  * @ubi: UBI device description object
797  * @pnum: physical eraseblock to write to
798  * @ec_hdr: the erase counter header to write
799  *
800  * This function writes erase counter header described by @ec_hdr to physical
801  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
802  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
803  * field.
804  *
805  * This function returns zero in case of success and a negative error code in
806  * case of failure. If %-EIO is returned, the physical eraseblock most probably
807  * went bad.
808  */
809 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
810 			struct ubi_ec_hdr *ec_hdr)
811 {
812 	int err;
813 	uint32_t crc;
814 
815 	dbg_io("write EC header to PEB %d", pnum);
816 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
817 
818 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
819 	ec_hdr->version = UBI_VERSION;
820 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
821 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
822 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
823 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
824 	ec_hdr->hdr_crc = cpu_to_be32(crc);
825 
826 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
827 	if (err)
828 		return err;
829 
830 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
831 		return -EROFS;
832 
833 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
834 	return err;
835 }
836 
837 /**
838  * validate_vid_hdr - validate a volume identifier header.
839  * @ubi: UBI device description object
840  * @vid_hdr: the volume identifier header to check
841  *
842  * This function checks that data stored in the volume identifier header
843  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
844  */
845 static int validate_vid_hdr(const struct ubi_device *ubi,
846 			    const struct ubi_vid_hdr *vid_hdr)
847 {
848 	int vol_type = vid_hdr->vol_type;
849 	int copy_flag = vid_hdr->copy_flag;
850 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
851 	int lnum = be32_to_cpu(vid_hdr->lnum);
852 	int compat = vid_hdr->compat;
853 	int data_size = be32_to_cpu(vid_hdr->data_size);
854 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
855 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
856 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
857 	int usable_leb_size = ubi->leb_size - data_pad;
858 
859 	if (copy_flag != 0 && copy_flag != 1) {
860 		ubi_err(ubi, "bad copy_flag");
861 		goto bad;
862 	}
863 
864 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
865 	    data_pad < 0) {
866 		ubi_err(ubi, "negative values");
867 		goto bad;
868 	}
869 
870 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
871 		ubi_err(ubi, "bad vol_id");
872 		goto bad;
873 	}
874 
875 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
876 		ubi_err(ubi, "bad compat");
877 		goto bad;
878 	}
879 
880 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
881 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
882 	    compat != UBI_COMPAT_REJECT) {
883 		ubi_err(ubi, "bad compat");
884 		goto bad;
885 	}
886 
887 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
888 		ubi_err(ubi, "bad vol_type");
889 		goto bad;
890 	}
891 
892 	if (data_pad >= ubi->leb_size / 2) {
893 		ubi_err(ubi, "bad data_pad");
894 		goto bad;
895 	}
896 
897 	if (data_size > ubi->leb_size) {
898 		ubi_err(ubi, "bad data_size");
899 		goto bad;
900 	}
901 
902 	if (vol_type == UBI_VID_STATIC) {
903 		/*
904 		 * Although from high-level point of view static volumes may
905 		 * contain zero bytes of data, but no VID headers can contain
906 		 * zero at these fields, because they empty volumes do not have
907 		 * mapped logical eraseblocks.
908 		 */
909 		if (used_ebs == 0) {
910 			ubi_err(ubi, "zero used_ebs");
911 			goto bad;
912 		}
913 		if (data_size == 0) {
914 			ubi_err(ubi, "zero data_size");
915 			goto bad;
916 		}
917 		if (lnum < used_ebs - 1) {
918 			if (data_size != usable_leb_size) {
919 				ubi_err(ubi, "bad data_size");
920 				goto bad;
921 			}
922 		} else if (lnum == used_ebs - 1) {
923 			if (data_size == 0) {
924 				ubi_err(ubi, "bad data_size at last LEB");
925 				goto bad;
926 			}
927 		} else {
928 			ubi_err(ubi, "too high lnum");
929 			goto bad;
930 		}
931 	} else {
932 		if (copy_flag == 0) {
933 			if (data_crc != 0) {
934 				ubi_err(ubi, "non-zero data CRC");
935 				goto bad;
936 			}
937 			if (data_size != 0) {
938 				ubi_err(ubi, "non-zero data_size");
939 				goto bad;
940 			}
941 		} else {
942 			if (data_size == 0) {
943 				ubi_err(ubi, "zero data_size of copy");
944 				goto bad;
945 			}
946 		}
947 		if (used_ebs != 0) {
948 			ubi_err(ubi, "bad used_ebs");
949 			goto bad;
950 		}
951 	}
952 
953 	return 0;
954 
955 bad:
956 	ubi_err(ubi, "bad VID header");
957 	ubi_dump_vid_hdr(vid_hdr);
958 	dump_stack();
959 	return 1;
960 }
961 
962 /**
963  * ubi_io_read_vid_hdr - read and check a volume identifier header.
964  * @ubi: UBI device description object
965  * @pnum: physical eraseblock number to read from
966  * @vidb: the volume identifier buffer to store data in
967  * @verbose: be verbose if the header is corrupted or wasn't found
968  *
969  * This function reads the volume identifier header from physical eraseblock
970  * @pnum and stores it in @vidb. It also checks CRC checksum of the read
971  * volume identifier header. The error codes are the same as in
972  * 'ubi_io_read_ec_hdr()'.
973  *
974  * Note, the implementation of this function is also very similar to
975  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
976  */
977 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
978 			struct ubi_vid_io_buf *vidb, int verbose)
979 {
980 	int err, read_err;
981 	uint32_t crc, magic, hdr_crc;
982 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
983 	void *p = vidb->buffer;
984 
985 	dbg_io("read VID header from PEB %d", pnum);
986 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
987 
988 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
989 			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
990 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
991 		return read_err;
992 
993 	magic = be32_to_cpu(vid_hdr->magic);
994 	if (magic != UBI_VID_HDR_MAGIC) {
995 		if (mtd_is_eccerr(read_err))
996 			return UBI_IO_BAD_HDR_EBADMSG;
997 
998 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
999 			if (verbose)
1000 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1001 					 pnum);
1002 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1003 				pnum);
1004 			if (!read_err)
1005 				return UBI_IO_FF;
1006 			else
1007 				return UBI_IO_FF_BITFLIPS;
1008 		}
1009 
1010 		if (verbose) {
1011 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1012 				 pnum, magic, UBI_VID_HDR_MAGIC);
1013 			ubi_dump_vid_hdr(vid_hdr);
1014 		}
1015 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1016 			pnum, magic, UBI_VID_HDR_MAGIC);
1017 		return UBI_IO_BAD_HDR;
1018 	}
1019 
1020 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1021 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1022 
1023 	if (hdr_crc != crc) {
1024 		if (verbose) {
1025 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1026 				 pnum, crc, hdr_crc);
1027 			ubi_dump_vid_hdr(vid_hdr);
1028 		}
1029 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1030 			pnum, crc, hdr_crc);
1031 		if (!read_err)
1032 			return UBI_IO_BAD_HDR;
1033 		else
1034 			return UBI_IO_BAD_HDR_EBADMSG;
1035 	}
1036 
1037 	err = validate_vid_hdr(ubi, vid_hdr);
1038 	if (err) {
1039 		ubi_err(ubi, "validation failed for PEB %d", pnum);
1040 		return -EINVAL;
1041 	}
1042 
1043 	return read_err ? UBI_IO_BITFLIPS : 0;
1044 }
1045 
1046 /**
1047  * ubi_io_write_vid_hdr - write a volume identifier header.
1048  * @ubi: UBI device description object
1049  * @pnum: the physical eraseblock number to write to
1050  * @vidb: the volume identifier buffer to write
1051  *
1052  * This function writes the volume identifier header described by @vid_hdr to
1053  * physical eraseblock @pnum. This function automatically fills the
1054  * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1055  * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1056  *
1057  * This function returns zero in case of success and a negative error code in
1058  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1059  * bad.
1060  */
1061 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1062 			 struct ubi_vid_io_buf *vidb)
1063 {
1064 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1065 	int err;
1066 	uint32_t crc;
1067 	void *p = vidb->buffer;
1068 
1069 	dbg_io("write VID header to PEB %d", pnum);
1070 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1071 
1072 	err = self_check_peb_ec_hdr(ubi, pnum);
1073 	if (err)
1074 		return err;
1075 
1076 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1077 	vid_hdr->version = UBI_VERSION;
1078 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1079 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1080 
1081 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1082 	if (err)
1083 		return err;
1084 
1085 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1086 		return -EROFS;
1087 
1088 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1089 			   ubi->vid_hdr_alsize);
1090 	return err;
1091 }
1092 
1093 /**
1094  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1095  * @ubi: UBI device description object
1096  * @pnum: physical eraseblock number to check
1097  *
1098  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1099  * it is bad and a negative error code if an error occurred.
1100  */
1101 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1102 {
1103 	int err;
1104 
1105 	if (!ubi_dbg_chk_io(ubi))
1106 		return 0;
1107 
1108 	err = ubi_io_is_bad(ubi, pnum);
1109 	if (!err)
1110 		return err;
1111 
1112 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1113 	dump_stack();
1114 	return err > 0 ? -EINVAL : err;
1115 }
1116 
1117 /**
1118  * self_check_ec_hdr - check if an erase counter header is all right.
1119  * @ubi: UBI device description object
1120  * @pnum: physical eraseblock number the erase counter header belongs to
1121  * @ec_hdr: the erase counter header to check
1122  *
1123  * This function returns zero if the erase counter header contains valid
1124  * values, and %-EINVAL if not.
1125  */
1126 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1127 			     const struct ubi_ec_hdr *ec_hdr)
1128 {
1129 	int err;
1130 	uint32_t magic;
1131 
1132 	if (!ubi_dbg_chk_io(ubi))
1133 		return 0;
1134 
1135 	magic = be32_to_cpu(ec_hdr->magic);
1136 	if (magic != UBI_EC_HDR_MAGIC) {
1137 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1138 			magic, UBI_EC_HDR_MAGIC);
1139 		goto fail;
1140 	}
1141 
1142 	err = validate_ec_hdr(ubi, ec_hdr);
1143 	if (err) {
1144 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1145 		goto fail;
1146 	}
1147 
1148 	return 0;
1149 
1150 fail:
1151 	ubi_dump_ec_hdr(ec_hdr);
1152 	dump_stack();
1153 	return -EINVAL;
1154 }
1155 
1156 /**
1157  * self_check_peb_ec_hdr - check erase counter header.
1158  * @ubi: UBI device description object
1159  * @pnum: the physical eraseblock number to check
1160  *
1161  * This function returns zero if the erase counter header is all right and and
1162  * a negative error code if not or if an error occurred.
1163  */
1164 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1165 {
1166 	int err;
1167 	uint32_t crc, hdr_crc;
1168 	struct ubi_ec_hdr *ec_hdr;
1169 
1170 	if (!ubi_dbg_chk_io(ubi))
1171 		return 0;
1172 
1173 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1174 	if (!ec_hdr)
1175 		return -ENOMEM;
1176 
1177 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1178 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1179 		goto exit;
1180 
1181 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1182 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1183 	if (hdr_crc != crc) {
1184 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1185 			crc, hdr_crc);
1186 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1187 		ubi_dump_ec_hdr(ec_hdr);
1188 		dump_stack();
1189 		err = -EINVAL;
1190 		goto exit;
1191 	}
1192 
1193 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1194 
1195 exit:
1196 	kfree(ec_hdr);
1197 	return err;
1198 }
1199 
1200 /**
1201  * self_check_vid_hdr - check that a volume identifier header is all right.
1202  * @ubi: UBI device description object
1203  * @pnum: physical eraseblock number the volume identifier header belongs to
1204  * @vid_hdr: the volume identifier header to check
1205  *
1206  * This function returns zero if the volume identifier header is all right, and
1207  * %-EINVAL if not.
1208  */
1209 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1210 			      const struct ubi_vid_hdr *vid_hdr)
1211 {
1212 	int err;
1213 	uint32_t magic;
1214 
1215 	if (!ubi_dbg_chk_io(ubi))
1216 		return 0;
1217 
1218 	magic = be32_to_cpu(vid_hdr->magic);
1219 	if (magic != UBI_VID_HDR_MAGIC) {
1220 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1221 			magic, pnum, UBI_VID_HDR_MAGIC);
1222 		goto fail;
1223 	}
1224 
1225 	err = validate_vid_hdr(ubi, vid_hdr);
1226 	if (err) {
1227 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1228 		goto fail;
1229 	}
1230 
1231 	return err;
1232 
1233 fail:
1234 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1235 	ubi_dump_vid_hdr(vid_hdr);
1236 	dump_stack();
1237 	return -EINVAL;
1238 
1239 }
1240 
1241 /**
1242  * self_check_peb_vid_hdr - check volume identifier header.
1243  * @ubi: UBI device description object
1244  * @pnum: the physical eraseblock number to check
1245  *
1246  * This function returns zero if the volume identifier header is all right,
1247  * and a negative error code if not or if an error occurred.
1248  */
1249 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1250 {
1251 	int err;
1252 	uint32_t crc, hdr_crc;
1253 	struct ubi_vid_io_buf *vidb;
1254 	struct ubi_vid_hdr *vid_hdr;
1255 	void *p;
1256 
1257 	if (!ubi_dbg_chk_io(ubi))
1258 		return 0;
1259 
1260 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1261 	if (!vidb)
1262 		return -ENOMEM;
1263 
1264 	vid_hdr = ubi_get_vid_hdr(vidb);
1265 	p = vidb->buffer;
1266 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1267 			  ubi->vid_hdr_alsize);
1268 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1269 		goto exit;
1270 
1271 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1272 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1273 	if (hdr_crc != crc) {
1274 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1275 			pnum, crc, hdr_crc);
1276 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1277 		ubi_dump_vid_hdr(vid_hdr);
1278 		dump_stack();
1279 		err = -EINVAL;
1280 		goto exit;
1281 	}
1282 
1283 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1284 
1285 exit:
1286 	ubi_free_vid_buf(vidb);
1287 	return err;
1288 }
1289 
1290 /**
1291  * self_check_write - make sure write succeeded.
1292  * @ubi: UBI device description object
1293  * @buf: buffer with data which were written
1294  * @pnum: physical eraseblock number the data were written to
1295  * @offset: offset within the physical eraseblock the data were written to
1296  * @len: how many bytes were written
1297  *
1298  * This functions reads data which were recently written and compares it with
1299  * the original data buffer - the data have to match. Returns zero if the data
1300  * match and a negative error code if not or in case of failure.
1301  */
1302 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1303 			    int offset, int len)
1304 {
1305 	int err, i;
1306 	size_t read;
1307 	void *buf1;
1308 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1309 
1310 	if (!ubi_dbg_chk_io(ubi))
1311 		return 0;
1312 
1313 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1314 	if (!buf1) {
1315 		ubi_err(ubi, "cannot allocate memory to check writes");
1316 		return 0;
1317 	}
1318 
1319 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1320 	if (err && !mtd_is_bitflip(err))
1321 		goto out_free;
1322 
1323 	for (i = 0; i < len; i++) {
1324 		uint8_t c = ((uint8_t *)buf)[i];
1325 		uint8_t c1 = ((uint8_t *)buf1)[i];
1326 		int dump_len;
1327 
1328 		if (c == c1)
1329 			continue;
1330 
1331 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1332 			pnum, offset, len);
1333 		ubi_msg(ubi, "data differ at position %d", i);
1334 		dump_len = max_t(int, 128, len - i);
1335 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1336 			i, i + dump_len);
1337 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1338 			       buf + i, dump_len, 1);
1339 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1340 			i, i + dump_len);
1341 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1342 			       buf1 + i, dump_len, 1);
1343 		dump_stack();
1344 		err = -EINVAL;
1345 		goto out_free;
1346 	}
1347 
1348 	vfree(buf1);
1349 	return 0;
1350 
1351 out_free:
1352 	vfree(buf1);
1353 	return err;
1354 }
1355 
1356 /**
1357  * ubi_self_check_all_ff - check that a region of flash is empty.
1358  * @ubi: UBI device description object
1359  * @pnum: the physical eraseblock number to check
1360  * @offset: the starting offset within the physical eraseblock to check
1361  * @len: the length of the region to check
1362  *
1363  * This function returns zero if only 0xFF bytes are present at offset
1364  * @offset of the physical eraseblock @pnum, and a negative error code if not
1365  * or if an error occurred.
1366  */
1367 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1368 {
1369 	size_t read;
1370 	int err;
1371 	void *buf;
1372 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1373 
1374 	if (!ubi_dbg_chk_io(ubi))
1375 		return 0;
1376 
1377 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1378 	if (!buf) {
1379 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1380 		return 0;
1381 	}
1382 
1383 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1384 	if (err && !mtd_is_bitflip(err)) {
1385 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1386 			err, len, pnum, offset, read);
1387 		goto error;
1388 	}
1389 
1390 	err = ubi_check_pattern(buf, 0xFF, len);
1391 	if (err == 0) {
1392 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1393 			pnum, offset, len);
1394 		goto fail;
1395 	}
1396 
1397 	vfree(buf);
1398 	return 0;
1399 
1400 fail:
1401 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1402 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1403 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1404 	err = -EINVAL;
1405 error:
1406 	dump_stack();
1407 	vfree(buf);
1408 	return err;
1409 }
1410