xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision d78c317f)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 #ifdef CONFIG_MTD_UBI_DEBUG
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 				 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 				  const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109 
110 /**
111  * ubi_io_read - read data from a physical eraseblock.
112  * @ubi: UBI device description object
113  * @buf: buffer where to store the read data
114  * @pnum: physical eraseblock number to read from
115  * @offset: offset within the physical eraseblock from where to read
116  * @len: how many bytes to read
117  *
118  * This function reads data from offset @offset of physical eraseblock @pnum
119  * and stores the read data in the @buf buffer. The following return codes are
120  * possible:
121  *
122  * o %0 if all the requested data were successfully read;
123  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124  *   correctable bit-flips were detected; this is harmless but may indicate
125  *   that this eraseblock may become bad soon (but do not have to);
126  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127  *   example it can be an ECC error in case of NAND; this most probably means
128  *   that the data is corrupted;
129  * o %-EIO if some I/O error occurred;
130  * o other negative error codes in case of other errors.
131  */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 		int len)
134 {
135 	int err, retries = 0;
136 	size_t read;
137 	loff_t addr;
138 
139 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 
141 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 	ubi_assert(len > 0);
144 
145 	err = paranoid_check_not_bad(ubi, pnum);
146 	if (err)
147 		return err;
148 
149 	/*
150 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
151 	 * do not do this, the following may happen:
152 	 * 1. The buffer contains data from previous operation, e.g., read from
153 	 *    another PEB previously. The data looks like expected, e.g., if we
154 	 *    just do not read anything and return - the caller would not
155 	 *    notice this. E.g., if we are reading a VID header, the buffer may
156 	 *    contain a valid VID header from another PEB.
157 	 * 2. The driver is buggy and returns us success or -EBADMSG or
158 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
159 	 *
160 	 * This may confuse UBI or upper layers - they may think the buffer
161 	 * contains valid data while in fact it is just old data. This is
162 	 * especially possible because UBI (and UBIFS) relies on CRC, and
163 	 * treats data as correct even in case of ECC errors if the CRC is
164 	 * correct.
165 	 *
166 	 * Try to prevent this situation by changing the first byte of the
167 	 * buffer.
168 	 */
169 	*((uint8_t *)buf) ^= 0xFF;
170 
171 	addr = (loff_t)pnum * ubi->peb_size + offset;
172 retry:
173 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
174 	if (err) {
175 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
176 
177 		if (mtd_is_bitflip(err)) {
178 			/*
179 			 * -EUCLEAN is reported if there was a bit-flip which
180 			 * was corrected, so this is harmless.
181 			 *
182 			 * We do not report about it here unless debugging is
183 			 * enabled. A corresponding message will be printed
184 			 * later, when it is has been scrubbed.
185 			 */
186 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
187 			ubi_assert(len == read);
188 			return UBI_IO_BITFLIPS;
189 		}
190 
191 		if (retries++ < UBI_IO_RETRIES) {
192 			dbg_io("error %d%s while reading %d bytes from PEB "
193 			       "%d:%d, read only %zd bytes, retry",
194 			       err, errstr, len, pnum, offset, read);
195 			yield();
196 			goto retry;
197 		}
198 
199 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
200 			"read %zd bytes", err, errstr, len, pnum, offset, read);
201 		ubi_dbg_dump_stack();
202 
203 		/*
204 		 * The driver should never return -EBADMSG if it failed to read
205 		 * all the requested data. But some buggy drivers might do
206 		 * this, so we change it to -EIO.
207 		 */
208 		if (read != len && mtd_is_eccerr(err)) {
209 			ubi_assert(0);
210 			err = -EIO;
211 		}
212 	} else {
213 		ubi_assert(len == read);
214 
215 		if (ubi_dbg_is_bitflip(ubi)) {
216 			dbg_gen("bit-flip (emulated)");
217 			err = UBI_IO_BITFLIPS;
218 		}
219 	}
220 
221 	return err;
222 }
223 
224 /**
225  * ubi_io_write - write data to a physical eraseblock.
226  * @ubi: UBI device description object
227  * @buf: buffer with the data to write
228  * @pnum: physical eraseblock number to write to
229  * @offset: offset within the physical eraseblock where to write
230  * @len: how many bytes to write
231  *
232  * This function writes @len bytes of data from buffer @buf to offset @offset
233  * of physical eraseblock @pnum. If all the data were successfully written,
234  * zero is returned. If an error occurred, this function returns a negative
235  * error code. If %-EIO is returned, the physical eraseblock most probably went
236  * bad.
237  *
238  * Note, in case of an error, it is possible that something was still written
239  * to the flash media, but may be some garbage.
240  */
241 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
242 		 int len)
243 {
244 	int err;
245 	size_t written;
246 	loff_t addr;
247 
248 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
249 
250 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
251 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
252 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
253 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
254 
255 	if (ubi->ro_mode) {
256 		ubi_err("read-only mode");
257 		return -EROFS;
258 	}
259 
260 	/* The below has to be compiled out if paranoid checks are disabled */
261 
262 	err = paranoid_check_not_bad(ubi, pnum);
263 	if (err)
264 		return err;
265 
266 	/* The area we are writing to has to contain all 0xFF bytes */
267 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
268 	if (err)
269 		return err;
270 
271 	if (offset >= ubi->leb_start) {
272 		/*
273 		 * We write to the data area of the physical eraseblock. Make
274 		 * sure it has valid EC and VID headers.
275 		 */
276 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
277 		if (err)
278 			return err;
279 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
280 		if (err)
281 			return err;
282 	}
283 
284 	if (ubi_dbg_is_write_failure(ubi)) {
285 		dbg_err("cannot write %d bytes to PEB %d:%d "
286 			"(emulated)", len, pnum, offset);
287 		ubi_dbg_dump_stack();
288 		return -EIO;
289 	}
290 
291 	addr = (loff_t)pnum * ubi->peb_size + offset;
292 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
293 	if (err) {
294 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
295 			"%zd bytes", err, len, pnum, offset, written);
296 		ubi_dbg_dump_stack();
297 		ubi_dbg_dump_flash(ubi, pnum, offset, len);
298 	} else
299 		ubi_assert(written == len);
300 
301 	if (!err) {
302 		err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
303 		if (err)
304 			return err;
305 
306 		/*
307 		 * Since we always write sequentially, the rest of the PEB has
308 		 * to contain only 0xFF bytes.
309 		 */
310 		offset += len;
311 		len = ubi->peb_size - offset;
312 		if (len)
313 			err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
314 	}
315 
316 	return err;
317 }
318 
319 /**
320  * erase_callback - MTD erasure call-back.
321  * @ei: MTD erase information object.
322  *
323  * Note, even though MTD erase interface is asynchronous, all the current
324  * implementations are synchronous anyway.
325  */
326 static void erase_callback(struct erase_info *ei)
327 {
328 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
329 }
330 
331 /**
332  * do_sync_erase - synchronously erase a physical eraseblock.
333  * @ubi: UBI device description object
334  * @pnum: the physical eraseblock number to erase
335  *
336  * This function synchronously erases physical eraseblock @pnum and returns
337  * zero in case of success and a negative error code in case of failure. If
338  * %-EIO is returned, the physical eraseblock most probably went bad.
339  */
340 static int do_sync_erase(struct ubi_device *ubi, int pnum)
341 {
342 	int err, retries = 0;
343 	struct erase_info ei;
344 	wait_queue_head_t wq;
345 
346 	dbg_io("erase PEB %d", pnum);
347 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
348 
349 	if (ubi->ro_mode) {
350 		ubi_err("read-only mode");
351 		return -EROFS;
352 	}
353 
354 retry:
355 	init_waitqueue_head(&wq);
356 	memset(&ei, 0, sizeof(struct erase_info));
357 
358 	ei.mtd      = ubi->mtd;
359 	ei.addr     = (loff_t)pnum * ubi->peb_size;
360 	ei.len      = ubi->peb_size;
361 	ei.callback = erase_callback;
362 	ei.priv     = (unsigned long)&wq;
363 
364 	err = mtd_erase(ubi->mtd, &ei);
365 	if (err) {
366 		if (retries++ < UBI_IO_RETRIES) {
367 			dbg_io("error %d while erasing PEB %d, retry",
368 			       err, pnum);
369 			yield();
370 			goto retry;
371 		}
372 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
373 		ubi_dbg_dump_stack();
374 		return err;
375 	}
376 
377 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
378 					   ei.state == MTD_ERASE_FAILED);
379 	if (err) {
380 		ubi_err("interrupted PEB %d erasure", pnum);
381 		return -EINTR;
382 	}
383 
384 	if (ei.state == MTD_ERASE_FAILED) {
385 		if (retries++ < UBI_IO_RETRIES) {
386 			dbg_io("error while erasing PEB %d, retry", pnum);
387 			yield();
388 			goto retry;
389 		}
390 		ubi_err("cannot erase PEB %d", pnum);
391 		ubi_dbg_dump_stack();
392 		return -EIO;
393 	}
394 
395 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
396 	if (err)
397 		return err;
398 
399 	if (ubi_dbg_is_erase_failure(ubi)) {
400 		dbg_err("cannot erase PEB %d (emulated)", pnum);
401 		return -EIO;
402 	}
403 
404 	return 0;
405 }
406 
407 /* Patterns to write to a physical eraseblock when torturing it */
408 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
409 
410 /**
411  * torture_peb - test a supposedly bad physical eraseblock.
412  * @ubi: UBI device description object
413  * @pnum: the physical eraseblock number to test
414  *
415  * This function returns %-EIO if the physical eraseblock did not pass the
416  * test, a positive number of erase operations done if the test was
417  * successfully passed, and other negative error codes in case of other errors.
418  */
419 static int torture_peb(struct ubi_device *ubi, int pnum)
420 {
421 	int err, i, patt_count;
422 
423 	ubi_msg("run torture test for PEB %d", pnum);
424 	patt_count = ARRAY_SIZE(patterns);
425 	ubi_assert(patt_count > 0);
426 
427 	mutex_lock(&ubi->buf_mutex);
428 	for (i = 0; i < patt_count; i++) {
429 		err = do_sync_erase(ubi, pnum);
430 		if (err)
431 			goto out;
432 
433 		/* Make sure the PEB contains only 0xFF bytes */
434 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
435 		if (err)
436 			goto out;
437 
438 		err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
439 		if (err == 0) {
440 			ubi_err("erased PEB %d, but a non-0xFF byte found",
441 				pnum);
442 			err = -EIO;
443 			goto out;
444 		}
445 
446 		/* Write a pattern and check it */
447 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
448 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
449 		if (err)
450 			goto out;
451 
452 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
453 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
454 		if (err)
455 			goto out;
456 
457 		err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
458 					ubi->peb_size);
459 		if (err == 0) {
460 			ubi_err("pattern %x checking failed for PEB %d",
461 				patterns[i], pnum);
462 			err = -EIO;
463 			goto out;
464 		}
465 	}
466 
467 	err = patt_count;
468 	ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
469 
470 out:
471 	mutex_unlock(&ubi->buf_mutex);
472 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
473 		/*
474 		 * If a bit-flip or data integrity error was detected, the test
475 		 * has not passed because it happened on a freshly erased
476 		 * physical eraseblock which means something is wrong with it.
477 		 */
478 		ubi_err("read problems on freshly erased PEB %d, must be bad",
479 			pnum);
480 		err = -EIO;
481 	}
482 	return err;
483 }
484 
485 /**
486  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
487  * @ubi: UBI device description object
488  * @pnum: physical eraseblock number to prepare
489  *
490  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
491  * algorithm: the PEB is first filled with zeroes, then it is erased. And
492  * filling with zeroes starts from the end of the PEB. This was observed with
493  * Spansion S29GL512N NOR flash.
494  *
495  * This means that in case of a power cut we may end up with intact data at the
496  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
497  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
498  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
499  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
500  *
501  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
502  * magic numbers in order to invalidate them and prevent the failures. Returns
503  * zero in case of success and a negative error code in case of failure.
504  */
505 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
506 {
507 	int err, err1;
508 	size_t written;
509 	loff_t addr;
510 	uint32_t data = 0;
511 	/*
512 	 * Note, we cannot generally define VID header buffers on stack,
513 	 * because of the way we deal with these buffers (see the header
514 	 * comment in this file). But we know this is a NOR-specific piece of
515 	 * code, so we can do this. But yes, this is error-prone and we should
516 	 * (pre-)allocate VID header buffer instead.
517 	 */
518 	struct ubi_vid_hdr vid_hdr;
519 
520 	/*
521 	 * It is important to first invalidate the EC header, and then the VID
522 	 * header. Otherwise a power cut may lead to valid EC header and
523 	 * invalid VID header, in which case UBI will treat this PEB as
524 	 * corrupted and will try to preserve it, and print scary warnings (see
525 	 * the header comment in scan.c for more information).
526 	 */
527 	addr = (loff_t)pnum * ubi->peb_size;
528 	err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
529 	if (!err) {
530 		addr += ubi->vid_hdr_aloffset;
531 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
532 		if (!err)
533 			return 0;
534 	}
535 
536 	/*
537 	 * We failed to write to the media. This was observed with Spansion
538 	 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
539 	 * was interrupted at a very inappropriate moment, so it became
540 	 * unwritable. In this case we probably anyway have garbage in this
541 	 * PEB.
542 	 */
543 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
544 	if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
545 	    err1 == UBI_IO_FF) {
546 		struct ubi_ec_hdr ec_hdr;
547 
548 		err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
549 		if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
550 		    err1 == UBI_IO_FF)
551 			/*
552 			 * Both VID and EC headers are corrupted, so we can
553 			 * safely erase this PEB and not afraid that it will be
554 			 * treated as a valid PEB in case of an unclean reboot.
555 			 */
556 			return 0;
557 	}
558 
559 	/*
560 	 * The PEB contains a valid VID header, but we cannot invalidate it.
561 	 * Supposedly the flash media or the driver is screwed up, so return an
562 	 * error.
563 	 */
564 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
565 		pnum, err, err1);
566 	ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
567 	return -EIO;
568 }
569 
570 /**
571  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
572  * @ubi: UBI device description object
573  * @pnum: physical eraseblock number to erase
574  * @torture: if this physical eraseblock has to be tortured
575  *
576  * This function synchronously erases physical eraseblock @pnum. If @torture
577  * flag is not zero, the physical eraseblock is checked by means of writing
578  * different patterns to it and reading them back. If the torturing is enabled,
579  * the physical eraseblock is erased more than once.
580  *
581  * This function returns the number of erasures made in case of success, %-EIO
582  * if the erasure failed or the torturing test failed, and other negative error
583  * codes in case of other errors. Note, %-EIO means that the physical
584  * eraseblock is bad.
585  */
586 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
587 {
588 	int err, ret = 0;
589 
590 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
591 
592 	err = paranoid_check_not_bad(ubi, pnum);
593 	if (err != 0)
594 		return err;
595 
596 	if (ubi->ro_mode) {
597 		ubi_err("read-only mode");
598 		return -EROFS;
599 	}
600 
601 	if (ubi->nor_flash) {
602 		err = nor_erase_prepare(ubi, pnum);
603 		if (err)
604 			return err;
605 	}
606 
607 	if (torture) {
608 		ret = torture_peb(ubi, pnum);
609 		if (ret < 0)
610 			return ret;
611 	}
612 
613 	err = do_sync_erase(ubi, pnum);
614 	if (err)
615 		return err;
616 
617 	return ret + 1;
618 }
619 
620 /**
621  * ubi_io_is_bad - check if a physical eraseblock is bad.
622  * @ubi: UBI device description object
623  * @pnum: the physical eraseblock number to check
624  *
625  * This function returns a positive number if the physical eraseblock is bad,
626  * zero if not, and a negative error code if an error occurred.
627  */
628 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
629 {
630 	struct mtd_info *mtd = ubi->mtd;
631 
632 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
633 
634 	if (ubi->bad_allowed) {
635 		int ret;
636 
637 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
638 		if (ret < 0)
639 			ubi_err("error %d while checking if PEB %d is bad",
640 				ret, pnum);
641 		else if (ret)
642 			dbg_io("PEB %d is bad", pnum);
643 		return ret;
644 	}
645 
646 	return 0;
647 }
648 
649 /**
650  * ubi_io_mark_bad - mark a physical eraseblock as bad.
651  * @ubi: UBI device description object
652  * @pnum: the physical eraseblock number to mark
653  *
654  * This function returns zero in case of success and a negative error code in
655  * case of failure.
656  */
657 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
658 {
659 	int err;
660 	struct mtd_info *mtd = ubi->mtd;
661 
662 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
663 
664 	if (ubi->ro_mode) {
665 		ubi_err("read-only mode");
666 		return -EROFS;
667 	}
668 
669 	if (!ubi->bad_allowed)
670 		return 0;
671 
672 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
673 	if (err)
674 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
675 	return err;
676 }
677 
678 /**
679  * validate_ec_hdr - validate an erase counter header.
680  * @ubi: UBI device description object
681  * @ec_hdr: the erase counter header to check
682  *
683  * This function returns zero if the erase counter header is OK, and %1 if
684  * not.
685  */
686 static int validate_ec_hdr(const struct ubi_device *ubi,
687 			   const struct ubi_ec_hdr *ec_hdr)
688 {
689 	long long ec;
690 	int vid_hdr_offset, leb_start;
691 
692 	ec = be64_to_cpu(ec_hdr->ec);
693 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
694 	leb_start = be32_to_cpu(ec_hdr->data_offset);
695 
696 	if (ec_hdr->version != UBI_VERSION) {
697 		ubi_err("node with incompatible UBI version found: "
698 			"this UBI version is %d, image version is %d",
699 			UBI_VERSION, (int)ec_hdr->version);
700 		goto bad;
701 	}
702 
703 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
704 		ubi_err("bad VID header offset %d, expected %d",
705 			vid_hdr_offset, ubi->vid_hdr_offset);
706 		goto bad;
707 	}
708 
709 	if (leb_start != ubi->leb_start) {
710 		ubi_err("bad data offset %d, expected %d",
711 			leb_start, ubi->leb_start);
712 		goto bad;
713 	}
714 
715 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
716 		ubi_err("bad erase counter %lld", ec);
717 		goto bad;
718 	}
719 
720 	return 0;
721 
722 bad:
723 	ubi_err("bad EC header");
724 	ubi_dbg_dump_ec_hdr(ec_hdr);
725 	ubi_dbg_dump_stack();
726 	return 1;
727 }
728 
729 /**
730  * ubi_io_read_ec_hdr - read and check an erase counter header.
731  * @ubi: UBI device description object
732  * @pnum: physical eraseblock to read from
733  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
734  * header
735  * @verbose: be verbose if the header is corrupted or was not found
736  *
737  * This function reads erase counter header from physical eraseblock @pnum and
738  * stores it in @ec_hdr. This function also checks CRC checksum of the read
739  * erase counter header. The following codes may be returned:
740  *
741  * o %0 if the CRC checksum is correct and the header was successfully read;
742  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
743  *   and corrected by the flash driver; this is harmless but may indicate that
744  *   this eraseblock may become bad soon (but may be not);
745  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
746  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
747  *   a data integrity error (uncorrectable ECC error in case of NAND);
748  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
749  * o a negative error code in case of failure.
750  */
751 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
752 		       struct ubi_ec_hdr *ec_hdr, int verbose)
753 {
754 	int err, read_err;
755 	uint32_t crc, magic, hdr_crc;
756 
757 	dbg_io("read EC header from PEB %d", pnum);
758 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
759 
760 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
761 	if (read_err) {
762 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
763 			return read_err;
764 
765 		/*
766 		 * We read all the data, but either a correctable bit-flip
767 		 * occurred, or MTD reported a data integrity error
768 		 * (uncorrectable ECC error in case of NAND). The former is
769 		 * harmless, the later may mean that the read data is
770 		 * corrupted. But we have a CRC check-sum and we will detect
771 		 * this. If the EC header is still OK, we just report this as
772 		 * there was a bit-flip, to force scrubbing.
773 		 */
774 	}
775 
776 	magic = be32_to_cpu(ec_hdr->magic);
777 	if (magic != UBI_EC_HDR_MAGIC) {
778 		if (mtd_is_eccerr(read_err))
779 			return UBI_IO_BAD_HDR_EBADMSG;
780 
781 		/*
782 		 * The magic field is wrong. Let's check if we have read all
783 		 * 0xFF. If yes, this physical eraseblock is assumed to be
784 		 * empty.
785 		 */
786 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
787 			/* The physical eraseblock is supposedly empty */
788 			if (verbose)
789 				ubi_warn("no EC header found at PEB %d, "
790 					 "only 0xFF bytes", pnum);
791 			dbg_bld("no EC header found at PEB %d, "
792 				"only 0xFF bytes", pnum);
793 			if (!read_err)
794 				return UBI_IO_FF;
795 			else
796 				return UBI_IO_FF_BITFLIPS;
797 		}
798 
799 		/*
800 		 * This is not a valid erase counter header, and these are not
801 		 * 0xFF bytes. Report that the header is corrupted.
802 		 */
803 		if (verbose) {
804 			ubi_warn("bad magic number at PEB %d: %08x instead of "
805 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
806 			ubi_dbg_dump_ec_hdr(ec_hdr);
807 		}
808 		dbg_bld("bad magic number at PEB %d: %08x instead of "
809 			"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
810 		return UBI_IO_BAD_HDR;
811 	}
812 
813 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
814 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
815 
816 	if (hdr_crc != crc) {
817 		if (verbose) {
818 			ubi_warn("bad EC header CRC at PEB %d, calculated "
819 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
820 			ubi_dbg_dump_ec_hdr(ec_hdr);
821 		}
822 		dbg_bld("bad EC header CRC at PEB %d, calculated "
823 			"%#08x, read %#08x", pnum, crc, hdr_crc);
824 
825 		if (!read_err)
826 			return UBI_IO_BAD_HDR;
827 		else
828 			return UBI_IO_BAD_HDR_EBADMSG;
829 	}
830 
831 	/* And of course validate what has just been read from the media */
832 	err = validate_ec_hdr(ubi, ec_hdr);
833 	if (err) {
834 		ubi_err("validation failed for PEB %d", pnum);
835 		return -EINVAL;
836 	}
837 
838 	/*
839 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
840 	 * a bit-flip to force scrubbing on this PEB.
841 	 */
842 	return read_err ? UBI_IO_BITFLIPS : 0;
843 }
844 
845 /**
846  * ubi_io_write_ec_hdr - write an erase counter header.
847  * @ubi: UBI device description object
848  * @pnum: physical eraseblock to write to
849  * @ec_hdr: the erase counter header to write
850  *
851  * This function writes erase counter header described by @ec_hdr to physical
852  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
853  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
854  * field.
855  *
856  * This function returns zero in case of success and a negative error code in
857  * case of failure. If %-EIO is returned, the physical eraseblock most probably
858  * went bad.
859  */
860 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
861 			struct ubi_ec_hdr *ec_hdr)
862 {
863 	int err;
864 	uint32_t crc;
865 
866 	dbg_io("write EC header to PEB %d", pnum);
867 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
868 
869 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
870 	ec_hdr->version = UBI_VERSION;
871 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
872 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
873 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
874 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
875 	ec_hdr->hdr_crc = cpu_to_be32(crc);
876 
877 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
878 	if (err)
879 		return err;
880 
881 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
882 	return err;
883 }
884 
885 /**
886  * validate_vid_hdr - validate a volume identifier header.
887  * @ubi: UBI device description object
888  * @vid_hdr: the volume identifier header to check
889  *
890  * This function checks that data stored in the volume identifier header
891  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
892  */
893 static int validate_vid_hdr(const struct ubi_device *ubi,
894 			    const struct ubi_vid_hdr *vid_hdr)
895 {
896 	int vol_type = vid_hdr->vol_type;
897 	int copy_flag = vid_hdr->copy_flag;
898 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
899 	int lnum = be32_to_cpu(vid_hdr->lnum);
900 	int compat = vid_hdr->compat;
901 	int data_size = be32_to_cpu(vid_hdr->data_size);
902 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
903 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
904 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
905 	int usable_leb_size = ubi->leb_size - data_pad;
906 
907 	if (copy_flag != 0 && copy_flag != 1) {
908 		dbg_err("bad copy_flag");
909 		goto bad;
910 	}
911 
912 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
913 	    data_pad < 0) {
914 		dbg_err("negative values");
915 		goto bad;
916 	}
917 
918 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
919 		dbg_err("bad vol_id");
920 		goto bad;
921 	}
922 
923 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
924 		dbg_err("bad compat");
925 		goto bad;
926 	}
927 
928 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
929 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
930 	    compat != UBI_COMPAT_REJECT) {
931 		dbg_err("bad compat");
932 		goto bad;
933 	}
934 
935 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
936 		dbg_err("bad vol_type");
937 		goto bad;
938 	}
939 
940 	if (data_pad >= ubi->leb_size / 2) {
941 		dbg_err("bad data_pad");
942 		goto bad;
943 	}
944 
945 	if (vol_type == UBI_VID_STATIC) {
946 		/*
947 		 * Although from high-level point of view static volumes may
948 		 * contain zero bytes of data, but no VID headers can contain
949 		 * zero at these fields, because they empty volumes do not have
950 		 * mapped logical eraseblocks.
951 		 */
952 		if (used_ebs == 0) {
953 			dbg_err("zero used_ebs");
954 			goto bad;
955 		}
956 		if (data_size == 0) {
957 			dbg_err("zero data_size");
958 			goto bad;
959 		}
960 		if (lnum < used_ebs - 1) {
961 			if (data_size != usable_leb_size) {
962 				dbg_err("bad data_size");
963 				goto bad;
964 			}
965 		} else if (lnum == used_ebs - 1) {
966 			if (data_size == 0) {
967 				dbg_err("bad data_size at last LEB");
968 				goto bad;
969 			}
970 		} else {
971 			dbg_err("too high lnum");
972 			goto bad;
973 		}
974 	} else {
975 		if (copy_flag == 0) {
976 			if (data_crc != 0) {
977 				dbg_err("non-zero data CRC");
978 				goto bad;
979 			}
980 			if (data_size != 0) {
981 				dbg_err("non-zero data_size");
982 				goto bad;
983 			}
984 		} else {
985 			if (data_size == 0) {
986 				dbg_err("zero data_size of copy");
987 				goto bad;
988 			}
989 		}
990 		if (used_ebs != 0) {
991 			dbg_err("bad used_ebs");
992 			goto bad;
993 		}
994 	}
995 
996 	return 0;
997 
998 bad:
999 	ubi_err("bad VID header");
1000 	ubi_dbg_dump_vid_hdr(vid_hdr);
1001 	ubi_dbg_dump_stack();
1002 	return 1;
1003 }
1004 
1005 /**
1006  * ubi_io_read_vid_hdr - read and check a volume identifier header.
1007  * @ubi: UBI device description object
1008  * @pnum: physical eraseblock number to read from
1009  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1010  * identifier header
1011  * @verbose: be verbose if the header is corrupted or wasn't found
1012  *
1013  * This function reads the volume identifier header from physical eraseblock
1014  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1015  * volume identifier header. The error codes are the same as in
1016  * 'ubi_io_read_ec_hdr()'.
1017  *
1018  * Note, the implementation of this function is also very similar to
1019  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1020  */
1021 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1022 			struct ubi_vid_hdr *vid_hdr, int verbose)
1023 {
1024 	int err, read_err;
1025 	uint32_t crc, magic, hdr_crc;
1026 	void *p;
1027 
1028 	dbg_io("read VID header from PEB %d", pnum);
1029 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1030 
1031 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1032 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1033 			  ubi->vid_hdr_alsize);
1034 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1035 		return read_err;
1036 
1037 	magic = be32_to_cpu(vid_hdr->magic);
1038 	if (magic != UBI_VID_HDR_MAGIC) {
1039 		if (mtd_is_eccerr(read_err))
1040 			return UBI_IO_BAD_HDR_EBADMSG;
1041 
1042 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1043 			if (verbose)
1044 				ubi_warn("no VID header found at PEB %d, "
1045 					 "only 0xFF bytes", pnum);
1046 			dbg_bld("no VID header found at PEB %d, "
1047 				"only 0xFF bytes", pnum);
1048 			if (!read_err)
1049 				return UBI_IO_FF;
1050 			else
1051 				return UBI_IO_FF_BITFLIPS;
1052 		}
1053 
1054 		if (verbose) {
1055 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1056 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1057 			ubi_dbg_dump_vid_hdr(vid_hdr);
1058 		}
1059 		dbg_bld("bad magic number at PEB %d: %08x instead of "
1060 			"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1061 		return UBI_IO_BAD_HDR;
1062 	}
1063 
1064 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1065 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1066 
1067 	if (hdr_crc != crc) {
1068 		if (verbose) {
1069 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1070 				 "read %#08x", pnum, crc, hdr_crc);
1071 			ubi_dbg_dump_vid_hdr(vid_hdr);
1072 		}
1073 		dbg_bld("bad CRC at PEB %d, calculated %#08x, "
1074 			"read %#08x", pnum, crc, hdr_crc);
1075 		if (!read_err)
1076 			return UBI_IO_BAD_HDR;
1077 		else
1078 			return UBI_IO_BAD_HDR_EBADMSG;
1079 	}
1080 
1081 	err = validate_vid_hdr(ubi, vid_hdr);
1082 	if (err) {
1083 		ubi_err("validation failed for PEB %d", pnum);
1084 		return -EINVAL;
1085 	}
1086 
1087 	return read_err ? UBI_IO_BITFLIPS : 0;
1088 }
1089 
1090 /**
1091  * ubi_io_write_vid_hdr - write a volume identifier header.
1092  * @ubi: UBI device description object
1093  * @pnum: the physical eraseblock number to write to
1094  * @vid_hdr: the volume identifier header to write
1095  *
1096  * This function writes the volume identifier header described by @vid_hdr to
1097  * physical eraseblock @pnum. This function automatically fills the
1098  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1099  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1100  *
1101  * This function returns zero in case of success and a negative error code in
1102  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1103  * bad.
1104  */
1105 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1106 			 struct ubi_vid_hdr *vid_hdr)
1107 {
1108 	int err;
1109 	uint32_t crc;
1110 	void *p;
1111 
1112 	dbg_io("write VID header to PEB %d", pnum);
1113 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1114 
1115 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1116 	if (err)
1117 		return err;
1118 
1119 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1120 	vid_hdr->version = UBI_VERSION;
1121 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1122 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1123 
1124 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1125 	if (err)
1126 		return err;
1127 
1128 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1129 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1130 			   ubi->vid_hdr_alsize);
1131 	return err;
1132 }
1133 
1134 #ifdef CONFIG_MTD_UBI_DEBUG
1135 
1136 /**
1137  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1138  * @ubi: UBI device description object
1139  * @pnum: physical eraseblock number to check
1140  *
1141  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1142  * it is bad and a negative error code if an error occurred.
1143  */
1144 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1145 {
1146 	int err;
1147 
1148 	if (!ubi->dbg->chk_io)
1149 		return 0;
1150 
1151 	err = ubi_io_is_bad(ubi, pnum);
1152 	if (!err)
1153 		return err;
1154 
1155 	ubi_err("paranoid check failed for PEB %d", pnum);
1156 	ubi_dbg_dump_stack();
1157 	return err > 0 ? -EINVAL : err;
1158 }
1159 
1160 /**
1161  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1162  * @ubi: UBI device description object
1163  * @pnum: physical eraseblock number the erase counter header belongs to
1164  * @ec_hdr: the erase counter header to check
1165  *
1166  * This function returns zero if the erase counter header contains valid
1167  * values, and %-EINVAL if not.
1168  */
1169 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1170 				 const struct ubi_ec_hdr *ec_hdr)
1171 {
1172 	int err;
1173 	uint32_t magic;
1174 
1175 	if (!ubi->dbg->chk_io)
1176 		return 0;
1177 
1178 	magic = be32_to_cpu(ec_hdr->magic);
1179 	if (magic != UBI_EC_HDR_MAGIC) {
1180 		ubi_err("bad magic %#08x, must be %#08x",
1181 			magic, UBI_EC_HDR_MAGIC);
1182 		goto fail;
1183 	}
1184 
1185 	err = validate_ec_hdr(ubi, ec_hdr);
1186 	if (err) {
1187 		ubi_err("paranoid check failed for PEB %d", pnum);
1188 		goto fail;
1189 	}
1190 
1191 	return 0;
1192 
1193 fail:
1194 	ubi_dbg_dump_ec_hdr(ec_hdr);
1195 	ubi_dbg_dump_stack();
1196 	return -EINVAL;
1197 }
1198 
1199 /**
1200  * paranoid_check_peb_ec_hdr - check erase counter header.
1201  * @ubi: UBI device description object
1202  * @pnum: the physical eraseblock number to check
1203  *
1204  * This function returns zero if the erase counter header is all right and and
1205  * a negative error code if not or if an error occurred.
1206  */
1207 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1208 {
1209 	int err;
1210 	uint32_t crc, hdr_crc;
1211 	struct ubi_ec_hdr *ec_hdr;
1212 
1213 	if (!ubi->dbg->chk_io)
1214 		return 0;
1215 
1216 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1217 	if (!ec_hdr)
1218 		return -ENOMEM;
1219 
1220 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1221 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1222 		goto exit;
1223 
1224 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1225 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1226 	if (hdr_crc != crc) {
1227 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1228 		ubi_err("paranoid check failed for PEB %d", pnum);
1229 		ubi_dbg_dump_ec_hdr(ec_hdr);
1230 		ubi_dbg_dump_stack();
1231 		err = -EINVAL;
1232 		goto exit;
1233 	}
1234 
1235 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1236 
1237 exit:
1238 	kfree(ec_hdr);
1239 	return err;
1240 }
1241 
1242 /**
1243  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1244  * @ubi: UBI device description object
1245  * @pnum: physical eraseblock number the volume identifier header belongs to
1246  * @vid_hdr: the volume identifier header to check
1247  *
1248  * This function returns zero if the volume identifier header is all right, and
1249  * %-EINVAL if not.
1250  */
1251 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1252 				  const struct ubi_vid_hdr *vid_hdr)
1253 {
1254 	int err;
1255 	uint32_t magic;
1256 
1257 	if (!ubi->dbg->chk_io)
1258 		return 0;
1259 
1260 	magic = be32_to_cpu(vid_hdr->magic);
1261 	if (magic != UBI_VID_HDR_MAGIC) {
1262 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1263 			magic, pnum, UBI_VID_HDR_MAGIC);
1264 		goto fail;
1265 	}
1266 
1267 	err = validate_vid_hdr(ubi, vid_hdr);
1268 	if (err) {
1269 		ubi_err("paranoid check failed for PEB %d", pnum);
1270 		goto fail;
1271 	}
1272 
1273 	return err;
1274 
1275 fail:
1276 	ubi_err("paranoid check failed for PEB %d", pnum);
1277 	ubi_dbg_dump_vid_hdr(vid_hdr);
1278 	ubi_dbg_dump_stack();
1279 	return -EINVAL;
1280 
1281 }
1282 
1283 /**
1284  * paranoid_check_peb_vid_hdr - check volume identifier header.
1285  * @ubi: UBI device description object
1286  * @pnum: the physical eraseblock number to check
1287  *
1288  * This function returns zero if the volume identifier header is all right,
1289  * and a negative error code if not or if an error occurred.
1290  */
1291 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1292 {
1293 	int err;
1294 	uint32_t crc, hdr_crc;
1295 	struct ubi_vid_hdr *vid_hdr;
1296 	void *p;
1297 
1298 	if (!ubi->dbg->chk_io)
1299 		return 0;
1300 
1301 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1302 	if (!vid_hdr)
1303 		return -ENOMEM;
1304 
1305 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1306 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1307 			  ubi->vid_hdr_alsize);
1308 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1309 		goto exit;
1310 
1311 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1312 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1313 	if (hdr_crc != crc) {
1314 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1315 			"read %#08x", pnum, crc, hdr_crc);
1316 		ubi_err("paranoid check failed for PEB %d", pnum);
1317 		ubi_dbg_dump_vid_hdr(vid_hdr);
1318 		ubi_dbg_dump_stack();
1319 		err = -EINVAL;
1320 		goto exit;
1321 	}
1322 
1323 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1324 
1325 exit:
1326 	ubi_free_vid_hdr(ubi, vid_hdr);
1327 	return err;
1328 }
1329 
1330 /**
1331  * ubi_dbg_check_write - make sure write succeeded.
1332  * @ubi: UBI device description object
1333  * @buf: buffer with data which were written
1334  * @pnum: physical eraseblock number the data were written to
1335  * @offset: offset within the physical eraseblock the data were written to
1336  * @len: how many bytes were written
1337  *
1338  * This functions reads data which were recently written and compares it with
1339  * the original data buffer - the data have to match. Returns zero if the data
1340  * match and a negative error code if not or in case of failure.
1341  */
1342 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1343 			int offset, int len)
1344 {
1345 	int err, i;
1346 	size_t read;
1347 	void *buf1;
1348 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1349 
1350 	if (!ubi->dbg->chk_io)
1351 		return 0;
1352 
1353 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1354 	if (!buf1) {
1355 		ubi_err("cannot allocate memory to check writes");
1356 		return 0;
1357 	}
1358 
1359 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1360 	if (err && !mtd_is_bitflip(err))
1361 		goto out_free;
1362 
1363 	for (i = 0; i < len; i++) {
1364 		uint8_t c = ((uint8_t *)buf)[i];
1365 		uint8_t c1 = ((uint8_t *)buf1)[i];
1366 		int dump_len;
1367 
1368 		if (c == c1)
1369 			continue;
1370 
1371 		ubi_err("paranoid check failed for PEB %d:%d, len %d",
1372 			pnum, offset, len);
1373 		ubi_msg("data differ at position %d", i);
1374 		dump_len = max_t(int, 128, len - i);
1375 		ubi_msg("hex dump of the original buffer from %d to %d",
1376 			i, i + dump_len);
1377 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1378 			       buf + i, dump_len, 1);
1379 		ubi_msg("hex dump of the read buffer from %d to %d",
1380 			i, i + dump_len);
1381 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1382 			       buf1 + i, dump_len, 1);
1383 		ubi_dbg_dump_stack();
1384 		err = -EINVAL;
1385 		goto out_free;
1386 	}
1387 
1388 	vfree(buf1);
1389 	return 0;
1390 
1391 out_free:
1392 	vfree(buf1);
1393 	return err;
1394 }
1395 
1396 /**
1397  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1398  * @ubi: UBI device description object
1399  * @pnum: the physical eraseblock number to check
1400  * @offset: the starting offset within the physical eraseblock to check
1401  * @len: the length of the region to check
1402  *
1403  * This function returns zero if only 0xFF bytes are present at offset
1404  * @offset of the physical eraseblock @pnum, and a negative error code if not
1405  * or if an error occurred.
1406  */
1407 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1408 {
1409 	size_t read;
1410 	int err;
1411 	void *buf;
1412 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1413 
1414 	if (!ubi->dbg->chk_io)
1415 		return 0;
1416 
1417 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1418 	if (!buf) {
1419 		ubi_err("cannot allocate memory to check for 0xFFs");
1420 		return 0;
1421 	}
1422 
1423 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1424 	if (err && !mtd_is_bitflip(err)) {
1425 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1426 			"read %zd bytes", err, len, pnum, offset, read);
1427 		goto error;
1428 	}
1429 
1430 	err = ubi_check_pattern(buf, 0xFF, len);
1431 	if (err == 0) {
1432 		ubi_err("flash region at PEB %d:%d, length %d does not "
1433 			"contain all 0xFF bytes", pnum, offset, len);
1434 		goto fail;
1435 	}
1436 
1437 	vfree(buf);
1438 	return 0;
1439 
1440 fail:
1441 	ubi_err("paranoid check failed for PEB %d", pnum);
1442 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1443 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1444 	err = -EINVAL;
1445 error:
1446 	ubi_dbg_dump_stack();
1447 	vfree(buf);
1448 	return err;
1449 }
1450 
1451 #endif /* CONFIG_MTD_UBI_DEBUG */
1452