1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 102 int offset, int len); 103 104 /** 105 * ubi_io_read - read data from a physical eraseblock. 106 * @ubi: UBI device description object 107 * @buf: buffer where to store the read data 108 * @pnum: physical eraseblock number to read from 109 * @offset: offset within the physical eraseblock from where to read 110 * @len: how many bytes to read 111 * 112 * This function reads data from offset @offset of physical eraseblock @pnum 113 * and stores the read data in the @buf buffer. The following return codes are 114 * possible: 115 * 116 * o %0 if all the requested data were successfully read; 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 118 * correctable bit-flips were detected; this is harmless but may indicate 119 * that this eraseblock may become bad soon (but do not have to); 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 121 * example it can be an ECC error in case of NAND; this most probably means 122 * that the data is corrupted; 123 * o %-EIO if some I/O error occurred; 124 * o other negative error codes in case of other errors. 125 */ 126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 127 int len) 128 { 129 int err, retries = 0; 130 size_t read; 131 loff_t addr; 132 133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 134 135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 137 ubi_assert(len > 0); 138 139 err = self_check_not_bad(ubi, pnum); 140 if (err) 141 return err; 142 143 /* 144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 145 * do not do this, the following may happen: 146 * 1. The buffer contains data from previous operation, e.g., read from 147 * another PEB previously. The data looks like expected, e.g., if we 148 * just do not read anything and return - the caller would not 149 * notice this. E.g., if we are reading a VID header, the buffer may 150 * contain a valid VID header from another PEB. 151 * 2. The driver is buggy and returns us success or -EBADMSG or 152 * -EUCLEAN, but it does not actually put any data to the buffer. 153 * 154 * This may confuse UBI or upper layers - they may think the buffer 155 * contains valid data while in fact it is just old data. This is 156 * especially possible because UBI (and UBIFS) relies on CRC, and 157 * treats data as correct even in case of ECC errors if the CRC is 158 * correct. 159 * 160 * Try to prevent this situation by changing the first byte of the 161 * buffer. 162 */ 163 *((uint8_t *)buf) ^= 0xFF; 164 165 addr = (loff_t)pnum * ubi->peb_size + offset; 166 retry: 167 err = mtd_read(ubi->mtd, addr, len, &read, buf); 168 if (err) { 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 170 171 if (mtd_is_bitflip(err)) { 172 /* 173 * -EUCLEAN is reported if there was a bit-flip which 174 * was corrected, so this is harmless. 175 * 176 * We do not report about it here unless debugging is 177 * enabled. A corresponding message will be printed 178 * later, when it is has been scrubbed. 179 */ 180 ubi_msg(ubi, "fixable bit-flip detected at PEB %d", 181 pnum); 182 ubi_assert(len == read); 183 return UBI_IO_BITFLIPS; 184 } 185 186 if (retries++ < UBI_IO_RETRIES) { 187 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 188 err, errstr, len, pnum, offset, read); 189 yield(); 190 goto retry; 191 } 192 193 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 194 err, errstr, len, pnum, offset, read); 195 dump_stack(); 196 197 /* 198 * The driver should never return -EBADMSG if it failed to read 199 * all the requested data. But some buggy drivers might do 200 * this, so we change it to -EIO. 201 */ 202 if (read != len && mtd_is_eccerr(err)) { 203 ubi_assert(0); 204 err = -EIO; 205 } 206 } else { 207 ubi_assert(len == read); 208 209 if (ubi_dbg_is_bitflip(ubi)) { 210 dbg_gen("bit-flip (emulated)"); 211 err = UBI_IO_BITFLIPS; 212 } 213 } 214 215 return err; 216 } 217 218 /** 219 * ubi_io_write - write data to a physical eraseblock. 220 * @ubi: UBI device description object 221 * @buf: buffer with the data to write 222 * @pnum: physical eraseblock number to write to 223 * @offset: offset within the physical eraseblock where to write 224 * @len: how many bytes to write 225 * 226 * This function writes @len bytes of data from buffer @buf to offset @offset 227 * of physical eraseblock @pnum. If all the data were successfully written, 228 * zero is returned. If an error occurred, this function returns a negative 229 * error code. If %-EIO is returned, the physical eraseblock most probably went 230 * bad. 231 * 232 * Note, in case of an error, it is possible that something was still written 233 * to the flash media, but may be some garbage. 234 */ 235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 236 int len) 237 { 238 int err; 239 size_t written; 240 loff_t addr; 241 242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 243 244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 246 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 248 249 if (ubi->ro_mode) { 250 ubi_err(ubi, "read-only mode"); 251 return -EROFS; 252 } 253 254 err = self_check_not_bad(ubi, pnum); 255 if (err) 256 return err; 257 258 /* The area we are writing to has to contain all 0xFF bytes */ 259 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 260 if (err) 261 return err; 262 263 if (offset >= ubi->leb_start) { 264 /* 265 * We write to the data area of the physical eraseblock. Make 266 * sure it has valid EC and VID headers. 267 */ 268 err = self_check_peb_ec_hdr(ubi, pnum); 269 if (err) 270 return err; 271 err = self_check_peb_vid_hdr(ubi, pnum); 272 if (err) 273 return err; 274 } 275 276 if (ubi_dbg_is_write_failure(ubi)) { 277 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", 278 len, pnum, offset); 279 dump_stack(); 280 return -EIO; 281 } 282 283 addr = (loff_t)pnum * ubi->peb_size + offset; 284 err = mtd_write(ubi->mtd, addr, len, &written, buf); 285 if (err) { 286 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 287 err, len, pnum, offset, written); 288 dump_stack(); 289 ubi_dump_flash(ubi, pnum, offset, len); 290 } else 291 ubi_assert(written == len); 292 293 if (!err) { 294 err = self_check_write(ubi, buf, pnum, offset, len); 295 if (err) 296 return err; 297 298 /* 299 * Since we always write sequentially, the rest of the PEB has 300 * to contain only 0xFF bytes. 301 */ 302 offset += len; 303 len = ubi->peb_size - offset; 304 if (len) 305 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 306 } 307 308 return err; 309 } 310 311 /** 312 * erase_callback - MTD erasure call-back. 313 * @ei: MTD erase information object. 314 * 315 * Note, even though MTD erase interface is asynchronous, all the current 316 * implementations are synchronous anyway. 317 */ 318 static void erase_callback(struct erase_info *ei) 319 { 320 wake_up_interruptible((wait_queue_head_t *)ei->priv); 321 } 322 323 /** 324 * do_sync_erase - synchronously erase a physical eraseblock. 325 * @ubi: UBI device description object 326 * @pnum: the physical eraseblock number to erase 327 * 328 * This function synchronously erases physical eraseblock @pnum and returns 329 * zero in case of success and a negative error code in case of failure. If 330 * %-EIO is returned, the physical eraseblock most probably went bad. 331 */ 332 static int do_sync_erase(struct ubi_device *ubi, int pnum) 333 { 334 int err, retries = 0; 335 struct erase_info ei; 336 wait_queue_head_t wq; 337 338 dbg_io("erase PEB %d", pnum); 339 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 340 341 if (ubi->ro_mode) { 342 ubi_err(ubi, "read-only mode"); 343 return -EROFS; 344 } 345 346 retry: 347 init_waitqueue_head(&wq); 348 memset(&ei, 0, sizeof(struct erase_info)); 349 350 ei.mtd = ubi->mtd; 351 ei.addr = (loff_t)pnum * ubi->peb_size; 352 ei.len = ubi->peb_size; 353 ei.callback = erase_callback; 354 ei.priv = (unsigned long)&wq; 355 356 err = mtd_erase(ubi->mtd, &ei); 357 if (err) { 358 if (retries++ < UBI_IO_RETRIES) { 359 ubi_warn(ubi, "error %d while erasing PEB %d, retry", 360 err, pnum); 361 yield(); 362 goto retry; 363 } 364 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); 365 dump_stack(); 366 return err; 367 } 368 369 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 370 ei.state == MTD_ERASE_FAILED); 371 if (err) { 372 ubi_err(ubi, "interrupted PEB %d erasure", pnum); 373 return -EINTR; 374 } 375 376 if (ei.state == MTD_ERASE_FAILED) { 377 if (retries++ < UBI_IO_RETRIES) { 378 ubi_warn(ubi, "error while erasing PEB %d, retry", 379 pnum); 380 yield(); 381 goto retry; 382 } 383 ubi_err(ubi, "cannot erase PEB %d", pnum); 384 dump_stack(); 385 return -EIO; 386 } 387 388 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 389 if (err) 390 return err; 391 392 if (ubi_dbg_is_erase_failure(ubi)) { 393 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); 394 return -EIO; 395 } 396 397 return 0; 398 } 399 400 /* Patterns to write to a physical eraseblock when torturing it */ 401 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 402 403 /** 404 * torture_peb - test a supposedly bad physical eraseblock. 405 * @ubi: UBI device description object 406 * @pnum: the physical eraseblock number to test 407 * 408 * This function returns %-EIO if the physical eraseblock did not pass the 409 * test, a positive number of erase operations done if the test was 410 * successfully passed, and other negative error codes in case of other errors. 411 */ 412 static int torture_peb(struct ubi_device *ubi, int pnum) 413 { 414 int err, i, patt_count; 415 416 ubi_msg(ubi, "run torture test for PEB %d", pnum); 417 patt_count = ARRAY_SIZE(patterns); 418 ubi_assert(patt_count > 0); 419 420 mutex_lock(&ubi->buf_mutex); 421 for (i = 0; i < patt_count; i++) { 422 err = do_sync_erase(ubi, pnum); 423 if (err) 424 goto out; 425 426 /* Make sure the PEB contains only 0xFF bytes */ 427 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 428 if (err) 429 goto out; 430 431 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 432 if (err == 0) { 433 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", 434 pnum); 435 err = -EIO; 436 goto out; 437 } 438 439 /* Write a pattern and check it */ 440 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 441 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 442 if (err) 443 goto out; 444 445 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 446 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 447 if (err) 448 goto out; 449 450 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 451 ubi->peb_size); 452 if (err == 0) { 453 ubi_err(ubi, "pattern %x checking failed for PEB %d", 454 patterns[i], pnum); 455 err = -EIO; 456 goto out; 457 } 458 } 459 460 err = patt_count; 461 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); 462 463 out: 464 mutex_unlock(&ubi->buf_mutex); 465 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 466 /* 467 * If a bit-flip or data integrity error was detected, the test 468 * has not passed because it happened on a freshly erased 469 * physical eraseblock which means something is wrong with it. 470 */ 471 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", 472 pnum); 473 err = -EIO; 474 } 475 return err; 476 } 477 478 /** 479 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 480 * @ubi: UBI device description object 481 * @pnum: physical eraseblock number to prepare 482 * 483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 484 * algorithm: the PEB is first filled with zeroes, then it is erased. And 485 * filling with zeroes starts from the end of the PEB. This was observed with 486 * Spansion S29GL512N NOR flash. 487 * 488 * This means that in case of a power cut we may end up with intact data at the 489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 493 * 494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 495 * magic numbers in order to invalidate them and prevent the failures. Returns 496 * zero in case of success and a negative error code in case of failure. 497 */ 498 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 499 { 500 int err; 501 size_t written; 502 loff_t addr; 503 uint32_t data = 0; 504 struct ubi_ec_hdr ec_hdr; 505 struct ubi_vid_io_buf vidb; 506 507 /* 508 * Note, we cannot generally define VID header buffers on stack, 509 * because of the way we deal with these buffers (see the header 510 * comment in this file). But we know this is a NOR-specific piece of 511 * code, so we can do this. But yes, this is error-prone and we should 512 * (pre-)allocate VID header buffer instead. 513 */ 514 struct ubi_vid_hdr vid_hdr; 515 516 /* 517 * If VID or EC is valid, we have to corrupt them before erasing. 518 * It is important to first invalidate the EC header, and then the VID 519 * header. Otherwise a power cut may lead to valid EC header and 520 * invalid VID header, in which case UBI will treat this PEB as 521 * corrupted and will try to preserve it, and print scary warnings. 522 */ 523 addr = (loff_t)pnum * ubi->peb_size; 524 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 525 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 526 err != UBI_IO_FF){ 527 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 528 if(err) 529 goto error; 530 } 531 532 ubi_init_vid_buf(ubi, &vidb, &vid_hdr); 533 ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb)); 534 535 err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0); 536 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 537 err != UBI_IO_FF){ 538 addr += ubi->vid_hdr_aloffset; 539 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 540 if (err) 541 goto error; 542 } 543 return 0; 544 545 error: 546 /* 547 * The PEB contains a valid VID or EC header, but we cannot invalidate 548 * it. Supposedly the flash media or the driver is screwed up, so 549 * return an error. 550 */ 551 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); 552 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 553 return -EIO; 554 } 555 556 /** 557 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 558 * @ubi: UBI device description object 559 * @pnum: physical eraseblock number to erase 560 * @torture: if this physical eraseblock has to be tortured 561 * 562 * This function synchronously erases physical eraseblock @pnum. If @torture 563 * flag is not zero, the physical eraseblock is checked by means of writing 564 * different patterns to it and reading them back. If the torturing is enabled, 565 * the physical eraseblock is erased more than once. 566 * 567 * This function returns the number of erasures made in case of success, %-EIO 568 * if the erasure failed or the torturing test failed, and other negative error 569 * codes in case of other errors. Note, %-EIO means that the physical 570 * eraseblock is bad. 571 */ 572 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 573 { 574 int err, ret = 0; 575 576 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 577 578 err = self_check_not_bad(ubi, pnum); 579 if (err != 0) 580 return err; 581 582 if (ubi->ro_mode) { 583 ubi_err(ubi, "read-only mode"); 584 return -EROFS; 585 } 586 587 if (ubi->nor_flash) { 588 err = nor_erase_prepare(ubi, pnum); 589 if (err) 590 return err; 591 } 592 593 if (torture) { 594 ret = torture_peb(ubi, pnum); 595 if (ret < 0) 596 return ret; 597 } 598 599 err = do_sync_erase(ubi, pnum); 600 if (err) 601 return err; 602 603 return ret + 1; 604 } 605 606 /** 607 * ubi_io_is_bad - check if a physical eraseblock is bad. 608 * @ubi: UBI device description object 609 * @pnum: the physical eraseblock number to check 610 * 611 * This function returns a positive number if the physical eraseblock is bad, 612 * zero if not, and a negative error code if an error occurred. 613 */ 614 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 615 { 616 struct mtd_info *mtd = ubi->mtd; 617 618 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 619 620 if (ubi->bad_allowed) { 621 int ret; 622 623 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 624 if (ret < 0) 625 ubi_err(ubi, "error %d while checking if PEB %d is bad", 626 ret, pnum); 627 else if (ret) 628 dbg_io("PEB %d is bad", pnum); 629 return ret; 630 } 631 632 return 0; 633 } 634 635 /** 636 * ubi_io_mark_bad - mark a physical eraseblock as bad. 637 * @ubi: UBI device description object 638 * @pnum: the physical eraseblock number to mark 639 * 640 * This function returns zero in case of success and a negative error code in 641 * case of failure. 642 */ 643 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 644 { 645 int err; 646 struct mtd_info *mtd = ubi->mtd; 647 648 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 649 650 if (ubi->ro_mode) { 651 ubi_err(ubi, "read-only mode"); 652 return -EROFS; 653 } 654 655 if (!ubi->bad_allowed) 656 return 0; 657 658 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 659 if (err) 660 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); 661 return err; 662 } 663 664 /** 665 * validate_ec_hdr - validate an erase counter header. 666 * @ubi: UBI device description object 667 * @ec_hdr: the erase counter header to check 668 * 669 * This function returns zero if the erase counter header is OK, and %1 if 670 * not. 671 */ 672 static int validate_ec_hdr(const struct ubi_device *ubi, 673 const struct ubi_ec_hdr *ec_hdr) 674 { 675 long long ec; 676 int vid_hdr_offset, leb_start; 677 678 ec = be64_to_cpu(ec_hdr->ec); 679 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 680 leb_start = be32_to_cpu(ec_hdr->data_offset); 681 682 if (ec_hdr->version != UBI_VERSION) { 683 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", 684 UBI_VERSION, (int)ec_hdr->version); 685 goto bad; 686 } 687 688 if (vid_hdr_offset != ubi->vid_hdr_offset) { 689 ubi_err(ubi, "bad VID header offset %d, expected %d", 690 vid_hdr_offset, ubi->vid_hdr_offset); 691 goto bad; 692 } 693 694 if (leb_start != ubi->leb_start) { 695 ubi_err(ubi, "bad data offset %d, expected %d", 696 leb_start, ubi->leb_start); 697 goto bad; 698 } 699 700 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 701 ubi_err(ubi, "bad erase counter %lld", ec); 702 goto bad; 703 } 704 705 return 0; 706 707 bad: 708 ubi_err(ubi, "bad EC header"); 709 ubi_dump_ec_hdr(ec_hdr); 710 dump_stack(); 711 return 1; 712 } 713 714 /** 715 * ubi_io_read_ec_hdr - read and check an erase counter header. 716 * @ubi: UBI device description object 717 * @pnum: physical eraseblock to read from 718 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 719 * header 720 * @verbose: be verbose if the header is corrupted or was not found 721 * 722 * This function reads erase counter header from physical eraseblock @pnum and 723 * stores it in @ec_hdr. This function also checks CRC checksum of the read 724 * erase counter header. The following codes may be returned: 725 * 726 * o %0 if the CRC checksum is correct and the header was successfully read; 727 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 728 * and corrected by the flash driver; this is harmless but may indicate that 729 * this eraseblock may become bad soon (but may be not); 730 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 731 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 732 * a data integrity error (uncorrectable ECC error in case of NAND); 733 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 734 * o a negative error code in case of failure. 735 */ 736 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 737 struct ubi_ec_hdr *ec_hdr, int verbose) 738 { 739 int err, read_err; 740 uint32_t crc, magic, hdr_crc; 741 742 dbg_io("read EC header from PEB %d", pnum); 743 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 744 745 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 746 if (read_err) { 747 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 748 return read_err; 749 750 /* 751 * We read all the data, but either a correctable bit-flip 752 * occurred, or MTD reported a data integrity error 753 * (uncorrectable ECC error in case of NAND). The former is 754 * harmless, the later may mean that the read data is 755 * corrupted. But we have a CRC check-sum and we will detect 756 * this. If the EC header is still OK, we just report this as 757 * there was a bit-flip, to force scrubbing. 758 */ 759 } 760 761 magic = be32_to_cpu(ec_hdr->magic); 762 if (magic != UBI_EC_HDR_MAGIC) { 763 if (mtd_is_eccerr(read_err)) 764 return UBI_IO_BAD_HDR_EBADMSG; 765 766 /* 767 * The magic field is wrong. Let's check if we have read all 768 * 0xFF. If yes, this physical eraseblock is assumed to be 769 * empty. 770 */ 771 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 772 /* The physical eraseblock is supposedly empty */ 773 if (verbose) 774 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", 775 pnum); 776 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 777 pnum); 778 if (!read_err) 779 return UBI_IO_FF; 780 else 781 return UBI_IO_FF_BITFLIPS; 782 } 783 784 /* 785 * This is not a valid erase counter header, and these are not 786 * 0xFF bytes. Report that the header is corrupted. 787 */ 788 if (verbose) { 789 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 790 pnum, magic, UBI_EC_HDR_MAGIC); 791 ubi_dump_ec_hdr(ec_hdr); 792 } 793 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 794 pnum, magic, UBI_EC_HDR_MAGIC); 795 return UBI_IO_BAD_HDR; 796 } 797 798 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 799 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 800 801 if (hdr_crc != crc) { 802 if (verbose) { 803 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 804 pnum, crc, hdr_crc); 805 ubi_dump_ec_hdr(ec_hdr); 806 } 807 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 808 pnum, crc, hdr_crc); 809 810 if (!read_err) 811 return UBI_IO_BAD_HDR; 812 else 813 return UBI_IO_BAD_HDR_EBADMSG; 814 } 815 816 /* And of course validate what has just been read from the media */ 817 err = validate_ec_hdr(ubi, ec_hdr); 818 if (err) { 819 ubi_err(ubi, "validation failed for PEB %d", pnum); 820 return -EINVAL; 821 } 822 823 /* 824 * If there was %-EBADMSG, but the header CRC is still OK, report about 825 * a bit-flip to force scrubbing on this PEB. 826 */ 827 return read_err ? UBI_IO_BITFLIPS : 0; 828 } 829 830 /** 831 * ubi_io_write_ec_hdr - write an erase counter header. 832 * @ubi: UBI device description object 833 * @pnum: physical eraseblock to write to 834 * @ec_hdr: the erase counter header to write 835 * 836 * This function writes erase counter header described by @ec_hdr to physical 837 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 838 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 839 * field. 840 * 841 * This function returns zero in case of success and a negative error code in 842 * case of failure. If %-EIO is returned, the physical eraseblock most probably 843 * went bad. 844 */ 845 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 846 struct ubi_ec_hdr *ec_hdr) 847 { 848 int err; 849 uint32_t crc; 850 851 dbg_io("write EC header to PEB %d", pnum); 852 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 853 854 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 855 ec_hdr->version = UBI_VERSION; 856 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 857 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 858 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 859 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 860 ec_hdr->hdr_crc = cpu_to_be32(crc); 861 862 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 863 if (err) 864 return err; 865 866 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) 867 return -EROFS; 868 869 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 870 return err; 871 } 872 873 /** 874 * validate_vid_hdr - validate a volume identifier header. 875 * @ubi: UBI device description object 876 * @vid_hdr: the volume identifier header to check 877 * 878 * This function checks that data stored in the volume identifier header 879 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 880 */ 881 static int validate_vid_hdr(const struct ubi_device *ubi, 882 const struct ubi_vid_hdr *vid_hdr) 883 { 884 int vol_type = vid_hdr->vol_type; 885 int copy_flag = vid_hdr->copy_flag; 886 int vol_id = be32_to_cpu(vid_hdr->vol_id); 887 int lnum = be32_to_cpu(vid_hdr->lnum); 888 int compat = vid_hdr->compat; 889 int data_size = be32_to_cpu(vid_hdr->data_size); 890 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 891 int data_pad = be32_to_cpu(vid_hdr->data_pad); 892 int data_crc = be32_to_cpu(vid_hdr->data_crc); 893 int usable_leb_size = ubi->leb_size - data_pad; 894 895 if (copy_flag != 0 && copy_flag != 1) { 896 ubi_err(ubi, "bad copy_flag"); 897 goto bad; 898 } 899 900 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 901 data_pad < 0) { 902 ubi_err(ubi, "negative values"); 903 goto bad; 904 } 905 906 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 907 ubi_err(ubi, "bad vol_id"); 908 goto bad; 909 } 910 911 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 912 ubi_err(ubi, "bad compat"); 913 goto bad; 914 } 915 916 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 917 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 918 compat != UBI_COMPAT_REJECT) { 919 ubi_err(ubi, "bad compat"); 920 goto bad; 921 } 922 923 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 924 ubi_err(ubi, "bad vol_type"); 925 goto bad; 926 } 927 928 if (data_pad >= ubi->leb_size / 2) { 929 ubi_err(ubi, "bad data_pad"); 930 goto bad; 931 } 932 933 if (data_size > ubi->leb_size) { 934 ubi_err(ubi, "bad data_size"); 935 goto bad; 936 } 937 938 if (vol_type == UBI_VID_STATIC) { 939 /* 940 * Although from high-level point of view static volumes may 941 * contain zero bytes of data, but no VID headers can contain 942 * zero at these fields, because they empty volumes do not have 943 * mapped logical eraseblocks. 944 */ 945 if (used_ebs == 0) { 946 ubi_err(ubi, "zero used_ebs"); 947 goto bad; 948 } 949 if (data_size == 0) { 950 ubi_err(ubi, "zero data_size"); 951 goto bad; 952 } 953 if (lnum < used_ebs - 1) { 954 if (data_size != usable_leb_size) { 955 ubi_err(ubi, "bad data_size"); 956 goto bad; 957 } 958 } else if (lnum == used_ebs - 1) { 959 if (data_size == 0) { 960 ubi_err(ubi, "bad data_size at last LEB"); 961 goto bad; 962 } 963 } else { 964 ubi_err(ubi, "too high lnum"); 965 goto bad; 966 } 967 } else { 968 if (copy_flag == 0) { 969 if (data_crc != 0) { 970 ubi_err(ubi, "non-zero data CRC"); 971 goto bad; 972 } 973 if (data_size != 0) { 974 ubi_err(ubi, "non-zero data_size"); 975 goto bad; 976 } 977 } else { 978 if (data_size == 0) { 979 ubi_err(ubi, "zero data_size of copy"); 980 goto bad; 981 } 982 } 983 if (used_ebs != 0) { 984 ubi_err(ubi, "bad used_ebs"); 985 goto bad; 986 } 987 } 988 989 return 0; 990 991 bad: 992 ubi_err(ubi, "bad VID header"); 993 ubi_dump_vid_hdr(vid_hdr); 994 dump_stack(); 995 return 1; 996 } 997 998 /** 999 * ubi_io_read_vid_hdr - read and check a volume identifier header. 1000 * @ubi: UBI device description object 1001 * @pnum: physical eraseblock number to read from 1002 * @vidb: the volume identifier buffer to store data in 1003 * @verbose: be verbose if the header is corrupted or wasn't found 1004 * 1005 * This function reads the volume identifier header from physical eraseblock 1006 * @pnum and stores it in @vidb. It also checks CRC checksum of the read 1007 * volume identifier header. The error codes are the same as in 1008 * 'ubi_io_read_ec_hdr()'. 1009 * 1010 * Note, the implementation of this function is also very similar to 1011 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 1012 */ 1013 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1014 struct ubi_vid_io_buf *vidb, int verbose) 1015 { 1016 int err, read_err; 1017 uint32_t crc, magic, hdr_crc; 1018 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 1019 void *p = vidb->buffer; 1020 1021 dbg_io("read VID header from PEB %d", pnum); 1022 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1023 1024 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1025 ubi->vid_hdr_shift + UBI_VID_HDR_SIZE); 1026 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1027 return read_err; 1028 1029 magic = be32_to_cpu(vid_hdr->magic); 1030 if (magic != UBI_VID_HDR_MAGIC) { 1031 if (mtd_is_eccerr(read_err)) 1032 return UBI_IO_BAD_HDR_EBADMSG; 1033 1034 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1035 if (verbose) 1036 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", 1037 pnum); 1038 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1039 pnum); 1040 if (!read_err) 1041 return UBI_IO_FF; 1042 else 1043 return UBI_IO_FF_BITFLIPS; 1044 } 1045 1046 if (verbose) { 1047 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 1048 pnum, magic, UBI_VID_HDR_MAGIC); 1049 ubi_dump_vid_hdr(vid_hdr); 1050 } 1051 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1052 pnum, magic, UBI_VID_HDR_MAGIC); 1053 return UBI_IO_BAD_HDR; 1054 } 1055 1056 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1057 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1058 1059 if (hdr_crc != crc) { 1060 if (verbose) { 1061 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", 1062 pnum, crc, hdr_crc); 1063 ubi_dump_vid_hdr(vid_hdr); 1064 } 1065 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1066 pnum, crc, hdr_crc); 1067 if (!read_err) 1068 return UBI_IO_BAD_HDR; 1069 else 1070 return UBI_IO_BAD_HDR_EBADMSG; 1071 } 1072 1073 err = validate_vid_hdr(ubi, vid_hdr); 1074 if (err) { 1075 ubi_err(ubi, "validation failed for PEB %d", pnum); 1076 return -EINVAL; 1077 } 1078 1079 return read_err ? UBI_IO_BITFLIPS : 0; 1080 } 1081 1082 /** 1083 * ubi_io_write_vid_hdr - write a volume identifier header. 1084 * @ubi: UBI device description object 1085 * @pnum: the physical eraseblock number to write to 1086 * @vidb: the volume identifier buffer to write 1087 * 1088 * This function writes the volume identifier header described by @vid_hdr to 1089 * physical eraseblock @pnum. This function automatically fills the 1090 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates 1091 * header CRC checksum and stores it at vidb->hdr->hdr_crc. 1092 * 1093 * This function returns zero in case of success and a negative error code in 1094 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1095 * bad. 1096 */ 1097 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1098 struct ubi_vid_io_buf *vidb) 1099 { 1100 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 1101 int err; 1102 uint32_t crc; 1103 void *p = vidb->buffer; 1104 1105 dbg_io("write VID header to PEB %d", pnum); 1106 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1107 1108 err = self_check_peb_ec_hdr(ubi, pnum); 1109 if (err) 1110 return err; 1111 1112 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1113 vid_hdr->version = UBI_VERSION; 1114 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1115 vid_hdr->hdr_crc = cpu_to_be32(crc); 1116 1117 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1118 if (err) 1119 return err; 1120 1121 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) 1122 return -EROFS; 1123 1124 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1125 ubi->vid_hdr_alsize); 1126 return err; 1127 } 1128 1129 /** 1130 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1131 * @ubi: UBI device description object 1132 * @pnum: physical eraseblock number to check 1133 * 1134 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1135 * it is bad and a negative error code if an error occurred. 1136 */ 1137 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1138 { 1139 int err; 1140 1141 if (!ubi_dbg_chk_io(ubi)) 1142 return 0; 1143 1144 err = ubi_io_is_bad(ubi, pnum); 1145 if (!err) 1146 return err; 1147 1148 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1149 dump_stack(); 1150 return err > 0 ? -EINVAL : err; 1151 } 1152 1153 /** 1154 * self_check_ec_hdr - check if an erase counter header is all right. 1155 * @ubi: UBI device description object 1156 * @pnum: physical eraseblock number the erase counter header belongs to 1157 * @ec_hdr: the erase counter header to check 1158 * 1159 * This function returns zero if the erase counter header contains valid 1160 * values, and %-EINVAL if not. 1161 */ 1162 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1163 const struct ubi_ec_hdr *ec_hdr) 1164 { 1165 int err; 1166 uint32_t magic; 1167 1168 if (!ubi_dbg_chk_io(ubi)) 1169 return 0; 1170 1171 magic = be32_to_cpu(ec_hdr->magic); 1172 if (magic != UBI_EC_HDR_MAGIC) { 1173 ubi_err(ubi, "bad magic %#08x, must be %#08x", 1174 magic, UBI_EC_HDR_MAGIC); 1175 goto fail; 1176 } 1177 1178 err = validate_ec_hdr(ubi, ec_hdr); 1179 if (err) { 1180 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1181 goto fail; 1182 } 1183 1184 return 0; 1185 1186 fail: 1187 ubi_dump_ec_hdr(ec_hdr); 1188 dump_stack(); 1189 return -EINVAL; 1190 } 1191 1192 /** 1193 * self_check_peb_ec_hdr - check erase counter header. 1194 * @ubi: UBI device description object 1195 * @pnum: the physical eraseblock number to check 1196 * 1197 * This function returns zero if the erase counter header is all right and and 1198 * a negative error code if not or if an error occurred. 1199 */ 1200 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1201 { 1202 int err; 1203 uint32_t crc, hdr_crc; 1204 struct ubi_ec_hdr *ec_hdr; 1205 1206 if (!ubi_dbg_chk_io(ubi)) 1207 return 0; 1208 1209 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1210 if (!ec_hdr) 1211 return -ENOMEM; 1212 1213 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1214 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1215 goto exit; 1216 1217 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1218 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1219 if (hdr_crc != crc) { 1220 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", 1221 crc, hdr_crc); 1222 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1223 ubi_dump_ec_hdr(ec_hdr); 1224 dump_stack(); 1225 err = -EINVAL; 1226 goto exit; 1227 } 1228 1229 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1230 1231 exit: 1232 kfree(ec_hdr); 1233 return err; 1234 } 1235 1236 /** 1237 * self_check_vid_hdr - check that a volume identifier header is all right. 1238 * @ubi: UBI device description object 1239 * @pnum: physical eraseblock number the volume identifier header belongs to 1240 * @vid_hdr: the volume identifier header to check 1241 * 1242 * This function returns zero if the volume identifier header is all right, and 1243 * %-EINVAL if not. 1244 */ 1245 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1246 const struct ubi_vid_hdr *vid_hdr) 1247 { 1248 int err; 1249 uint32_t magic; 1250 1251 if (!ubi_dbg_chk_io(ubi)) 1252 return 0; 1253 1254 magic = be32_to_cpu(vid_hdr->magic); 1255 if (magic != UBI_VID_HDR_MAGIC) { 1256 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", 1257 magic, pnum, UBI_VID_HDR_MAGIC); 1258 goto fail; 1259 } 1260 1261 err = validate_vid_hdr(ubi, vid_hdr); 1262 if (err) { 1263 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1264 goto fail; 1265 } 1266 1267 return err; 1268 1269 fail: 1270 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1271 ubi_dump_vid_hdr(vid_hdr); 1272 dump_stack(); 1273 return -EINVAL; 1274 1275 } 1276 1277 /** 1278 * self_check_peb_vid_hdr - check volume identifier header. 1279 * @ubi: UBI device description object 1280 * @pnum: the physical eraseblock number to check 1281 * 1282 * This function returns zero if the volume identifier header is all right, 1283 * and a negative error code if not or if an error occurred. 1284 */ 1285 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1286 { 1287 int err; 1288 uint32_t crc, hdr_crc; 1289 struct ubi_vid_io_buf *vidb; 1290 struct ubi_vid_hdr *vid_hdr; 1291 void *p; 1292 1293 if (!ubi_dbg_chk_io(ubi)) 1294 return 0; 1295 1296 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 1297 if (!vidb) 1298 return -ENOMEM; 1299 1300 vid_hdr = ubi_get_vid_hdr(vidb); 1301 p = vidb->buffer; 1302 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1303 ubi->vid_hdr_alsize); 1304 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1305 goto exit; 1306 1307 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1308 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1309 if (hdr_crc != crc) { 1310 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1311 pnum, crc, hdr_crc); 1312 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1313 ubi_dump_vid_hdr(vid_hdr); 1314 dump_stack(); 1315 err = -EINVAL; 1316 goto exit; 1317 } 1318 1319 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1320 1321 exit: 1322 ubi_free_vid_buf(vidb); 1323 return err; 1324 } 1325 1326 /** 1327 * self_check_write - make sure write succeeded. 1328 * @ubi: UBI device description object 1329 * @buf: buffer with data which were written 1330 * @pnum: physical eraseblock number the data were written to 1331 * @offset: offset within the physical eraseblock the data were written to 1332 * @len: how many bytes were written 1333 * 1334 * This functions reads data which were recently written and compares it with 1335 * the original data buffer - the data have to match. Returns zero if the data 1336 * match and a negative error code if not or in case of failure. 1337 */ 1338 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1339 int offset, int len) 1340 { 1341 int err, i; 1342 size_t read; 1343 void *buf1; 1344 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1345 1346 if (!ubi_dbg_chk_io(ubi)) 1347 return 0; 1348 1349 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1350 if (!buf1) { 1351 ubi_err(ubi, "cannot allocate memory to check writes"); 1352 return 0; 1353 } 1354 1355 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1356 if (err && !mtd_is_bitflip(err)) 1357 goto out_free; 1358 1359 for (i = 0; i < len; i++) { 1360 uint8_t c = ((uint8_t *)buf)[i]; 1361 uint8_t c1 = ((uint8_t *)buf1)[i]; 1362 int dump_len; 1363 1364 if (c == c1) 1365 continue; 1366 1367 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", 1368 pnum, offset, len); 1369 ubi_msg(ubi, "data differ at position %d", i); 1370 dump_len = max_t(int, 128, len - i); 1371 ubi_msg(ubi, "hex dump of the original buffer from %d to %d", 1372 i, i + dump_len); 1373 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1374 buf + i, dump_len, 1); 1375 ubi_msg(ubi, "hex dump of the read buffer from %d to %d", 1376 i, i + dump_len); 1377 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1378 buf1 + i, dump_len, 1); 1379 dump_stack(); 1380 err = -EINVAL; 1381 goto out_free; 1382 } 1383 1384 vfree(buf1); 1385 return 0; 1386 1387 out_free: 1388 vfree(buf1); 1389 return err; 1390 } 1391 1392 /** 1393 * ubi_self_check_all_ff - check that a region of flash is empty. 1394 * @ubi: UBI device description object 1395 * @pnum: the physical eraseblock number to check 1396 * @offset: the starting offset within the physical eraseblock to check 1397 * @len: the length of the region to check 1398 * 1399 * This function returns zero if only 0xFF bytes are present at offset 1400 * @offset of the physical eraseblock @pnum, and a negative error code if not 1401 * or if an error occurred. 1402 */ 1403 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1404 { 1405 size_t read; 1406 int err; 1407 void *buf; 1408 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1409 1410 if (!ubi_dbg_chk_io(ubi)) 1411 return 0; 1412 1413 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1414 if (!buf) { 1415 ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); 1416 return 0; 1417 } 1418 1419 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1420 if (err && !mtd_is_bitflip(err)) { 1421 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1422 err, len, pnum, offset, read); 1423 goto error; 1424 } 1425 1426 err = ubi_check_pattern(buf, 0xFF, len); 1427 if (err == 0) { 1428 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1429 pnum, offset, len); 1430 goto fail; 1431 } 1432 1433 vfree(buf); 1434 return 0; 1435 1436 fail: 1437 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1438 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); 1439 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1440 err = -EINVAL; 1441 error: 1442 dump_stack(); 1443 vfree(buf); 1444 return err; 1445 } 1446