xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision b6dcefde)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69  * prefer to use sub-pages only for EV and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
92 
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 				 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 				  const struct ubi_vid_hdr *vid_hdr);
101 #else
102 #define paranoid_check_not_bad(ubi, pnum) 0
103 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
104 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
105 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
106 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
107 #endif
108 
109 /**
110  * ubi_io_read - read data from a physical eraseblock.
111  * @ubi: UBI device description object
112  * @buf: buffer where to store the read data
113  * @pnum: physical eraseblock number to read from
114  * @offset: offset within the physical eraseblock from where to read
115  * @len: how many bytes to read
116  *
117  * This function reads data from offset @offset of physical eraseblock @pnum
118  * and stores the read data in the @buf buffer. The following return codes are
119  * possible:
120  *
121  * o %0 if all the requested data were successfully read;
122  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
123  *   correctable bit-flips were detected; this is harmless but may indicate
124  *   that this eraseblock may become bad soon (but do not have to);
125  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
126  *   example it can be an ECC error in case of NAND; this most probably means
127  *   that the data is corrupted;
128  * o %-EIO if some I/O error occurred;
129  * o other negative error codes in case of other errors.
130  */
131 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
132 		int len)
133 {
134 	int err, retries = 0;
135 	size_t read;
136 	loff_t addr;
137 
138 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
139 
140 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
141 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
142 	ubi_assert(len > 0);
143 
144 	err = paranoid_check_not_bad(ubi, pnum);
145 	if (err)
146 		return err > 0 ? -EINVAL : err;
147 
148 	addr = (loff_t)pnum * ubi->peb_size + offset;
149 retry:
150 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
151 	if (err) {
152 		if (err == -EUCLEAN) {
153 			/*
154 			 * -EUCLEAN is reported if there was a bit-flip which
155 			 * was corrected, so this is harmless.
156 			 *
157 			 * We do not report about it here unless debugging is
158 			 * enabled. A corresponding message will be printed
159 			 * later, when it is has been scrubbed.
160 			 */
161 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
162 			ubi_assert(len == read);
163 			return UBI_IO_BITFLIPS;
164 		}
165 
166 		if (read != len && retries++ < UBI_IO_RETRIES) {
167 			dbg_io("error %d while reading %d bytes from PEB %d:%d,"
168 			       " read only %zd bytes, retry",
169 			       err, len, pnum, offset, read);
170 			yield();
171 			goto retry;
172 		}
173 
174 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
175 			"read %zd bytes", err, len, pnum, offset, read);
176 		ubi_dbg_dump_stack();
177 
178 		/*
179 		 * The driver should never return -EBADMSG if it failed to read
180 		 * all the requested data. But some buggy drivers might do
181 		 * this, so we change it to -EIO.
182 		 */
183 		if (read != len && err == -EBADMSG) {
184 			ubi_assert(0);
185 			err = -EIO;
186 		}
187 	} else {
188 		ubi_assert(len == read);
189 
190 		if (ubi_dbg_is_bitflip()) {
191 			dbg_gen("bit-flip (emulated)");
192 			err = UBI_IO_BITFLIPS;
193 		}
194 	}
195 
196 	return err;
197 }
198 
199 /**
200  * ubi_io_write - write data to a physical eraseblock.
201  * @ubi: UBI device description object
202  * @buf: buffer with the data to write
203  * @pnum: physical eraseblock number to write to
204  * @offset: offset within the physical eraseblock where to write
205  * @len: how many bytes to write
206  *
207  * This function writes @len bytes of data from buffer @buf to offset @offset
208  * of physical eraseblock @pnum. If all the data were successfully written,
209  * zero is returned. If an error occurred, this function returns a negative
210  * error code. If %-EIO is returned, the physical eraseblock most probably went
211  * bad.
212  *
213  * Note, in case of an error, it is possible that something was still written
214  * to the flash media, but may be some garbage.
215  */
216 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
217 		 int len)
218 {
219 	int err;
220 	size_t written;
221 	loff_t addr;
222 
223 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
224 
225 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
226 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
227 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
228 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
229 
230 	if (ubi->ro_mode) {
231 		ubi_err("read-only mode");
232 		return -EROFS;
233 	}
234 
235 	/* The below has to be compiled out if paranoid checks are disabled */
236 
237 	err = paranoid_check_not_bad(ubi, pnum);
238 	if (err)
239 		return err > 0 ? -EINVAL : err;
240 
241 	/* The area we are writing to has to contain all 0xFF bytes */
242 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
243 	if (err)
244 		return err > 0 ? -EINVAL : err;
245 
246 	if (offset >= ubi->leb_start) {
247 		/*
248 		 * We write to the data area of the physical eraseblock. Make
249 		 * sure it has valid EC and VID headers.
250 		 */
251 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
252 		if (err)
253 			return err > 0 ? -EINVAL : err;
254 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
255 		if (err)
256 			return err > 0 ? -EINVAL : err;
257 	}
258 
259 	if (ubi_dbg_is_write_failure()) {
260 		dbg_err("cannot write %d bytes to PEB %d:%d "
261 			"(emulated)", len, pnum, offset);
262 		ubi_dbg_dump_stack();
263 		return -EIO;
264 	}
265 
266 	addr = (loff_t)pnum * ubi->peb_size + offset;
267 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
268 	if (err) {
269 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
270 			"%zd bytes", err, len, pnum, offset, written);
271 		ubi_dbg_dump_stack();
272 		ubi_dbg_dump_flash(ubi, pnum, offset, len);
273 	} else
274 		ubi_assert(written == len);
275 
276 	return err;
277 }
278 
279 /**
280  * erase_callback - MTD erasure call-back.
281  * @ei: MTD erase information object.
282  *
283  * Note, even though MTD erase interface is asynchronous, all the current
284  * implementations are synchronous anyway.
285  */
286 static void erase_callback(struct erase_info *ei)
287 {
288 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
289 }
290 
291 /**
292  * do_sync_erase - synchronously erase a physical eraseblock.
293  * @ubi: UBI device description object
294  * @pnum: the physical eraseblock number to erase
295  *
296  * This function synchronously erases physical eraseblock @pnum and returns
297  * zero in case of success and a negative error code in case of failure. If
298  * %-EIO is returned, the physical eraseblock most probably went bad.
299  */
300 static int do_sync_erase(struct ubi_device *ubi, int pnum)
301 {
302 	int err, retries = 0;
303 	struct erase_info ei;
304 	wait_queue_head_t wq;
305 
306 	dbg_io("erase PEB %d", pnum);
307 
308 retry:
309 	init_waitqueue_head(&wq);
310 	memset(&ei, 0, sizeof(struct erase_info));
311 
312 	ei.mtd      = ubi->mtd;
313 	ei.addr     = (loff_t)pnum * ubi->peb_size;
314 	ei.len      = ubi->peb_size;
315 	ei.callback = erase_callback;
316 	ei.priv     = (unsigned long)&wq;
317 
318 	err = ubi->mtd->erase(ubi->mtd, &ei);
319 	if (err) {
320 		if (retries++ < UBI_IO_RETRIES) {
321 			dbg_io("error %d while erasing PEB %d, retry",
322 			       err, pnum);
323 			yield();
324 			goto retry;
325 		}
326 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
327 		ubi_dbg_dump_stack();
328 		return err;
329 	}
330 
331 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
332 					   ei.state == MTD_ERASE_FAILED);
333 	if (err) {
334 		ubi_err("interrupted PEB %d erasure", pnum);
335 		return -EINTR;
336 	}
337 
338 	if (ei.state == MTD_ERASE_FAILED) {
339 		if (retries++ < UBI_IO_RETRIES) {
340 			dbg_io("error while erasing PEB %d, retry", pnum);
341 			yield();
342 			goto retry;
343 		}
344 		ubi_err("cannot erase PEB %d", pnum);
345 		ubi_dbg_dump_stack();
346 		return -EIO;
347 	}
348 
349 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
350 	if (err)
351 		return err > 0 ? -EINVAL : err;
352 
353 	if (ubi_dbg_is_erase_failure() && !err) {
354 		dbg_err("cannot erase PEB %d (emulated)", pnum);
355 		return -EIO;
356 	}
357 
358 	return 0;
359 }
360 
361 /**
362  * check_pattern - check if buffer contains only a certain byte pattern.
363  * @buf: buffer to check
364  * @patt: the pattern to check
365  * @size: buffer size in bytes
366  *
367  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
368  * something else was also found.
369  */
370 static int check_pattern(const void *buf, uint8_t patt, int size)
371 {
372 	int i;
373 
374 	for (i = 0; i < size; i++)
375 		if (((const uint8_t *)buf)[i] != patt)
376 			return 0;
377 	return 1;
378 }
379 
380 /* Patterns to write to a physical eraseblock when torturing it */
381 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
382 
383 /**
384  * torture_peb - test a supposedly bad physical eraseblock.
385  * @ubi: UBI device description object
386  * @pnum: the physical eraseblock number to test
387  *
388  * This function returns %-EIO if the physical eraseblock did not pass the
389  * test, a positive number of erase operations done if the test was
390  * successfully passed, and other negative error codes in case of other errors.
391  */
392 static int torture_peb(struct ubi_device *ubi, int pnum)
393 {
394 	int err, i, patt_count;
395 
396 	ubi_msg("run torture test for PEB %d", pnum);
397 	patt_count = ARRAY_SIZE(patterns);
398 	ubi_assert(patt_count > 0);
399 
400 	mutex_lock(&ubi->buf_mutex);
401 	for (i = 0; i < patt_count; i++) {
402 		err = do_sync_erase(ubi, pnum);
403 		if (err)
404 			goto out;
405 
406 		/* Make sure the PEB contains only 0xFF bytes */
407 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
408 		if (err)
409 			goto out;
410 
411 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
412 		if (err == 0) {
413 			ubi_err("erased PEB %d, but a non-0xFF byte found",
414 				pnum);
415 			err = -EIO;
416 			goto out;
417 		}
418 
419 		/* Write a pattern and check it */
420 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
421 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
422 		if (err)
423 			goto out;
424 
425 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
426 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
427 		if (err)
428 			goto out;
429 
430 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
431 		if (err == 0) {
432 			ubi_err("pattern %x checking failed for PEB %d",
433 				patterns[i], pnum);
434 			err = -EIO;
435 			goto out;
436 		}
437 	}
438 
439 	err = patt_count;
440 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
441 
442 out:
443 	mutex_unlock(&ubi->buf_mutex);
444 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
445 		/*
446 		 * If a bit-flip or data integrity error was detected, the test
447 		 * has not passed because it happened on a freshly erased
448 		 * physical eraseblock which means something is wrong with it.
449 		 */
450 		ubi_err("read problems on freshly erased PEB %d, must be bad",
451 			pnum);
452 		err = -EIO;
453 	}
454 	return err;
455 }
456 
457 /**
458  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
459  * @ubi: UBI device description object
460  * @pnum: physical eraseblock number to prepare
461  *
462  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
463  * algorithm: the PEB is first filled with zeroes, then it is erased. And
464  * filling with zeroes starts from the end of the PEB. This was observed with
465  * Spansion S29GL512N NOR flash.
466  *
467  * This means that in case of a power cut we may end up with intact data at the
468  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
469  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
470  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
471  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
472  *
473  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
474  * magic numbers in order to invalidate them and prevent the failures. Returns
475  * zero in case of success and a negative error code in case of failure.
476  */
477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
478 {
479 	int err, err1;
480 	size_t written;
481 	loff_t addr;
482 	uint32_t data = 0;
483 	struct ubi_vid_hdr vid_hdr;
484 
485 	addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
486 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
487 	if (!err) {
488 		addr -= ubi->vid_hdr_aloffset;
489 		err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
490 				      (void *)&data);
491 		if (!err)
492 			return 0;
493 	}
494 
495 	/*
496 	 * We failed to write to the media. This was observed with Spansion
497 	 * S29GL512N NOR flash. Most probably the eraseblock erasure was
498 	 * interrupted at a very inappropriate moment, so it became unwritable.
499 	 * In this case we probably anyway have garbage in this PEB.
500 	 */
501 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
502 	if (err1 == UBI_IO_BAD_VID_HDR)
503 		/*
504 		 * The VID header is corrupted, so we can safely erase this
505 		 * PEB and not afraid that it will be treated as a valid PEB in
506 		 * case of an unclean reboot.
507 		 */
508 		return 0;
509 
510 	/*
511 	 * The PEB contains a valid VID header, but we cannot invalidate it.
512 	 * Supposedly the flash media or the driver is screwed up, so return an
513 	 * error.
514 	 */
515 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
516 		pnum, err, err1);
517 	ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
518 	return -EIO;
519 }
520 
521 /**
522  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
523  * @ubi: UBI device description object
524  * @pnum: physical eraseblock number to erase
525  * @torture: if this physical eraseblock has to be tortured
526  *
527  * This function synchronously erases physical eraseblock @pnum. If @torture
528  * flag is not zero, the physical eraseblock is checked by means of writing
529  * different patterns to it and reading them back. If the torturing is enabled,
530  * the physical eraseblock is erased more than once.
531  *
532  * This function returns the number of erasures made in case of success, %-EIO
533  * if the erasure failed or the torturing test failed, and other negative error
534  * codes in case of other errors. Note, %-EIO means that the physical
535  * eraseblock is bad.
536  */
537 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
538 {
539 	int err, ret = 0;
540 
541 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
542 
543 	err = paranoid_check_not_bad(ubi, pnum);
544 	if (err != 0)
545 		return err > 0 ? -EINVAL : err;
546 
547 	if (ubi->ro_mode) {
548 		ubi_err("read-only mode");
549 		return -EROFS;
550 	}
551 
552 	if (ubi->nor_flash) {
553 		err = nor_erase_prepare(ubi, pnum);
554 		if (err)
555 			return err;
556 	}
557 
558 	if (torture) {
559 		ret = torture_peb(ubi, pnum);
560 		if (ret < 0)
561 			return ret;
562 	}
563 
564 	err = do_sync_erase(ubi, pnum);
565 	if (err)
566 		return err;
567 
568 	return ret + 1;
569 }
570 
571 /**
572  * ubi_io_is_bad - check if a physical eraseblock is bad.
573  * @ubi: UBI device description object
574  * @pnum: the physical eraseblock number to check
575  *
576  * This function returns a positive number if the physical eraseblock is bad,
577  * zero if not, and a negative error code if an error occurred.
578  */
579 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
580 {
581 	struct mtd_info *mtd = ubi->mtd;
582 
583 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
584 
585 	if (ubi->bad_allowed) {
586 		int ret;
587 
588 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
589 		if (ret < 0)
590 			ubi_err("error %d while checking if PEB %d is bad",
591 				ret, pnum);
592 		else if (ret)
593 			dbg_io("PEB %d is bad", pnum);
594 		return ret;
595 	}
596 
597 	return 0;
598 }
599 
600 /**
601  * ubi_io_mark_bad - mark a physical eraseblock as bad.
602  * @ubi: UBI device description object
603  * @pnum: the physical eraseblock number to mark
604  *
605  * This function returns zero in case of success and a negative error code in
606  * case of failure.
607  */
608 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
609 {
610 	int err;
611 	struct mtd_info *mtd = ubi->mtd;
612 
613 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
614 
615 	if (ubi->ro_mode) {
616 		ubi_err("read-only mode");
617 		return -EROFS;
618 	}
619 
620 	if (!ubi->bad_allowed)
621 		return 0;
622 
623 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
624 	if (err)
625 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
626 	return err;
627 }
628 
629 /**
630  * validate_ec_hdr - validate an erase counter header.
631  * @ubi: UBI device description object
632  * @ec_hdr: the erase counter header to check
633  *
634  * This function returns zero if the erase counter header is OK, and %1 if
635  * not.
636  */
637 static int validate_ec_hdr(const struct ubi_device *ubi,
638 			   const struct ubi_ec_hdr *ec_hdr)
639 {
640 	long long ec;
641 	int vid_hdr_offset, leb_start;
642 
643 	ec = be64_to_cpu(ec_hdr->ec);
644 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
645 	leb_start = be32_to_cpu(ec_hdr->data_offset);
646 
647 	if (ec_hdr->version != UBI_VERSION) {
648 		ubi_err("node with incompatible UBI version found: "
649 			"this UBI version is %d, image version is %d",
650 			UBI_VERSION, (int)ec_hdr->version);
651 		goto bad;
652 	}
653 
654 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
655 		ubi_err("bad VID header offset %d, expected %d",
656 			vid_hdr_offset, ubi->vid_hdr_offset);
657 		goto bad;
658 	}
659 
660 	if (leb_start != ubi->leb_start) {
661 		ubi_err("bad data offset %d, expected %d",
662 			leb_start, ubi->leb_start);
663 		goto bad;
664 	}
665 
666 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
667 		ubi_err("bad erase counter %lld", ec);
668 		goto bad;
669 	}
670 
671 	return 0;
672 
673 bad:
674 	ubi_err("bad EC header");
675 	ubi_dbg_dump_ec_hdr(ec_hdr);
676 	ubi_dbg_dump_stack();
677 	return 1;
678 }
679 
680 /**
681  * ubi_io_read_ec_hdr - read and check an erase counter header.
682  * @ubi: UBI device description object
683  * @pnum: physical eraseblock to read from
684  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
685  * header
686  * @verbose: be verbose if the header is corrupted or was not found
687  *
688  * This function reads erase counter header from physical eraseblock @pnum and
689  * stores it in @ec_hdr. This function also checks CRC checksum of the read
690  * erase counter header. The following codes may be returned:
691  *
692  * o %0 if the CRC checksum is correct and the header was successfully read;
693  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
694  *   and corrected by the flash driver; this is harmless but may indicate that
695  *   this eraseblock may become bad soon (but may be not);
696  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
697  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
698  * o a negative error code in case of failure.
699  */
700 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
701 		       struct ubi_ec_hdr *ec_hdr, int verbose)
702 {
703 	int err, read_err = 0;
704 	uint32_t crc, magic, hdr_crc;
705 
706 	dbg_io("read EC header from PEB %d", pnum);
707 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
708 
709 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
710 	if (err) {
711 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
712 			return err;
713 
714 		/*
715 		 * We read all the data, but either a correctable bit-flip
716 		 * occurred, or MTD reported about some data integrity error,
717 		 * like an ECC error in case of NAND. The former is harmless,
718 		 * the later may mean that the read data is corrupted. But we
719 		 * have a CRC check-sum and we will detect this. If the EC
720 		 * header is still OK, we just report this as there was a
721 		 * bit-flip.
722 		 */
723 		read_err = err;
724 	}
725 
726 	magic = be32_to_cpu(ec_hdr->magic);
727 	if (magic != UBI_EC_HDR_MAGIC) {
728 		/*
729 		 * The magic field is wrong. Let's check if we have read all
730 		 * 0xFF. If yes, this physical eraseblock is assumed to be
731 		 * empty.
732 		 *
733 		 * But if there was a read error, we do not test it for all
734 		 * 0xFFs. Even if it does contain all 0xFFs, this error
735 		 * indicates that something is still wrong with this physical
736 		 * eraseblock and we anyway cannot treat it as empty.
737 		 */
738 		if (read_err != -EBADMSG &&
739 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
740 			/* The physical eraseblock is supposedly empty */
741 			if (verbose)
742 				ubi_warn("no EC header found at PEB %d, "
743 					 "only 0xFF bytes", pnum);
744 			else if (UBI_IO_DEBUG)
745 				dbg_msg("no EC header found at PEB %d, "
746 					"only 0xFF bytes", pnum);
747 			return UBI_IO_PEB_EMPTY;
748 		}
749 
750 		/*
751 		 * This is not a valid erase counter header, and these are not
752 		 * 0xFF bytes. Report that the header is corrupted.
753 		 */
754 		if (verbose) {
755 			ubi_warn("bad magic number at PEB %d: %08x instead of "
756 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
757 			ubi_dbg_dump_ec_hdr(ec_hdr);
758 		} else if (UBI_IO_DEBUG)
759 			dbg_msg("bad magic number at PEB %d: %08x instead of "
760 				"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
761 		return UBI_IO_BAD_EC_HDR;
762 	}
763 
764 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
765 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
766 
767 	if (hdr_crc != crc) {
768 		if (verbose) {
769 			ubi_warn("bad EC header CRC at PEB %d, calculated "
770 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
771 			ubi_dbg_dump_ec_hdr(ec_hdr);
772 		} else if (UBI_IO_DEBUG)
773 			dbg_msg("bad EC header CRC at PEB %d, calculated "
774 				"%#08x, read %#08x", pnum, crc, hdr_crc);
775 		return UBI_IO_BAD_EC_HDR;
776 	}
777 
778 	/* And of course validate what has just been read from the media */
779 	err = validate_ec_hdr(ubi, ec_hdr);
780 	if (err) {
781 		ubi_err("validation failed for PEB %d", pnum);
782 		return -EINVAL;
783 	}
784 
785 	return read_err ? UBI_IO_BITFLIPS : 0;
786 }
787 
788 /**
789  * ubi_io_write_ec_hdr - write an erase counter header.
790  * @ubi: UBI device description object
791  * @pnum: physical eraseblock to write to
792  * @ec_hdr: the erase counter header to write
793  *
794  * This function writes erase counter header described by @ec_hdr to physical
795  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
796  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
797  * field.
798  *
799  * This function returns zero in case of success and a negative error code in
800  * case of failure. If %-EIO is returned, the physical eraseblock most probably
801  * went bad.
802  */
803 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
804 			struct ubi_ec_hdr *ec_hdr)
805 {
806 	int err;
807 	uint32_t crc;
808 
809 	dbg_io("write EC header to PEB %d", pnum);
810 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
811 
812 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
813 	ec_hdr->version = UBI_VERSION;
814 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
815 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
816 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
817 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
818 	ec_hdr->hdr_crc = cpu_to_be32(crc);
819 
820 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
821 	if (err)
822 		return -EINVAL;
823 
824 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
825 	return err;
826 }
827 
828 /**
829  * validate_vid_hdr - validate a volume identifier header.
830  * @ubi: UBI device description object
831  * @vid_hdr: the volume identifier header to check
832  *
833  * This function checks that data stored in the volume identifier header
834  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
835  */
836 static int validate_vid_hdr(const struct ubi_device *ubi,
837 			    const struct ubi_vid_hdr *vid_hdr)
838 {
839 	int vol_type = vid_hdr->vol_type;
840 	int copy_flag = vid_hdr->copy_flag;
841 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
842 	int lnum = be32_to_cpu(vid_hdr->lnum);
843 	int compat = vid_hdr->compat;
844 	int data_size = be32_to_cpu(vid_hdr->data_size);
845 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
846 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
847 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
848 	int usable_leb_size = ubi->leb_size - data_pad;
849 
850 	if (copy_flag != 0 && copy_flag != 1) {
851 		dbg_err("bad copy_flag");
852 		goto bad;
853 	}
854 
855 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
856 	    data_pad < 0) {
857 		dbg_err("negative values");
858 		goto bad;
859 	}
860 
861 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
862 		dbg_err("bad vol_id");
863 		goto bad;
864 	}
865 
866 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
867 		dbg_err("bad compat");
868 		goto bad;
869 	}
870 
871 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
872 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
873 	    compat != UBI_COMPAT_REJECT) {
874 		dbg_err("bad compat");
875 		goto bad;
876 	}
877 
878 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
879 		dbg_err("bad vol_type");
880 		goto bad;
881 	}
882 
883 	if (data_pad >= ubi->leb_size / 2) {
884 		dbg_err("bad data_pad");
885 		goto bad;
886 	}
887 
888 	if (vol_type == UBI_VID_STATIC) {
889 		/*
890 		 * Although from high-level point of view static volumes may
891 		 * contain zero bytes of data, but no VID headers can contain
892 		 * zero at these fields, because they empty volumes do not have
893 		 * mapped logical eraseblocks.
894 		 */
895 		if (used_ebs == 0) {
896 			dbg_err("zero used_ebs");
897 			goto bad;
898 		}
899 		if (data_size == 0) {
900 			dbg_err("zero data_size");
901 			goto bad;
902 		}
903 		if (lnum < used_ebs - 1) {
904 			if (data_size != usable_leb_size) {
905 				dbg_err("bad data_size");
906 				goto bad;
907 			}
908 		} else if (lnum == used_ebs - 1) {
909 			if (data_size == 0) {
910 				dbg_err("bad data_size at last LEB");
911 				goto bad;
912 			}
913 		} else {
914 			dbg_err("too high lnum");
915 			goto bad;
916 		}
917 	} else {
918 		if (copy_flag == 0) {
919 			if (data_crc != 0) {
920 				dbg_err("non-zero data CRC");
921 				goto bad;
922 			}
923 			if (data_size != 0) {
924 				dbg_err("non-zero data_size");
925 				goto bad;
926 			}
927 		} else {
928 			if (data_size == 0) {
929 				dbg_err("zero data_size of copy");
930 				goto bad;
931 			}
932 		}
933 		if (used_ebs != 0) {
934 			dbg_err("bad used_ebs");
935 			goto bad;
936 		}
937 	}
938 
939 	return 0;
940 
941 bad:
942 	ubi_err("bad VID header");
943 	ubi_dbg_dump_vid_hdr(vid_hdr);
944 	ubi_dbg_dump_stack();
945 	return 1;
946 }
947 
948 /**
949  * ubi_io_read_vid_hdr - read and check a volume identifier header.
950  * @ubi: UBI device description object
951  * @pnum: physical eraseblock number to read from
952  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
953  * identifier header
954  * @verbose: be verbose if the header is corrupted or wasn't found
955  *
956  * This function reads the volume identifier header from physical eraseblock
957  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
958  * volume identifier header. The following codes may be returned:
959  *
960  * o %0 if the CRC checksum is correct and the header was successfully read;
961  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
962  *   and corrected by the flash driver; this is harmless but may indicate that
963  *   this eraseblock may become bad soon;
964  * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
965  *   error detected);
966  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
967  *   header there);
968  * o a negative error code in case of failure.
969  */
970 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
971 			struct ubi_vid_hdr *vid_hdr, int verbose)
972 {
973 	int err, read_err = 0;
974 	uint32_t crc, magic, hdr_crc;
975 	void *p;
976 
977 	dbg_io("read VID header from PEB %d", pnum);
978 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
979 
980 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
981 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
982 			  ubi->vid_hdr_alsize);
983 	if (err) {
984 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
985 			return err;
986 
987 		/*
988 		 * We read all the data, but either a correctable bit-flip
989 		 * occurred, or MTD reported about some data integrity error,
990 		 * like an ECC error in case of NAND. The former is harmless,
991 		 * the later may mean the read data is corrupted. But we have a
992 		 * CRC check-sum and we will identify this. If the VID header is
993 		 * still OK, we just report this as there was a bit-flip.
994 		 */
995 		read_err = err;
996 	}
997 
998 	magic = be32_to_cpu(vid_hdr->magic);
999 	if (magic != UBI_VID_HDR_MAGIC) {
1000 		/*
1001 		 * If we have read all 0xFF bytes, the VID header probably does
1002 		 * not exist and the physical eraseblock is assumed to be free.
1003 		 *
1004 		 * But if there was a read error, we do not test the data for
1005 		 * 0xFFs. Even if it does contain all 0xFFs, this error
1006 		 * indicates that something is still wrong with this physical
1007 		 * eraseblock and it cannot be regarded as free.
1008 		 */
1009 		if (read_err != -EBADMSG &&
1010 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1011 			/* The physical eraseblock is supposedly free */
1012 			if (verbose)
1013 				ubi_warn("no VID header found at PEB %d, "
1014 					 "only 0xFF bytes", pnum);
1015 			else if (UBI_IO_DEBUG)
1016 				dbg_msg("no VID header found at PEB %d, "
1017 					"only 0xFF bytes", pnum);
1018 			return UBI_IO_PEB_FREE;
1019 		}
1020 
1021 		/*
1022 		 * This is not a valid VID header, and these are not 0xFF
1023 		 * bytes. Report that the header is corrupted.
1024 		 */
1025 		if (verbose) {
1026 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1027 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1028 			ubi_dbg_dump_vid_hdr(vid_hdr);
1029 		} else if (UBI_IO_DEBUG)
1030 			dbg_msg("bad magic number at PEB %d: %08x instead of "
1031 				"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1032 		return UBI_IO_BAD_VID_HDR;
1033 	}
1034 
1035 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1036 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1037 
1038 	if (hdr_crc != crc) {
1039 		if (verbose) {
1040 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1041 				 "read %#08x", pnum, crc, hdr_crc);
1042 			ubi_dbg_dump_vid_hdr(vid_hdr);
1043 		} else if (UBI_IO_DEBUG)
1044 			dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1045 				"read %#08x", pnum, crc, hdr_crc);
1046 		return UBI_IO_BAD_VID_HDR;
1047 	}
1048 
1049 	/* Validate the VID header that we have just read */
1050 	err = validate_vid_hdr(ubi, vid_hdr);
1051 	if (err) {
1052 		ubi_err("validation failed for PEB %d", pnum);
1053 		return -EINVAL;
1054 	}
1055 
1056 	return read_err ? UBI_IO_BITFLIPS : 0;
1057 }
1058 
1059 /**
1060  * ubi_io_write_vid_hdr - write a volume identifier header.
1061  * @ubi: UBI device description object
1062  * @pnum: the physical eraseblock number to write to
1063  * @vid_hdr: the volume identifier header to write
1064  *
1065  * This function writes the volume identifier header described by @vid_hdr to
1066  * physical eraseblock @pnum. This function automatically fills the
1067  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1068  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1069  *
1070  * This function returns zero in case of success and a negative error code in
1071  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1072  * bad.
1073  */
1074 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1075 			 struct ubi_vid_hdr *vid_hdr)
1076 {
1077 	int err;
1078 	uint32_t crc;
1079 	void *p;
1080 
1081 	dbg_io("write VID header to PEB %d", pnum);
1082 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1083 
1084 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1085 	if (err)
1086 		return err > 0 ? -EINVAL : err;
1087 
1088 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1089 	vid_hdr->version = UBI_VERSION;
1090 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1091 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1092 
1093 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1094 	if (err)
1095 		return -EINVAL;
1096 
1097 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1098 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1099 			   ubi->vid_hdr_alsize);
1100 	return err;
1101 }
1102 
1103 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1104 
1105 /**
1106  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1107  * @ubi: UBI device description object
1108  * @pnum: physical eraseblock number to check
1109  *
1110  * This function returns zero if the physical eraseblock is good, a positive
1111  * number if it is bad and a negative error code if an error occurred.
1112  */
1113 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1114 {
1115 	int err;
1116 
1117 	err = ubi_io_is_bad(ubi, pnum);
1118 	if (!err)
1119 		return err;
1120 
1121 	ubi_err("paranoid check failed for PEB %d", pnum);
1122 	ubi_dbg_dump_stack();
1123 	return err;
1124 }
1125 
1126 /**
1127  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1128  * @ubi: UBI device description object
1129  * @pnum: physical eraseblock number the erase counter header belongs to
1130  * @ec_hdr: the erase counter header to check
1131  *
1132  * This function returns zero if the erase counter header contains valid
1133  * values, and %1 if not.
1134  */
1135 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1136 				 const struct ubi_ec_hdr *ec_hdr)
1137 {
1138 	int err;
1139 	uint32_t magic;
1140 
1141 	magic = be32_to_cpu(ec_hdr->magic);
1142 	if (magic != UBI_EC_HDR_MAGIC) {
1143 		ubi_err("bad magic %#08x, must be %#08x",
1144 			magic, UBI_EC_HDR_MAGIC);
1145 		goto fail;
1146 	}
1147 
1148 	err = validate_ec_hdr(ubi, ec_hdr);
1149 	if (err) {
1150 		ubi_err("paranoid check failed for PEB %d", pnum);
1151 		goto fail;
1152 	}
1153 
1154 	return 0;
1155 
1156 fail:
1157 	ubi_dbg_dump_ec_hdr(ec_hdr);
1158 	ubi_dbg_dump_stack();
1159 	return 1;
1160 }
1161 
1162 /**
1163  * paranoid_check_peb_ec_hdr - check erase counter header.
1164  * @ubi: UBI device description object
1165  * @pnum: the physical eraseblock number to check
1166  *
1167  * This function returns zero if the erase counter header is all right, %1 if
1168  * not, and a negative error code if an error occurred.
1169  */
1170 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1171 {
1172 	int err;
1173 	uint32_t crc, hdr_crc;
1174 	struct ubi_ec_hdr *ec_hdr;
1175 
1176 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1177 	if (!ec_hdr)
1178 		return -ENOMEM;
1179 
1180 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1181 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1182 		goto exit;
1183 
1184 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1185 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1186 	if (hdr_crc != crc) {
1187 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1188 		ubi_err("paranoid check failed for PEB %d", pnum);
1189 		ubi_dbg_dump_ec_hdr(ec_hdr);
1190 		ubi_dbg_dump_stack();
1191 		err = 1;
1192 		goto exit;
1193 	}
1194 
1195 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1196 
1197 exit:
1198 	kfree(ec_hdr);
1199 	return err;
1200 }
1201 
1202 /**
1203  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1204  * @ubi: UBI device description object
1205  * @pnum: physical eraseblock number the volume identifier header belongs to
1206  * @vid_hdr: the volume identifier header to check
1207  *
1208  * This function returns zero if the volume identifier header is all right, and
1209  * %1 if not.
1210  */
1211 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1212 				  const struct ubi_vid_hdr *vid_hdr)
1213 {
1214 	int err;
1215 	uint32_t magic;
1216 
1217 	magic = be32_to_cpu(vid_hdr->magic);
1218 	if (magic != UBI_VID_HDR_MAGIC) {
1219 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1220 			magic, pnum, UBI_VID_HDR_MAGIC);
1221 		goto fail;
1222 	}
1223 
1224 	err = validate_vid_hdr(ubi, vid_hdr);
1225 	if (err) {
1226 		ubi_err("paranoid check failed for PEB %d", pnum);
1227 		goto fail;
1228 	}
1229 
1230 	return err;
1231 
1232 fail:
1233 	ubi_err("paranoid check failed for PEB %d", pnum);
1234 	ubi_dbg_dump_vid_hdr(vid_hdr);
1235 	ubi_dbg_dump_stack();
1236 	return 1;
1237 
1238 }
1239 
1240 /**
1241  * paranoid_check_peb_vid_hdr - check volume identifier header.
1242  * @ubi: UBI device description object
1243  * @pnum: the physical eraseblock number to check
1244  *
1245  * This function returns zero if the volume identifier header is all right,
1246  * %1 if not, and a negative error code if an error occurred.
1247  */
1248 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1249 {
1250 	int err;
1251 	uint32_t crc, hdr_crc;
1252 	struct ubi_vid_hdr *vid_hdr;
1253 	void *p;
1254 
1255 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1256 	if (!vid_hdr)
1257 		return -ENOMEM;
1258 
1259 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1260 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1261 			  ubi->vid_hdr_alsize);
1262 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1263 		goto exit;
1264 
1265 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1266 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1267 	if (hdr_crc != crc) {
1268 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1269 			"read %#08x", pnum, crc, hdr_crc);
1270 		ubi_err("paranoid check failed for PEB %d", pnum);
1271 		ubi_dbg_dump_vid_hdr(vid_hdr);
1272 		ubi_dbg_dump_stack();
1273 		err = 1;
1274 		goto exit;
1275 	}
1276 
1277 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1278 
1279 exit:
1280 	ubi_free_vid_hdr(ubi, vid_hdr);
1281 	return err;
1282 }
1283 
1284 /**
1285  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1286  * @ubi: UBI device description object
1287  * @pnum: the physical eraseblock number to check
1288  * @offset: the starting offset within the physical eraseblock to check
1289  * @len: the length of the region to check
1290  *
1291  * This function returns zero if only 0xFF bytes are present at offset
1292  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1293  * code if an error occurred.
1294  */
1295 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1296 {
1297 	size_t read;
1298 	int err;
1299 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1300 
1301 	mutex_lock(&ubi->dbg_buf_mutex);
1302 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1303 	if (err && err != -EUCLEAN) {
1304 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1305 			"read %zd bytes", err, len, pnum, offset, read);
1306 		goto error;
1307 	}
1308 
1309 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1310 	if (err == 0) {
1311 		ubi_err("flash region at PEB %d:%d, length %d does not "
1312 			"contain all 0xFF bytes", pnum, offset, len);
1313 		goto fail;
1314 	}
1315 	mutex_unlock(&ubi->dbg_buf_mutex);
1316 
1317 	return 0;
1318 
1319 fail:
1320 	ubi_err("paranoid check failed for PEB %d", pnum);
1321 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1322 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1323 		       ubi->dbg_peb_buf, len, 1);
1324 	err = 1;
1325 error:
1326 	ubi_dbg_dump_stack();
1327 	mutex_unlock(&ubi->dbg_buf_mutex);
1328 	return err;
1329 }
1330 
1331 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1332