1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing 68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we 69 * prefer to use sub-pages only for EV and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include "ubi.h" 92 93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 #else 102 #define paranoid_check_not_bad(ubi, pnum) 0 103 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 104 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 105 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 106 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 107 #endif 108 109 /** 110 * ubi_io_read - read data from a physical eraseblock. 111 * @ubi: UBI device description object 112 * @buf: buffer where to store the read data 113 * @pnum: physical eraseblock number to read from 114 * @offset: offset within the physical eraseblock from where to read 115 * @len: how many bytes to read 116 * 117 * This function reads data from offset @offset of physical eraseblock @pnum 118 * and stores the read data in the @buf buffer. The following return codes are 119 * possible: 120 * 121 * o %0 if all the requested data were successfully read; 122 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 123 * correctable bit-flips were detected; this is harmless but may indicate 124 * that this eraseblock may become bad soon (but do not have to); 125 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 126 * example it can be an ECC error in case of NAND; this most probably means 127 * that the data is corrupted; 128 * o %-EIO if some I/O error occurred; 129 * o other negative error codes in case of other errors. 130 */ 131 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 132 int len) 133 { 134 int err, retries = 0; 135 size_t read; 136 loff_t addr; 137 138 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 139 140 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 141 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 142 ubi_assert(len > 0); 143 144 err = paranoid_check_not_bad(ubi, pnum); 145 if (err) 146 return err > 0 ? -EINVAL : err; 147 148 addr = (loff_t)pnum * ubi->peb_size + offset; 149 retry: 150 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 151 if (err) { 152 if (err == -EUCLEAN) { 153 /* 154 * -EUCLEAN is reported if there was a bit-flip which 155 * was corrected, so this is harmless. 156 * 157 * We do not report about it here unless debugging is 158 * enabled. A corresponding message will be printed 159 * later, when it is has been scrubbed. 160 */ 161 dbg_msg("fixable bit-flip detected at PEB %d", pnum); 162 ubi_assert(len == read); 163 return UBI_IO_BITFLIPS; 164 } 165 166 if (read != len && retries++ < UBI_IO_RETRIES) { 167 dbg_io("error %d while reading %d bytes from PEB %d:%d," 168 " read only %zd bytes, retry", 169 err, len, pnum, offset, read); 170 yield(); 171 goto retry; 172 } 173 174 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 175 "read %zd bytes", err, len, pnum, offset, read); 176 ubi_dbg_dump_stack(); 177 178 /* 179 * The driver should never return -EBADMSG if it failed to read 180 * all the requested data. But some buggy drivers might do 181 * this, so we change it to -EIO. 182 */ 183 if (read != len && err == -EBADMSG) { 184 ubi_assert(0); 185 err = -EIO; 186 } 187 } else { 188 ubi_assert(len == read); 189 190 if (ubi_dbg_is_bitflip()) { 191 dbg_gen("bit-flip (emulated)"); 192 err = UBI_IO_BITFLIPS; 193 } 194 } 195 196 return err; 197 } 198 199 /** 200 * ubi_io_write - write data to a physical eraseblock. 201 * @ubi: UBI device description object 202 * @buf: buffer with the data to write 203 * @pnum: physical eraseblock number to write to 204 * @offset: offset within the physical eraseblock where to write 205 * @len: how many bytes to write 206 * 207 * This function writes @len bytes of data from buffer @buf to offset @offset 208 * of physical eraseblock @pnum. If all the data were successfully written, 209 * zero is returned. If an error occurred, this function returns a negative 210 * error code. If %-EIO is returned, the physical eraseblock most probably went 211 * bad. 212 * 213 * Note, in case of an error, it is possible that something was still written 214 * to the flash media, but may be some garbage. 215 */ 216 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 217 int len) 218 { 219 int err; 220 size_t written; 221 loff_t addr; 222 223 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 224 225 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 226 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 227 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 228 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 229 230 if (ubi->ro_mode) { 231 ubi_err("read-only mode"); 232 return -EROFS; 233 } 234 235 /* The below has to be compiled out if paranoid checks are disabled */ 236 237 err = paranoid_check_not_bad(ubi, pnum); 238 if (err) 239 return err > 0 ? -EINVAL : err; 240 241 /* The area we are writing to has to contain all 0xFF bytes */ 242 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 243 if (err) 244 return err > 0 ? -EINVAL : err; 245 246 if (offset >= ubi->leb_start) { 247 /* 248 * We write to the data area of the physical eraseblock. Make 249 * sure it has valid EC and VID headers. 250 */ 251 err = paranoid_check_peb_ec_hdr(ubi, pnum); 252 if (err) 253 return err > 0 ? -EINVAL : err; 254 err = paranoid_check_peb_vid_hdr(ubi, pnum); 255 if (err) 256 return err > 0 ? -EINVAL : err; 257 } 258 259 if (ubi_dbg_is_write_failure()) { 260 dbg_err("cannot write %d bytes to PEB %d:%d " 261 "(emulated)", len, pnum, offset); 262 ubi_dbg_dump_stack(); 263 return -EIO; 264 } 265 266 addr = (loff_t)pnum * ubi->peb_size + offset; 267 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); 268 if (err) { 269 ubi_err("error %d while writing %d bytes to PEB %d:%d, written " 270 "%zd bytes", err, len, pnum, offset, written); 271 ubi_dbg_dump_stack(); 272 ubi_dbg_dump_flash(ubi, pnum, offset, len); 273 } else 274 ubi_assert(written == len); 275 276 return err; 277 } 278 279 /** 280 * erase_callback - MTD erasure call-back. 281 * @ei: MTD erase information object. 282 * 283 * Note, even though MTD erase interface is asynchronous, all the current 284 * implementations are synchronous anyway. 285 */ 286 static void erase_callback(struct erase_info *ei) 287 { 288 wake_up_interruptible((wait_queue_head_t *)ei->priv); 289 } 290 291 /** 292 * do_sync_erase - synchronously erase a physical eraseblock. 293 * @ubi: UBI device description object 294 * @pnum: the physical eraseblock number to erase 295 * 296 * This function synchronously erases physical eraseblock @pnum and returns 297 * zero in case of success and a negative error code in case of failure. If 298 * %-EIO is returned, the physical eraseblock most probably went bad. 299 */ 300 static int do_sync_erase(struct ubi_device *ubi, int pnum) 301 { 302 int err, retries = 0; 303 struct erase_info ei; 304 wait_queue_head_t wq; 305 306 dbg_io("erase PEB %d", pnum); 307 308 retry: 309 init_waitqueue_head(&wq); 310 memset(&ei, 0, sizeof(struct erase_info)); 311 312 ei.mtd = ubi->mtd; 313 ei.addr = (loff_t)pnum * ubi->peb_size; 314 ei.len = ubi->peb_size; 315 ei.callback = erase_callback; 316 ei.priv = (unsigned long)&wq; 317 318 err = ubi->mtd->erase(ubi->mtd, &ei); 319 if (err) { 320 if (retries++ < UBI_IO_RETRIES) { 321 dbg_io("error %d while erasing PEB %d, retry", 322 err, pnum); 323 yield(); 324 goto retry; 325 } 326 ubi_err("cannot erase PEB %d, error %d", pnum, err); 327 ubi_dbg_dump_stack(); 328 return err; 329 } 330 331 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 332 ei.state == MTD_ERASE_FAILED); 333 if (err) { 334 ubi_err("interrupted PEB %d erasure", pnum); 335 return -EINTR; 336 } 337 338 if (ei.state == MTD_ERASE_FAILED) { 339 if (retries++ < UBI_IO_RETRIES) { 340 dbg_io("error while erasing PEB %d, retry", pnum); 341 yield(); 342 goto retry; 343 } 344 ubi_err("cannot erase PEB %d", pnum); 345 ubi_dbg_dump_stack(); 346 return -EIO; 347 } 348 349 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); 350 if (err) 351 return err > 0 ? -EINVAL : err; 352 353 if (ubi_dbg_is_erase_failure() && !err) { 354 dbg_err("cannot erase PEB %d (emulated)", pnum); 355 return -EIO; 356 } 357 358 return 0; 359 } 360 361 /** 362 * check_pattern - check if buffer contains only a certain byte pattern. 363 * @buf: buffer to check 364 * @patt: the pattern to check 365 * @size: buffer size in bytes 366 * 367 * This function returns %1 in there are only @patt bytes in @buf, and %0 if 368 * something else was also found. 369 */ 370 static int check_pattern(const void *buf, uint8_t patt, int size) 371 { 372 int i; 373 374 for (i = 0; i < size; i++) 375 if (((const uint8_t *)buf)[i] != patt) 376 return 0; 377 return 1; 378 } 379 380 /* Patterns to write to a physical eraseblock when torturing it */ 381 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 382 383 /** 384 * torture_peb - test a supposedly bad physical eraseblock. 385 * @ubi: UBI device description object 386 * @pnum: the physical eraseblock number to test 387 * 388 * This function returns %-EIO if the physical eraseblock did not pass the 389 * test, a positive number of erase operations done if the test was 390 * successfully passed, and other negative error codes in case of other errors. 391 */ 392 static int torture_peb(struct ubi_device *ubi, int pnum) 393 { 394 int err, i, patt_count; 395 396 ubi_msg("run torture test for PEB %d", pnum); 397 patt_count = ARRAY_SIZE(patterns); 398 ubi_assert(patt_count > 0); 399 400 mutex_lock(&ubi->buf_mutex); 401 for (i = 0; i < patt_count; i++) { 402 err = do_sync_erase(ubi, pnum); 403 if (err) 404 goto out; 405 406 /* Make sure the PEB contains only 0xFF bytes */ 407 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 408 if (err) 409 goto out; 410 411 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); 412 if (err == 0) { 413 ubi_err("erased PEB %d, but a non-0xFF byte found", 414 pnum); 415 err = -EIO; 416 goto out; 417 } 418 419 /* Write a pattern and check it */ 420 memset(ubi->peb_buf1, patterns[i], ubi->peb_size); 421 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 422 if (err) 423 goto out; 424 425 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); 426 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 427 if (err) 428 goto out; 429 430 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size); 431 if (err == 0) { 432 ubi_err("pattern %x checking failed for PEB %d", 433 patterns[i], pnum); 434 err = -EIO; 435 goto out; 436 } 437 } 438 439 err = patt_count; 440 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum); 441 442 out: 443 mutex_unlock(&ubi->buf_mutex); 444 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { 445 /* 446 * If a bit-flip or data integrity error was detected, the test 447 * has not passed because it happened on a freshly erased 448 * physical eraseblock which means something is wrong with it. 449 */ 450 ubi_err("read problems on freshly erased PEB %d, must be bad", 451 pnum); 452 err = -EIO; 453 } 454 return err; 455 } 456 457 /** 458 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 459 * @ubi: UBI device description object 460 * @pnum: physical eraseblock number to prepare 461 * 462 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 463 * algorithm: the PEB is first filled with zeroes, then it is erased. And 464 * filling with zeroes starts from the end of the PEB. This was observed with 465 * Spansion S29GL512N NOR flash. 466 * 467 * This means that in case of a power cut we may end up with intact data at the 468 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 469 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 470 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 471 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 472 * 473 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 474 * magic numbers in order to invalidate them and prevent the failures. Returns 475 * zero in case of success and a negative error code in case of failure. 476 */ 477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 478 { 479 int err, err1; 480 size_t written; 481 loff_t addr; 482 uint32_t data = 0; 483 struct ubi_vid_hdr vid_hdr; 484 485 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset; 486 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); 487 if (!err) { 488 addr -= ubi->vid_hdr_aloffset; 489 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, 490 (void *)&data); 491 if (!err) 492 return 0; 493 } 494 495 /* 496 * We failed to write to the media. This was observed with Spansion 497 * S29GL512N NOR flash. Most probably the eraseblock erasure was 498 * interrupted at a very inappropriate moment, so it became unwritable. 499 * In this case we probably anyway have garbage in this PEB. 500 */ 501 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 502 if (err1 == UBI_IO_BAD_VID_HDR) 503 /* 504 * The VID header is corrupted, so we can safely erase this 505 * PEB and not afraid that it will be treated as a valid PEB in 506 * case of an unclean reboot. 507 */ 508 return 0; 509 510 /* 511 * The PEB contains a valid VID header, but we cannot invalidate it. 512 * Supposedly the flash media or the driver is screwed up, so return an 513 * error. 514 */ 515 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", 516 pnum, err, err1); 517 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); 518 return -EIO; 519 } 520 521 /** 522 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 523 * @ubi: UBI device description object 524 * @pnum: physical eraseblock number to erase 525 * @torture: if this physical eraseblock has to be tortured 526 * 527 * This function synchronously erases physical eraseblock @pnum. If @torture 528 * flag is not zero, the physical eraseblock is checked by means of writing 529 * different patterns to it and reading them back. If the torturing is enabled, 530 * the physical eraseblock is erased more than once. 531 * 532 * This function returns the number of erasures made in case of success, %-EIO 533 * if the erasure failed or the torturing test failed, and other negative error 534 * codes in case of other errors. Note, %-EIO means that the physical 535 * eraseblock is bad. 536 */ 537 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 538 { 539 int err, ret = 0; 540 541 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 542 543 err = paranoid_check_not_bad(ubi, pnum); 544 if (err != 0) 545 return err > 0 ? -EINVAL : err; 546 547 if (ubi->ro_mode) { 548 ubi_err("read-only mode"); 549 return -EROFS; 550 } 551 552 if (ubi->nor_flash) { 553 err = nor_erase_prepare(ubi, pnum); 554 if (err) 555 return err; 556 } 557 558 if (torture) { 559 ret = torture_peb(ubi, pnum); 560 if (ret < 0) 561 return ret; 562 } 563 564 err = do_sync_erase(ubi, pnum); 565 if (err) 566 return err; 567 568 return ret + 1; 569 } 570 571 /** 572 * ubi_io_is_bad - check if a physical eraseblock is bad. 573 * @ubi: UBI device description object 574 * @pnum: the physical eraseblock number to check 575 * 576 * This function returns a positive number if the physical eraseblock is bad, 577 * zero if not, and a negative error code if an error occurred. 578 */ 579 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 580 { 581 struct mtd_info *mtd = ubi->mtd; 582 583 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 584 585 if (ubi->bad_allowed) { 586 int ret; 587 588 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 589 if (ret < 0) 590 ubi_err("error %d while checking if PEB %d is bad", 591 ret, pnum); 592 else if (ret) 593 dbg_io("PEB %d is bad", pnum); 594 return ret; 595 } 596 597 return 0; 598 } 599 600 /** 601 * ubi_io_mark_bad - mark a physical eraseblock as bad. 602 * @ubi: UBI device description object 603 * @pnum: the physical eraseblock number to mark 604 * 605 * This function returns zero in case of success and a negative error code in 606 * case of failure. 607 */ 608 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 609 { 610 int err; 611 struct mtd_info *mtd = ubi->mtd; 612 613 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 614 615 if (ubi->ro_mode) { 616 ubi_err("read-only mode"); 617 return -EROFS; 618 } 619 620 if (!ubi->bad_allowed) 621 return 0; 622 623 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 624 if (err) 625 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 626 return err; 627 } 628 629 /** 630 * validate_ec_hdr - validate an erase counter header. 631 * @ubi: UBI device description object 632 * @ec_hdr: the erase counter header to check 633 * 634 * This function returns zero if the erase counter header is OK, and %1 if 635 * not. 636 */ 637 static int validate_ec_hdr(const struct ubi_device *ubi, 638 const struct ubi_ec_hdr *ec_hdr) 639 { 640 long long ec; 641 int vid_hdr_offset, leb_start; 642 643 ec = be64_to_cpu(ec_hdr->ec); 644 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 645 leb_start = be32_to_cpu(ec_hdr->data_offset); 646 647 if (ec_hdr->version != UBI_VERSION) { 648 ubi_err("node with incompatible UBI version found: " 649 "this UBI version is %d, image version is %d", 650 UBI_VERSION, (int)ec_hdr->version); 651 goto bad; 652 } 653 654 if (vid_hdr_offset != ubi->vid_hdr_offset) { 655 ubi_err("bad VID header offset %d, expected %d", 656 vid_hdr_offset, ubi->vid_hdr_offset); 657 goto bad; 658 } 659 660 if (leb_start != ubi->leb_start) { 661 ubi_err("bad data offset %d, expected %d", 662 leb_start, ubi->leb_start); 663 goto bad; 664 } 665 666 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 667 ubi_err("bad erase counter %lld", ec); 668 goto bad; 669 } 670 671 return 0; 672 673 bad: 674 ubi_err("bad EC header"); 675 ubi_dbg_dump_ec_hdr(ec_hdr); 676 ubi_dbg_dump_stack(); 677 return 1; 678 } 679 680 /** 681 * ubi_io_read_ec_hdr - read and check an erase counter header. 682 * @ubi: UBI device description object 683 * @pnum: physical eraseblock to read from 684 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 685 * header 686 * @verbose: be verbose if the header is corrupted or was not found 687 * 688 * This function reads erase counter header from physical eraseblock @pnum and 689 * stores it in @ec_hdr. This function also checks CRC checksum of the read 690 * erase counter header. The following codes may be returned: 691 * 692 * o %0 if the CRC checksum is correct and the header was successfully read; 693 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 694 * and corrected by the flash driver; this is harmless but may indicate that 695 * this eraseblock may become bad soon (but may be not); 696 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error); 697 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty; 698 * o a negative error code in case of failure. 699 */ 700 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 701 struct ubi_ec_hdr *ec_hdr, int verbose) 702 { 703 int err, read_err = 0; 704 uint32_t crc, magic, hdr_crc; 705 706 dbg_io("read EC header from PEB %d", pnum); 707 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 708 709 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 710 if (err) { 711 if (err != UBI_IO_BITFLIPS && err != -EBADMSG) 712 return err; 713 714 /* 715 * We read all the data, but either a correctable bit-flip 716 * occurred, or MTD reported about some data integrity error, 717 * like an ECC error in case of NAND. The former is harmless, 718 * the later may mean that the read data is corrupted. But we 719 * have a CRC check-sum and we will detect this. If the EC 720 * header is still OK, we just report this as there was a 721 * bit-flip. 722 */ 723 read_err = err; 724 } 725 726 magic = be32_to_cpu(ec_hdr->magic); 727 if (magic != UBI_EC_HDR_MAGIC) { 728 /* 729 * The magic field is wrong. Let's check if we have read all 730 * 0xFF. If yes, this physical eraseblock is assumed to be 731 * empty. 732 * 733 * But if there was a read error, we do not test it for all 734 * 0xFFs. Even if it does contain all 0xFFs, this error 735 * indicates that something is still wrong with this physical 736 * eraseblock and we anyway cannot treat it as empty. 737 */ 738 if (read_err != -EBADMSG && 739 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 740 /* The physical eraseblock is supposedly empty */ 741 if (verbose) 742 ubi_warn("no EC header found at PEB %d, " 743 "only 0xFF bytes", pnum); 744 else if (UBI_IO_DEBUG) 745 dbg_msg("no EC header found at PEB %d, " 746 "only 0xFF bytes", pnum); 747 return UBI_IO_PEB_EMPTY; 748 } 749 750 /* 751 * This is not a valid erase counter header, and these are not 752 * 0xFF bytes. Report that the header is corrupted. 753 */ 754 if (verbose) { 755 ubi_warn("bad magic number at PEB %d: %08x instead of " 756 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 757 ubi_dbg_dump_ec_hdr(ec_hdr); 758 } else if (UBI_IO_DEBUG) 759 dbg_msg("bad magic number at PEB %d: %08x instead of " 760 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 761 return UBI_IO_BAD_EC_HDR; 762 } 763 764 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 765 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 766 767 if (hdr_crc != crc) { 768 if (verbose) { 769 ubi_warn("bad EC header CRC at PEB %d, calculated " 770 "%#08x, read %#08x", pnum, crc, hdr_crc); 771 ubi_dbg_dump_ec_hdr(ec_hdr); 772 } else if (UBI_IO_DEBUG) 773 dbg_msg("bad EC header CRC at PEB %d, calculated " 774 "%#08x, read %#08x", pnum, crc, hdr_crc); 775 return UBI_IO_BAD_EC_HDR; 776 } 777 778 /* And of course validate what has just been read from the media */ 779 err = validate_ec_hdr(ubi, ec_hdr); 780 if (err) { 781 ubi_err("validation failed for PEB %d", pnum); 782 return -EINVAL; 783 } 784 785 return read_err ? UBI_IO_BITFLIPS : 0; 786 } 787 788 /** 789 * ubi_io_write_ec_hdr - write an erase counter header. 790 * @ubi: UBI device description object 791 * @pnum: physical eraseblock to write to 792 * @ec_hdr: the erase counter header to write 793 * 794 * This function writes erase counter header described by @ec_hdr to physical 795 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 796 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 797 * field. 798 * 799 * This function returns zero in case of success and a negative error code in 800 * case of failure. If %-EIO is returned, the physical eraseblock most probably 801 * went bad. 802 */ 803 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 804 struct ubi_ec_hdr *ec_hdr) 805 { 806 int err; 807 uint32_t crc; 808 809 dbg_io("write EC header to PEB %d", pnum); 810 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 811 812 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 813 ec_hdr->version = UBI_VERSION; 814 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 815 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 816 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 817 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 818 ec_hdr->hdr_crc = cpu_to_be32(crc); 819 820 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 821 if (err) 822 return -EINVAL; 823 824 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 825 return err; 826 } 827 828 /** 829 * validate_vid_hdr - validate a volume identifier header. 830 * @ubi: UBI device description object 831 * @vid_hdr: the volume identifier header to check 832 * 833 * This function checks that data stored in the volume identifier header 834 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 835 */ 836 static int validate_vid_hdr(const struct ubi_device *ubi, 837 const struct ubi_vid_hdr *vid_hdr) 838 { 839 int vol_type = vid_hdr->vol_type; 840 int copy_flag = vid_hdr->copy_flag; 841 int vol_id = be32_to_cpu(vid_hdr->vol_id); 842 int lnum = be32_to_cpu(vid_hdr->lnum); 843 int compat = vid_hdr->compat; 844 int data_size = be32_to_cpu(vid_hdr->data_size); 845 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 846 int data_pad = be32_to_cpu(vid_hdr->data_pad); 847 int data_crc = be32_to_cpu(vid_hdr->data_crc); 848 int usable_leb_size = ubi->leb_size - data_pad; 849 850 if (copy_flag != 0 && copy_flag != 1) { 851 dbg_err("bad copy_flag"); 852 goto bad; 853 } 854 855 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 856 data_pad < 0) { 857 dbg_err("negative values"); 858 goto bad; 859 } 860 861 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 862 dbg_err("bad vol_id"); 863 goto bad; 864 } 865 866 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 867 dbg_err("bad compat"); 868 goto bad; 869 } 870 871 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 872 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 873 compat != UBI_COMPAT_REJECT) { 874 dbg_err("bad compat"); 875 goto bad; 876 } 877 878 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 879 dbg_err("bad vol_type"); 880 goto bad; 881 } 882 883 if (data_pad >= ubi->leb_size / 2) { 884 dbg_err("bad data_pad"); 885 goto bad; 886 } 887 888 if (vol_type == UBI_VID_STATIC) { 889 /* 890 * Although from high-level point of view static volumes may 891 * contain zero bytes of data, but no VID headers can contain 892 * zero at these fields, because they empty volumes do not have 893 * mapped logical eraseblocks. 894 */ 895 if (used_ebs == 0) { 896 dbg_err("zero used_ebs"); 897 goto bad; 898 } 899 if (data_size == 0) { 900 dbg_err("zero data_size"); 901 goto bad; 902 } 903 if (lnum < used_ebs - 1) { 904 if (data_size != usable_leb_size) { 905 dbg_err("bad data_size"); 906 goto bad; 907 } 908 } else if (lnum == used_ebs - 1) { 909 if (data_size == 0) { 910 dbg_err("bad data_size at last LEB"); 911 goto bad; 912 } 913 } else { 914 dbg_err("too high lnum"); 915 goto bad; 916 } 917 } else { 918 if (copy_flag == 0) { 919 if (data_crc != 0) { 920 dbg_err("non-zero data CRC"); 921 goto bad; 922 } 923 if (data_size != 0) { 924 dbg_err("non-zero data_size"); 925 goto bad; 926 } 927 } else { 928 if (data_size == 0) { 929 dbg_err("zero data_size of copy"); 930 goto bad; 931 } 932 } 933 if (used_ebs != 0) { 934 dbg_err("bad used_ebs"); 935 goto bad; 936 } 937 } 938 939 return 0; 940 941 bad: 942 ubi_err("bad VID header"); 943 ubi_dbg_dump_vid_hdr(vid_hdr); 944 ubi_dbg_dump_stack(); 945 return 1; 946 } 947 948 /** 949 * ubi_io_read_vid_hdr - read and check a volume identifier header. 950 * @ubi: UBI device description object 951 * @pnum: physical eraseblock number to read from 952 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 953 * identifier header 954 * @verbose: be verbose if the header is corrupted or wasn't found 955 * 956 * This function reads the volume identifier header from physical eraseblock 957 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 958 * volume identifier header. The following codes may be returned: 959 * 960 * o %0 if the CRC checksum is correct and the header was successfully read; 961 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 962 * and corrected by the flash driver; this is harmless but may indicate that 963 * this eraseblock may become bad soon; 964 * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC 965 * error detected); 966 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID 967 * header there); 968 * o a negative error code in case of failure. 969 */ 970 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 971 struct ubi_vid_hdr *vid_hdr, int verbose) 972 { 973 int err, read_err = 0; 974 uint32_t crc, magic, hdr_crc; 975 void *p; 976 977 dbg_io("read VID header from PEB %d", pnum); 978 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 979 980 p = (char *)vid_hdr - ubi->vid_hdr_shift; 981 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 982 ubi->vid_hdr_alsize); 983 if (err) { 984 if (err != UBI_IO_BITFLIPS && err != -EBADMSG) 985 return err; 986 987 /* 988 * We read all the data, but either a correctable bit-flip 989 * occurred, or MTD reported about some data integrity error, 990 * like an ECC error in case of NAND. The former is harmless, 991 * the later may mean the read data is corrupted. But we have a 992 * CRC check-sum and we will identify this. If the VID header is 993 * still OK, we just report this as there was a bit-flip. 994 */ 995 read_err = err; 996 } 997 998 magic = be32_to_cpu(vid_hdr->magic); 999 if (magic != UBI_VID_HDR_MAGIC) { 1000 /* 1001 * If we have read all 0xFF bytes, the VID header probably does 1002 * not exist and the physical eraseblock is assumed to be free. 1003 * 1004 * But if there was a read error, we do not test the data for 1005 * 0xFFs. Even if it does contain all 0xFFs, this error 1006 * indicates that something is still wrong with this physical 1007 * eraseblock and it cannot be regarded as free. 1008 */ 1009 if (read_err != -EBADMSG && 1010 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1011 /* The physical eraseblock is supposedly free */ 1012 if (verbose) 1013 ubi_warn("no VID header found at PEB %d, " 1014 "only 0xFF bytes", pnum); 1015 else if (UBI_IO_DEBUG) 1016 dbg_msg("no VID header found at PEB %d, " 1017 "only 0xFF bytes", pnum); 1018 return UBI_IO_PEB_FREE; 1019 } 1020 1021 /* 1022 * This is not a valid VID header, and these are not 0xFF 1023 * bytes. Report that the header is corrupted. 1024 */ 1025 if (verbose) { 1026 ubi_warn("bad magic number at PEB %d: %08x instead of " 1027 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1028 ubi_dbg_dump_vid_hdr(vid_hdr); 1029 } else if (UBI_IO_DEBUG) 1030 dbg_msg("bad magic number at PEB %d: %08x instead of " 1031 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1032 return UBI_IO_BAD_VID_HDR; 1033 } 1034 1035 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1036 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1037 1038 if (hdr_crc != crc) { 1039 if (verbose) { 1040 ubi_warn("bad CRC at PEB %d, calculated %#08x, " 1041 "read %#08x", pnum, crc, hdr_crc); 1042 ubi_dbg_dump_vid_hdr(vid_hdr); 1043 } else if (UBI_IO_DEBUG) 1044 dbg_msg("bad CRC at PEB %d, calculated %#08x, " 1045 "read %#08x", pnum, crc, hdr_crc); 1046 return UBI_IO_BAD_VID_HDR; 1047 } 1048 1049 /* Validate the VID header that we have just read */ 1050 err = validate_vid_hdr(ubi, vid_hdr); 1051 if (err) { 1052 ubi_err("validation failed for PEB %d", pnum); 1053 return -EINVAL; 1054 } 1055 1056 return read_err ? UBI_IO_BITFLIPS : 0; 1057 } 1058 1059 /** 1060 * ubi_io_write_vid_hdr - write a volume identifier header. 1061 * @ubi: UBI device description object 1062 * @pnum: the physical eraseblock number to write to 1063 * @vid_hdr: the volume identifier header to write 1064 * 1065 * This function writes the volume identifier header described by @vid_hdr to 1066 * physical eraseblock @pnum. This function automatically fills the 1067 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1068 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1069 * 1070 * This function returns zero in case of success and a negative error code in 1071 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1072 * bad. 1073 */ 1074 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1075 struct ubi_vid_hdr *vid_hdr) 1076 { 1077 int err; 1078 uint32_t crc; 1079 void *p; 1080 1081 dbg_io("write VID header to PEB %d", pnum); 1082 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1083 1084 err = paranoid_check_peb_ec_hdr(ubi, pnum); 1085 if (err) 1086 return err > 0 ? -EINVAL : err; 1087 1088 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1089 vid_hdr->version = UBI_VERSION; 1090 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1091 vid_hdr->hdr_crc = cpu_to_be32(crc); 1092 1093 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1094 if (err) 1095 return -EINVAL; 1096 1097 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1098 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1099 ubi->vid_hdr_alsize); 1100 return err; 1101 } 1102 1103 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1104 1105 /** 1106 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. 1107 * @ubi: UBI device description object 1108 * @pnum: physical eraseblock number to check 1109 * 1110 * This function returns zero if the physical eraseblock is good, a positive 1111 * number if it is bad and a negative error code if an error occurred. 1112 */ 1113 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) 1114 { 1115 int err; 1116 1117 err = ubi_io_is_bad(ubi, pnum); 1118 if (!err) 1119 return err; 1120 1121 ubi_err("paranoid check failed for PEB %d", pnum); 1122 ubi_dbg_dump_stack(); 1123 return err; 1124 } 1125 1126 /** 1127 * paranoid_check_ec_hdr - check if an erase counter header is all right. 1128 * @ubi: UBI device description object 1129 * @pnum: physical eraseblock number the erase counter header belongs to 1130 * @ec_hdr: the erase counter header to check 1131 * 1132 * This function returns zero if the erase counter header contains valid 1133 * values, and %1 if not. 1134 */ 1135 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1136 const struct ubi_ec_hdr *ec_hdr) 1137 { 1138 int err; 1139 uint32_t magic; 1140 1141 magic = be32_to_cpu(ec_hdr->magic); 1142 if (magic != UBI_EC_HDR_MAGIC) { 1143 ubi_err("bad magic %#08x, must be %#08x", 1144 magic, UBI_EC_HDR_MAGIC); 1145 goto fail; 1146 } 1147 1148 err = validate_ec_hdr(ubi, ec_hdr); 1149 if (err) { 1150 ubi_err("paranoid check failed for PEB %d", pnum); 1151 goto fail; 1152 } 1153 1154 return 0; 1155 1156 fail: 1157 ubi_dbg_dump_ec_hdr(ec_hdr); 1158 ubi_dbg_dump_stack(); 1159 return 1; 1160 } 1161 1162 /** 1163 * paranoid_check_peb_ec_hdr - check erase counter header. 1164 * @ubi: UBI device description object 1165 * @pnum: the physical eraseblock number to check 1166 * 1167 * This function returns zero if the erase counter header is all right, %1 if 1168 * not, and a negative error code if an error occurred. 1169 */ 1170 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1171 { 1172 int err; 1173 uint32_t crc, hdr_crc; 1174 struct ubi_ec_hdr *ec_hdr; 1175 1176 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1177 if (!ec_hdr) 1178 return -ENOMEM; 1179 1180 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1181 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1182 goto exit; 1183 1184 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1185 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1186 if (hdr_crc != crc) { 1187 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1188 ubi_err("paranoid check failed for PEB %d", pnum); 1189 ubi_dbg_dump_ec_hdr(ec_hdr); 1190 ubi_dbg_dump_stack(); 1191 err = 1; 1192 goto exit; 1193 } 1194 1195 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 1196 1197 exit: 1198 kfree(ec_hdr); 1199 return err; 1200 } 1201 1202 /** 1203 * paranoid_check_vid_hdr - check that a volume identifier header is all right. 1204 * @ubi: UBI device description object 1205 * @pnum: physical eraseblock number the volume identifier header belongs to 1206 * @vid_hdr: the volume identifier header to check 1207 * 1208 * This function returns zero if the volume identifier header is all right, and 1209 * %1 if not. 1210 */ 1211 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1212 const struct ubi_vid_hdr *vid_hdr) 1213 { 1214 int err; 1215 uint32_t magic; 1216 1217 magic = be32_to_cpu(vid_hdr->magic); 1218 if (magic != UBI_VID_HDR_MAGIC) { 1219 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1220 magic, pnum, UBI_VID_HDR_MAGIC); 1221 goto fail; 1222 } 1223 1224 err = validate_vid_hdr(ubi, vid_hdr); 1225 if (err) { 1226 ubi_err("paranoid check failed for PEB %d", pnum); 1227 goto fail; 1228 } 1229 1230 return err; 1231 1232 fail: 1233 ubi_err("paranoid check failed for PEB %d", pnum); 1234 ubi_dbg_dump_vid_hdr(vid_hdr); 1235 ubi_dbg_dump_stack(); 1236 return 1; 1237 1238 } 1239 1240 /** 1241 * paranoid_check_peb_vid_hdr - check volume identifier header. 1242 * @ubi: UBI device description object 1243 * @pnum: the physical eraseblock number to check 1244 * 1245 * This function returns zero if the volume identifier header is all right, 1246 * %1 if not, and a negative error code if an error occurred. 1247 */ 1248 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1249 { 1250 int err; 1251 uint32_t crc, hdr_crc; 1252 struct ubi_vid_hdr *vid_hdr; 1253 void *p; 1254 1255 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1256 if (!vid_hdr) 1257 return -ENOMEM; 1258 1259 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1260 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1261 ubi->vid_hdr_alsize); 1262 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1263 goto exit; 1264 1265 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1266 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1267 if (hdr_crc != crc) { 1268 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " 1269 "read %#08x", pnum, crc, hdr_crc); 1270 ubi_err("paranoid check failed for PEB %d", pnum); 1271 ubi_dbg_dump_vid_hdr(vid_hdr); 1272 ubi_dbg_dump_stack(); 1273 err = 1; 1274 goto exit; 1275 } 1276 1277 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1278 1279 exit: 1280 ubi_free_vid_hdr(ubi, vid_hdr); 1281 return err; 1282 } 1283 1284 /** 1285 * ubi_dbg_check_all_ff - check that a region of flash is empty. 1286 * @ubi: UBI device description object 1287 * @pnum: the physical eraseblock number to check 1288 * @offset: the starting offset within the physical eraseblock to check 1289 * @len: the length of the region to check 1290 * 1291 * This function returns zero if only 0xFF bytes are present at offset 1292 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error 1293 * code if an error occurred. 1294 */ 1295 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1296 { 1297 size_t read; 1298 int err; 1299 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1300 1301 mutex_lock(&ubi->dbg_buf_mutex); 1302 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf); 1303 if (err && err != -EUCLEAN) { 1304 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 1305 "read %zd bytes", err, len, pnum, offset, read); 1306 goto error; 1307 } 1308 1309 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len); 1310 if (err == 0) { 1311 ubi_err("flash region at PEB %d:%d, length %d does not " 1312 "contain all 0xFF bytes", pnum, offset, len); 1313 goto fail; 1314 } 1315 mutex_unlock(&ubi->dbg_buf_mutex); 1316 1317 return 0; 1318 1319 fail: 1320 ubi_err("paranoid check failed for PEB %d", pnum); 1321 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1322 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1323 ubi->dbg_peb_buf, len, 1); 1324 err = 1; 1325 error: 1326 ubi_dbg_dump_stack(); 1327 mutex_unlock(&ubi->dbg_buf_mutex); 1328 return err; 1329 } 1330 1331 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1332