xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision b627b4ed)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69  * prefer to use sub-pages only for EV and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
92 
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 				 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 				  const struct ubi_vid_hdr *vid_hdr);
101 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
102 				 int len);
103 #else
104 #define paranoid_check_not_bad(ubi, pnum) 0
105 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
106 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
107 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
110 #endif
111 
112 /**
113  * ubi_io_read - read data from a physical eraseblock.
114  * @ubi: UBI device description object
115  * @buf: buffer where to store the read data
116  * @pnum: physical eraseblock number to read from
117  * @offset: offset within the physical eraseblock from where to read
118  * @len: how many bytes to read
119  *
120  * This function reads data from offset @offset of physical eraseblock @pnum
121  * and stores the read data in the @buf buffer. The following return codes are
122  * possible:
123  *
124  * o %0 if all the requested data were successfully read;
125  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126  *   correctable bit-flips were detected; this is harmless but may indicate
127  *   that this eraseblock may become bad soon (but do not have to);
128  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129  *   example it can be an ECC error in case of NAND; this most probably means
130  *   that the data is corrupted;
131  * o %-EIO if some I/O error occurred;
132  * o other negative error codes in case of other errors.
133  */
134 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
135 		int len)
136 {
137 	int err, retries = 0;
138 	size_t read;
139 	loff_t addr;
140 
141 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
142 
143 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
144 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
145 	ubi_assert(len > 0);
146 
147 	err = paranoid_check_not_bad(ubi, pnum);
148 	if (err)
149 		return err > 0 ? -EINVAL : err;
150 
151 	addr = (loff_t)pnum * ubi->peb_size + offset;
152 retry:
153 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
154 	if (err) {
155 		if (err == -EUCLEAN) {
156 			/*
157 			 * -EUCLEAN is reported if there was a bit-flip which
158 			 * was corrected, so this is harmless.
159 			 *
160 			 * We do not report about it here unless debugging is
161 			 * enabled. A corresponding message will be printed
162 			 * later, when it is has been scrubbed.
163 			 */
164 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
165 			ubi_assert(len == read);
166 			return UBI_IO_BITFLIPS;
167 		}
168 
169 		if (read != len && retries++ < UBI_IO_RETRIES) {
170 			dbg_io("error %d while reading %d bytes from PEB %d:%d,"
171 			       " read only %zd bytes, retry",
172 			       err, len, pnum, offset, read);
173 			yield();
174 			goto retry;
175 		}
176 
177 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
178 			"read %zd bytes", err, len, pnum, offset, read);
179 		ubi_dbg_dump_stack();
180 
181 		/*
182 		 * The driver should never return -EBADMSG if it failed to read
183 		 * all the requested data. But some buggy drivers might do
184 		 * this, so we change it to -EIO.
185 		 */
186 		if (read != len && err == -EBADMSG) {
187 			ubi_assert(0);
188 			err = -EIO;
189 		}
190 	} else {
191 		ubi_assert(len == read);
192 
193 		if (ubi_dbg_is_bitflip()) {
194 			dbg_gen("bit-flip (emulated)");
195 			err = UBI_IO_BITFLIPS;
196 		}
197 	}
198 
199 	return err;
200 }
201 
202 /**
203  * ubi_io_write - write data to a physical eraseblock.
204  * @ubi: UBI device description object
205  * @buf: buffer with the data to write
206  * @pnum: physical eraseblock number to write to
207  * @offset: offset within the physical eraseblock where to write
208  * @len: how many bytes to write
209  *
210  * This function writes @len bytes of data from buffer @buf to offset @offset
211  * of physical eraseblock @pnum. If all the data were successfully written,
212  * zero is returned. If an error occurred, this function returns a negative
213  * error code. If %-EIO is returned, the physical eraseblock most probably went
214  * bad.
215  *
216  * Note, in case of an error, it is possible that something was still written
217  * to the flash media, but may be some garbage.
218  */
219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 		 int len)
221 {
222 	int err;
223 	size_t written;
224 	loff_t addr;
225 
226 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227 
228 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232 
233 	if (ubi->ro_mode) {
234 		ubi_err("read-only mode");
235 		return -EROFS;
236 	}
237 
238 	/* The below has to be compiled out if paranoid checks are disabled */
239 
240 	err = paranoid_check_not_bad(ubi, pnum);
241 	if (err)
242 		return err > 0 ? -EINVAL : err;
243 
244 	/* The area we are writing to has to contain all 0xFF bytes */
245 	err = paranoid_check_all_ff(ubi, pnum, offset, len);
246 	if (err)
247 		return err > 0 ? -EINVAL : err;
248 
249 	if (offset >= ubi->leb_start) {
250 		/*
251 		 * We write to the data area of the physical eraseblock. Make
252 		 * sure it has valid EC and VID headers.
253 		 */
254 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 		if (err)
256 			return err > 0 ? -EINVAL : err;
257 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 		if (err)
259 			return err > 0 ? -EINVAL : err;
260 	}
261 
262 	if (ubi_dbg_is_write_failure()) {
263 		dbg_err("cannot write %d bytes to PEB %d:%d "
264 			"(emulated)", len, pnum, offset);
265 		ubi_dbg_dump_stack();
266 		return -EIO;
267 	}
268 
269 	addr = (loff_t)pnum * ubi->peb_size + offset;
270 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 	if (err) {
272 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
273 			" %zd bytes", err, len, pnum, offset, written);
274 		ubi_dbg_dump_stack();
275 	} else
276 		ubi_assert(written == len);
277 
278 	return err;
279 }
280 
281 /**
282  * erase_callback - MTD erasure call-back.
283  * @ei: MTD erase information object.
284  *
285  * Note, even though MTD erase interface is asynchronous, all the current
286  * implementations are synchronous anyway.
287  */
288 static void erase_callback(struct erase_info *ei)
289 {
290 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
291 }
292 
293 /**
294  * do_sync_erase - synchronously erase a physical eraseblock.
295  * @ubi: UBI device description object
296  * @pnum: the physical eraseblock number to erase
297  *
298  * This function synchronously erases physical eraseblock @pnum and returns
299  * zero in case of success and a negative error code in case of failure. If
300  * %-EIO is returned, the physical eraseblock most probably went bad.
301  */
302 static int do_sync_erase(struct ubi_device *ubi, int pnum)
303 {
304 	int err, retries = 0;
305 	struct erase_info ei;
306 	wait_queue_head_t wq;
307 
308 	dbg_io("erase PEB %d", pnum);
309 
310 retry:
311 	init_waitqueue_head(&wq);
312 	memset(&ei, 0, sizeof(struct erase_info));
313 
314 	ei.mtd      = ubi->mtd;
315 	ei.addr     = (loff_t)pnum * ubi->peb_size;
316 	ei.len      = ubi->peb_size;
317 	ei.callback = erase_callback;
318 	ei.priv     = (unsigned long)&wq;
319 
320 	err = ubi->mtd->erase(ubi->mtd, &ei);
321 	if (err) {
322 		if (retries++ < UBI_IO_RETRIES) {
323 			dbg_io("error %d while erasing PEB %d, retry",
324 			       err, pnum);
325 			yield();
326 			goto retry;
327 		}
328 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
329 		ubi_dbg_dump_stack();
330 		return err;
331 	}
332 
333 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
334 					   ei.state == MTD_ERASE_FAILED);
335 	if (err) {
336 		ubi_err("interrupted PEB %d erasure", pnum);
337 		return -EINTR;
338 	}
339 
340 	if (ei.state == MTD_ERASE_FAILED) {
341 		if (retries++ < UBI_IO_RETRIES) {
342 			dbg_io("error while erasing PEB %d, retry", pnum);
343 			yield();
344 			goto retry;
345 		}
346 		ubi_err("cannot erase PEB %d", pnum);
347 		ubi_dbg_dump_stack();
348 		return -EIO;
349 	}
350 
351 	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
352 	if (err)
353 		return err > 0 ? -EINVAL : err;
354 
355 	if (ubi_dbg_is_erase_failure() && !err) {
356 		dbg_err("cannot erase PEB %d (emulated)", pnum);
357 		return -EIO;
358 	}
359 
360 	return 0;
361 }
362 
363 /**
364  * check_pattern - check if buffer contains only a certain byte pattern.
365  * @buf: buffer to check
366  * @patt: the pattern to check
367  * @size: buffer size in bytes
368  *
369  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
370  * something else was also found.
371  */
372 static int check_pattern(const void *buf, uint8_t patt, int size)
373 {
374 	int i;
375 
376 	for (i = 0; i < size; i++)
377 		if (((const uint8_t *)buf)[i] != patt)
378 			return 0;
379 	return 1;
380 }
381 
382 /* Patterns to write to a physical eraseblock when torturing it */
383 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
384 
385 /**
386  * torture_peb - test a supposedly bad physical eraseblock.
387  * @ubi: UBI device description object
388  * @pnum: the physical eraseblock number to test
389  *
390  * This function returns %-EIO if the physical eraseblock did not pass the
391  * test, a positive number of erase operations done if the test was
392  * successfully passed, and other negative error codes in case of other errors.
393  */
394 static int torture_peb(struct ubi_device *ubi, int pnum)
395 {
396 	int err, i, patt_count;
397 
398 	ubi_msg("run torture test for PEB %d", pnum);
399 	patt_count = ARRAY_SIZE(patterns);
400 	ubi_assert(patt_count > 0);
401 
402 	mutex_lock(&ubi->buf_mutex);
403 	for (i = 0; i < patt_count; i++) {
404 		err = do_sync_erase(ubi, pnum);
405 		if (err)
406 			goto out;
407 
408 		/* Make sure the PEB contains only 0xFF bytes */
409 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
410 		if (err)
411 			goto out;
412 
413 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
414 		if (err == 0) {
415 			ubi_err("erased PEB %d, but a non-0xFF byte found",
416 				pnum);
417 			err = -EIO;
418 			goto out;
419 		}
420 
421 		/* Write a pattern and check it */
422 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
423 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
424 		if (err)
425 			goto out;
426 
427 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
428 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
429 		if (err)
430 			goto out;
431 
432 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
433 		if (err == 0) {
434 			ubi_err("pattern %x checking failed for PEB %d",
435 				patterns[i], pnum);
436 			err = -EIO;
437 			goto out;
438 		}
439 	}
440 
441 	err = patt_count;
442 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
443 
444 out:
445 	mutex_unlock(&ubi->buf_mutex);
446 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
447 		/*
448 		 * If a bit-flip or data integrity error was detected, the test
449 		 * has not passed because it happened on a freshly erased
450 		 * physical eraseblock which means something is wrong with it.
451 		 */
452 		ubi_err("read problems on freshly erased PEB %d, must be bad",
453 			pnum);
454 		err = -EIO;
455 	}
456 	return err;
457 }
458 
459 /**
460  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
461  * @ubi: UBI device description object
462  * @pnum: physical eraseblock number to erase
463  * @torture: if this physical eraseblock has to be tortured
464  *
465  * This function synchronously erases physical eraseblock @pnum. If @torture
466  * flag is not zero, the physical eraseblock is checked by means of writing
467  * different patterns to it and reading them back. If the torturing is enabled,
468  * the physical eraseblock is erased more than once.
469  *
470  * This function returns the number of erasures made in case of success, %-EIO
471  * if the erasure failed or the torturing test failed, and other negative error
472  * codes in case of other errors. Note, %-EIO means that the physical
473  * eraseblock is bad.
474  */
475 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
476 {
477 	int err, ret = 0;
478 
479 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
480 
481 	err = paranoid_check_not_bad(ubi, pnum);
482 	if (err != 0)
483 		return err > 0 ? -EINVAL : err;
484 
485 	if (ubi->ro_mode) {
486 		ubi_err("read-only mode");
487 		return -EROFS;
488 	}
489 
490 	if (torture) {
491 		ret = torture_peb(ubi, pnum);
492 		if (ret < 0)
493 			return ret;
494 	}
495 
496 	err = do_sync_erase(ubi, pnum);
497 	if (err)
498 		return err;
499 
500 	return ret + 1;
501 }
502 
503 /**
504  * ubi_io_is_bad - check if a physical eraseblock is bad.
505  * @ubi: UBI device description object
506  * @pnum: the physical eraseblock number to check
507  *
508  * This function returns a positive number if the physical eraseblock is bad,
509  * zero if not, and a negative error code if an error occurred.
510  */
511 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
512 {
513 	struct mtd_info *mtd = ubi->mtd;
514 
515 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
516 
517 	if (ubi->bad_allowed) {
518 		int ret;
519 
520 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
521 		if (ret < 0)
522 			ubi_err("error %d while checking if PEB %d is bad",
523 				ret, pnum);
524 		else if (ret)
525 			dbg_io("PEB %d is bad", pnum);
526 		return ret;
527 	}
528 
529 	return 0;
530 }
531 
532 /**
533  * ubi_io_mark_bad - mark a physical eraseblock as bad.
534  * @ubi: UBI device description object
535  * @pnum: the physical eraseblock number to mark
536  *
537  * This function returns zero in case of success and a negative error code in
538  * case of failure.
539  */
540 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
541 {
542 	int err;
543 	struct mtd_info *mtd = ubi->mtd;
544 
545 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
546 
547 	if (ubi->ro_mode) {
548 		ubi_err("read-only mode");
549 		return -EROFS;
550 	}
551 
552 	if (!ubi->bad_allowed)
553 		return 0;
554 
555 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
556 	if (err)
557 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
558 	return err;
559 }
560 
561 /**
562  * validate_ec_hdr - validate an erase counter header.
563  * @ubi: UBI device description object
564  * @ec_hdr: the erase counter header to check
565  *
566  * This function returns zero if the erase counter header is OK, and %1 if
567  * not.
568  */
569 static int validate_ec_hdr(const struct ubi_device *ubi,
570 			   const struct ubi_ec_hdr *ec_hdr)
571 {
572 	long long ec;
573 	int vid_hdr_offset, leb_start;
574 
575 	ec = be64_to_cpu(ec_hdr->ec);
576 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
577 	leb_start = be32_to_cpu(ec_hdr->data_offset);
578 
579 	if (ec_hdr->version != UBI_VERSION) {
580 		ubi_err("node with incompatible UBI version found: "
581 			"this UBI version is %d, image version is %d",
582 			UBI_VERSION, (int)ec_hdr->version);
583 		goto bad;
584 	}
585 
586 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
587 		ubi_err("bad VID header offset %d, expected %d",
588 			vid_hdr_offset, ubi->vid_hdr_offset);
589 		goto bad;
590 	}
591 
592 	if (leb_start != ubi->leb_start) {
593 		ubi_err("bad data offset %d, expected %d",
594 			leb_start, ubi->leb_start);
595 		goto bad;
596 	}
597 
598 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
599 		ubi_err("bad erase counter %lld", ec);
600 		goto bad;
601 	}
602 
603 	return 0;
604 
605 bad:
606 	ubi_err("bad EC header");
607 	ubi_dbg_dump_ec_hdr(ec_hdr);
608 	ubi_dbg_dump_stack();
609 	return 1;
610 }
611 
612 /**
613  * ubi_io_read_ec_hdr - read and check an erase counter header.
614  * @ubi: UBI device description object
615  * @pnum: physical eraseblock to read from
616  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
617  * header
618  * @verbose: be verbose if the header is corrupted or was not found
619  *
620  * This function reads erase counter header from physical eraseblock @pnum and
621  * stores it in @ec_hdr. This function also checks CRC checksum of the read
622  * erase counter header. The following codes may be returned:
623  *
624  * o %0 if the CRC checksum is correct and the header was successfully read;
625  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
626  *   and corrected by the flash driver; this is harmless but may indicate that
627  *   this eraseblock may become bad soon (but may be not);
628  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
629  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
630  * o a negative error code in case of failure.
631  */
632 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
633 		       struct ubi_ec_hdr *ec_hdr, int verbose)
634 {
635 	int err, read_err = 0;
636 	uint32_t crc, magic, hdr_crc;
637 
638 	dbg_io("read EC header from PEB %d", pnum);
639 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
640 
641 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
642 	if (err) {
643 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
644 			return err;
645 
646 		/*
647 		 * We read all the data, but either a correctable bit-flip
648 		 * occurred, or MTD reported about some data integrity error,
649 		 * like an ECC error in case of NAND. The former is harmless,
650 		 * the later may mean that the read data is corrupted. But we
651 		 * have a CRC check-sum and we will detect this. If the EC
652 		 * header is still OK, we just report this as there was a
653 		 * bit-flip.
654 		 */
655 		read_err = err;
656 	}
657 
658 	magic = be32_to_cpu(ec_hdr->magic);
659 	if (magic != UBI_EC_HDR_MAGIC) {
660 		/*
661 		 * The magic field is wrong. Let's check if we have read all
662 		 * 0xFF. If yes, this physical eraseblock is assumed to be
663 		 * empty.
664 		 *
665 		 * But if there was a read error, we do not test it for all
666 		 * 0xFFs. Even if it does contain all 0xFFs, this error
667 		 * indicates that something is still wrong with this physical
668 		 * eraseblock and we anyway cannot treat it as empty.
669 		 */
670 		if (read_err != -EBADMSG &&
671 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
672 			/* The physical eraseblock is supposedly empty */
673 
674 			/*
675 			 * The below is just a paranoid check, it has to be
676 			 * compiled out if paranoid checks are disabled.
677 			 */
678 			err = paranoid_check_all_ff(ubi, pnum, 0,
679 						    ubi->peb_size);
680 			if (err)
681 				return err > 0 ? UBI_IO_BAD_EC_HDR : err;
682 
683 			if (verbose)
684 				ubi_warn("no EC header found at PEB %d, "
685 					 "only 0xFF bytes", pnum);
686 			else if (UBI_IO_DEBUG)
687 				dbg_msg("no EC header found at PEB %d, "
688 					"only 0xFF bytes", pnum);
689 			return UBI_IO_PEB_EMPTY;
690 		}
691 
692 		/*
693 		 * This is not a valid erase counter header, and these are not
694 		 * 0xFF bytes. Report that the header is corrupted.
695 		 */
696 		if (verbose) {
697 			ubi_warn("bad magic number at PEB %d: %08x instead of "
698 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
699 			ubi_dbg_dump_ec_hdr(ec_hdr);
700 		} else if (UBI_IO_DEBUG)
701 			dbg_msg("bad magic number at PEB %d: %08x instead of "
702 				"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
703 		return UBI_IO_BAD_EC_HDR;
704 	}
705 
706 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
707 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
708 
709 	if (hdr_crc != crc) {
710 		if (verbose) {
711 			ubi_warn("bad EC header CRC at PEB %d, calculated "
712 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
713 			ubi_dbg_dump_ec_hdr(ec_hdr);
714 		} else if (UBI_IO_DEBUG)
715 			dbg_msg("bad EC header CRC at PEB %d, calculated "
716 				"%#08x, read %#08x", pnum, crc, hdr_crc);
717 		return UBI_IO_BAD_EC_HDR;
718 	}
719 
720 	/* And of course validate what has just been read from the media */
721 	err = validate_ec_hdr(ubi, ec_hdr);
722 	if (err) {
723 		ubi_err("validation failed for PEB %d", pnum);
724 		return -EINVAL;
725 	}
726 
727 	return read_err ? UBI_IO_BITFLIPS : 0;
728 }
729 
730 /**
731  * ubi_io_write_ec_hdr - write an erase counter header.
732  * @ubi: UBI device description object
733  * @pnum: physical eraseblock to write to
734  * @ec_hdr: the erase counter header to write
735  *
736  * This function writes erase counter header described by @ec_hdr to physical
737  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
738  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
739  * field.
740  *
741  * This function returns zero in case of success and a negative error code in
742  * case of failure. If %-EIO is returned, the physical eraseblock most probably
743  * went bad.
744  */
745 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
746 			struct ubi_ec_hdr *ec_hdr)
747 {
748 	int err;
749 	uint32_t crc;
750 
751 	dbg_io("write EC header to PEB %d", pnum);
752 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
753 
754 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
755 	ec_hdr->version = UBI_VERSION;
756 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
757 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
758 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
759 	ec_hdr->hdr_crc = cpu_to_be32(crc);
760 
761 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
762 	if (err)
763 		return -EINVAL;
764 
765 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
766 	return err;
767 }
768 
769 /**
770  * validate_vid_hdr - validate a volume identifier header.
771  * @ubi: UBI device description object
772  * @vid_hdr: the volume identifier header to check
773  *
774  * This function checks that data stored in the volume identifier header
775  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
776  */
777 static int validate_vid_hdr(const struct ubi_device *ubi,
778 			    const struct ubi_vid_hdr *vid_hdr)
779 {
780 	int vol_type = vid_hdr->vol_type;
781 	int copy_flag = vid_hdr->copy_flag;
782 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
783 	int lnum = be32_to_cpu(vid_hdr->lnum);
784 	int compat = vid_hdr->compat;
785 	int data_size = be32_to_cpu(vid_hdr->data_size);
786 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
787 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
788 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
789 	int usable_leb_size = ubi->leb_size - data_pad;
790 
791 	if (copy_flag != 0 && copy_flag != 1) {
792 		dbg_err("bad copy_flag");
793 		goto bad;
794 	}
795 
796 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
797 	    data_pad < 0) {
798 		dbg_err("negative values");
799 		goto bad;
800 	}
801 
802 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
803 		dbg_err("bad vol_id");
804 		goto bad;
805 	}
806 
807 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
808 		dbg_err("bad compat");
809 		goto bad;
810 	}
811 
812 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
813 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
814 	    compat != UBI_COMPAT_REJECT) {
815 		dbg_err("bad compat");
816 		goto bad;
817 	}
818 
819 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
820 		dbg_err("bad vol_type");
821 		goto bad;
822 	}
823 
824 	if (data_pad >= ubi->leb_size / 2) {
825 		dbg_err("bad data_pad");
826 		goto bad;
827 	}
828 
829 	if (vol_type == UBI_VID_STATIC) {
830 		/*
831 		 * Although from high-level point of view static volumes may
832 		 * contain zero bytes of data, but no VID headers can contain
833 		 * zero at these fields, because they empty volumes do not have
834 		 * mapped logical eraseblocks.
835 		 */
836 		if (used_ebs == 0) {
837 			dbg_err("zero used_ebs");
838 			goto bad;
839 		}
840 		if (data_size == 0) {
841 			dbg_err("zero data_size");
842 			goto bad;
843 		}
844 		if (lnum < used_ebs - 1) {
845 			if (data_size != usable_leb_size) {
846 				dbg_err("bad data_size");
847 				goto bad;
848 			}
849 		} else if (lnum == used_ebs - 1) {
850 			if (data_size == 0) {
851 				dbg_err("bad data_size at last LEB");
852 				goto bad;
853 			}
854 		} else {
855 			dbg_err("too high lnum");
856 			goto bad;
857 		}
858 	} else {
859 		if (copy_flag == 0) {
860 			if (data_crc != 0) {
861 				dbg_err("non-zero data CRC");
862 				goto bad;
863 			}
864 			if (data_size != 0) {
865 				dbg_err("non-zero data_size");
866 				goto bad;
867 			}
868 		} else {
869 			if (data_size == 0) {
870 				dbg_err("zero data_size of copy");
871 				goto bad;
872 			}
873 		}
874 		if (used_ebs != 0) {
875 			dbg_err("bad used_ebs");
876 			goto bad;
877 		}
878 	}
879 
880 	return 0;
881 
882 bad:
883 	ubi_err("bad VID header");
884 	ubi_dbg_dump_vid_hdr(vid_hdr);
885 	ubi_dbg_dump_stack();
886 	return 1;
887 }
888 
889 /**
890  * ubi_io_read_vid_hdr - read and check a volume identifier header.
891  * @ubi: UBI device description object
892  * @pnum: physical eraseblock number to read from
893  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
894  * identifier header
895  * @verbose: be verbose if the header is corrupted or wasn't found
896  *
897  * This function reads the volume identifier header from physical eraseblock
898  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
899  * volume identifier header. The following codes may be returned:
900  *
901  * o %0 if the CRC checksum is correct and the header was successfully read;
902  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
903  *   and corrected by the flash driver; this is harmless but may indicate that
904  *   this eraseblock may become bad soon;
905  * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
906  *   error detected);
907  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
908  *   header there);
909  * o a negative error code in case of failure.
910  */
911 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
912 			struct ubi_vid_hdr *vid_hdr, int verbose)
913 {
914 	int err, read_err = 0;
915 	uint32_t crc, magic, hdr_crc;
916 	void *p;
917 
918 	dbg_io("read VID header from PEB %d", pnum);
919 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
920 
921 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
922 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
923 			  ubi->vid_hdr_alsize);
924 	if (err) {
925 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
926 			return err;
927 
928 		/*
929 		 * We read all the data, but either a correctable bit-flip
930 		 * occurred, or MTD reported about some data integrity error,
931 		 * like an ECC error in case of NAND. The former is harmless,
932 		 * the later may mean the read data is corrupted. But we have a
933 		 * CRC check-sum and we will identify this. If the VID header is
934 		 * still OK, we just report this as there was a bit-flip.
935 		 */
936 		read_err = err;
937 	}
938 
939 	magic = be32_to_cpu(vid_hdr->magic);
940 	if (magic != UBI_VID_HDR_MAGIC) {
941 		/*
942 		 * If we have read all 0xFF bytes, the VID header probably does
943 		 * not exist and the physical eraseblock is assumed to be free.
944 		 *
945 		 * But if there was a read error, we do not test the data for
946 		 * 0xFFs. Even if it does contain all 0xFFs, this error
947 		 * indicates that something is still wrong with this physical
948 		 * eraseblock and it cannot be regarded as free.
949 		 */
950 		if (read_err != -EBADMSG &&
951 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
952 			/* The physical eraseblock is supposedly free */
953 
954 			/*
955 			 * The below is just a paranoid check, it has to be
956 			 * compiled out if paranoid checks are disabled.
957 			 */
958 			err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
959 						    ubi->leb_size);
960 			if (err)
961 				return err > 0 ? UBI_IO_BAD_VID_HDR : err;
962 
963 			if (verbose)
964 				ubi_warn("no VID header found at PEB %d, "
965 					 "only 0xFF bytes", pnum);
966 			else if (UBI_IO_DEBUG)
967 				dbg_msg("no VID header found at PEB %d, "
968 					"only 0xFF bytes", pnum);
969 			return UBI_IO_PEB_FREE;
970 		}
971 
972 		/*
973 		 * This is not a valid VID header, and these are not 0xFF
974 		 * bytes. Report that the header is corrupted.
975 		 */
976 		if (verbose) {
977 			ubi_warn("bad magic number at PEB %d: %08x instead of "
978 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
979 			ubi_dbg_dump_vid_hdr(vid_hdr);
980 		} else if (UBI_IO_DEBUG)
981 			dbg_msg("bad magic number at PEB %d: %08x instead of "
982 				"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
983 		return UBI_IO_BAD_VID_HDR;
984 	}
985 
986 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
987 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
988 
989 	if (hdr_crc != crc) {
990 		if (verbose) {
991 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
992 				 "read %#08x", pnum, crc, hdr_crc);
993 			ubi_dbg_dump_vid_hdr(vid_hdr);
994 		} else if (UBI_IO_DEBUG)
995 			dbg_msg("bad CRC at PEB %d, calculated %#08x, "
996 				"read %#08x", pnum, crc, hdr_crc);
997 		return UBI_IO_BAD_VID_HDR;
998 	}
999 
1000 	/* Validate the VID header that we have just read */
1001 	err = validate_vid_hdr(ubi, vid_hdr);
1002 	if (err) {
1003 		ubi_err("validation failed for PEB %d", pnum);
1004 		return -EINVAL;
1005 	}
1006 
1007 	return read_err ? UBI_IO_BITFLIPS : 0;
1008 }
1009 
1010 /**
1011  * ubi_io_write_vid_hdr - write a volume identifier header.
1012  * @ubi: UBI device description object
1013  * @pnum: the physical eraseblock number to write to
1014  * @vid_hdr: the volume identifier header to write
1015  *
1016  * This function writes the volume identifier header described by @vid_hdr to
1017  * physical eraseblock @pnum. This function automatically fills the
1018  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1019  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1020  *
1021  * This function returns zero in case of success and a negative error code in
1022  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1023  * bad.
1024  */
1025 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1026 			 struct ubi_vid_hdr *vid_hdr)
1027 {
1028 	int err;
1029 	uint32_t crc;
1030 	void *p;
1031 
1032 	dbg_io("write VID header to PEB %d", pnum);
1033 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1034 
1035 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1036 	if (err)
1037 		return err > 0 ? -EINVAL : err;
1038 
1039 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1040 	vid_hdr->version = UBI_VERSION;
1041 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1042 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1043 
1044 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1045 	if (err)
1046 		return -EINVAL;
1047 
1048 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1049 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1050 			   ubi->vid_hdr_alsize);
1051 	return err;
1052 }
1053 
1054 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1055 
1056 /**
1057  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1058  * @ubi: UBI device description object
1059  * @pnum: physical eraseblock number to check
1060  *
1061  * This function returns zero if the physical eraseblock is good, a positive
1062  * number if it is bad and a negative error code if an error occurred.
1063  */
1064 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1065 {
1066 	int err;
1067 
1068 	err = ubi_io_is_bad(ubi, pnum);
1069 	if (!err)
1070 		return err;
1071 
1072 	ubi_err("paranoid check failed for PEB %d", pnum);
1073 	ubi_dbg_dump_stack();
1074 	return err;
1075 }
1076 
1077 /**
1078  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1079  * @ubi: UBI device description object
1080  * @pnum: physical eraseblock number the erase counter header belongs to
1081  * @ec_hdr: the erase counter header to check
1082  *
1083  * This function returns zero if the erase counter header contains valid
1084  * values, and %1 if not.
1085  */
1086 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1087 				 const struct ubi_ec_hdr *ec_hdr)
1088 {
1089 	int err;
1090 	uint32_t magic;
1091 
1092 	magic = be32_to_cpu(ec_hdr->magic);
1093 	if (magic != UBI_EC_HDR_MAGIC) {
1094 		ubi_err("bad magic %#08x, must be %#08x",
1095 			magic, UBI_EC_HDR_MAGIC);
1096 		goto fail;
1097 	}
1098 
1099 	err = validate_ec_hdr(ubi, ec_hdr);
1100 	if (err) {
1101 		ubi_err("paranoid check failed for PEB %d", pnum);
1102 		goto fail;
1103 	}
1104 
1105 	return 0;
1106 
1107 fail:
1108 	ubi_dbg_dump_ec_hdr(ec_hdr);
1109 	ubi_dbg_dump_stack();
1110 	return 1;
1111 }
1112 
1113 /**
1114  * paranoid_check_peb_ec_hdr - check erase counter header.
1115  * @ubi: UBI device description object
1116  * @pnum: the physical eraseblock number to check
1117  *
1118  * This function returns zero if the erase counter header is all right, %1 if
1119  * not, and a negative error code if an error occurred.
1120  */
1121 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1122 {
1123 	int err;
1124 	uint32_t crc, hdr_crc;
1125 	struct ubi_ec_hdr *ec_hdr;
1126 
1127 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1128 	if (!ec_hdr)
1129 		return -ENOMEM;
1130 
1131 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1132 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1133 		goto exit;
1134 
1135 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1136 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1137 	if (hdr_crc != crc) {
1138 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1139 		ubi_err("paranoid check failed for PEB %d", pnum);
1140 		ubi_dbg_dump_ec_hdr(ec_hdr);
1141 		ubi_dbg_dump_stack();
1142 		err = 1;
1143 		goto exit;
1144 	}
1145 
1146 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1147 
1148 exit:
1149 	kfree(ec_hdr);
1150 	return err;
1151 }
1152 
1153 /**
1154  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1155  * @ubi: UBI device description object
1156  * @pnum: physical eraseblock number the volume identifier header belongs to
1157  * @vid_hdr: the volume identifier header to check
1158  *
1159  * This function returns zero if the volume identifier header is all right, and
1160  * %1 if not.
1161  */
1162 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1163 				  const struct ubi_vid_hdr *vid_hdr)
1164 {
1165 	int err;
1166 	uint32_t magic;
1167 
1168 	magic = be32_to_cpu(vid_hdr->magic);
1169 	if (magic != UBI_VID_HDR_MAGIC) {
1170 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1171 			magic, pnum, UBI_VID_HDR_MAGIC);
1172 		goto fail;
1173 	}
1174 
1175 	err = validate_vid_hdr(ubi, vid_hdr);
1176 	if (err) {
1177 		ubi_err("paranoid check failed for PEB %d", pnum);
1178 		goto fail;
1179 	}
1180 
1181 	return err;
1182 
1183 fail:
1184 	ubi_err("paranoid check failed for PEB %d", pnum);
1185 	ubi_dbg_dump_vid_hdr(vid_hdr);
1186 	ubi_dbg_dump_stack();
1187 	return 1;
1188 
1189 }
1190 
1191 /**
1192  * paranoid_check_peb_vid_hdr - check volume identifier header.
1193  * @ubi: UBI device description object
1194  * @pnum: the physical eraseblock number to check
1195  *
1196  * This function returns zero if the volume identifier header is all right,
1197  * %1 if not, and a negative error code if an error occurred.
1198  */
1199 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1200 {
1201 	int err;
1202 	uint32_t crc, hdr_crc;
1203 	struct ubi_vid_hdr *vid_hdr;
1204 	void *p;
1205 
1206 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1207 	if (!vid_hdr)
1208 		return -ENOMEM;
1209 
1210 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1211 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1212 			  ubi->vid_hdr_alsize);
1213 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1214 		goto exit;
1215 
1216 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1217 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1218 	if (hdr_crc != crc) {
1219 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1220 			"read %#08x", pnum, crc, hdr_crc);
1221 		ubi_err("paranoid check failed for PEB %d", pnum);
1222 		ubi_dbg_dump_vid_hdr(vid_hdr);
1223 		ubi_dbg_dump_stack();
1224 		err = 1;
1225 		goto exit;
1226 	}
1227 
1228 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1229 
1230 exit:
1231 	ubi_free_vid_hdr(ubi, vid_hdr);
1232 	return err;
1233 }
1234 
1235 /**
1236  * paranoid_check_all_ff - check that a region of flash is empty.
1237  * @ubi: UBI device description object
1238  * @pnum: the physical eraseblock number to check
1239  * @offset: the starting offset within the physical eraseblock to check
1240  * @len: the length of the region to check
1241  *
1242  * This function returns zero if only 0xFF bytes are present at offset
1243  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1244  * code if an error occurred.
1245  */
1246 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1247 				 int len)
1248 {
1249 	size_t read;
1250 	int err;
1251 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1252 
1253 	mutex_lock(&ubi->dbg_buf_mutex);
1254 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1255 	if (err && err != -EUCLEAN) {
1256 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1257 			"read %zd bytes", err, len, pnum, offset, read);
1258 		goto error;
1259 	}
1260 
1261 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1262 	if (err == 0) {
1263 		ubi_err("flash region at PEB %d:%d, length %d does not "
1264 			"contain all 0xFF bytes", pnum, offset, len);
1265 		goto fail;
1266 	}
1267 	mutex_unlock(&ubi->dbg_buf_mutex);
1268 
1269 	return 0;
1270 
1271 fail:
1272 	ubi_err("paranoid check failed for PEB %d", pnum);
1273 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1274 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1275 		       ubi->dbg_peb_buf, len, 1);
1276 	err = 1;
1277 error:
1278 	ubi_dbg_dump_stack();
1279 	mutex_unlock(&ubi->dbg_buf_mutex);
1280 	return err;
1281 }
1282 
1283 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1284