1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 102 int offset, int len); 103 104 /** 105 * ubi_io_read - read data from a physical eraseblock. 106 * @ubi: UBI device description object 107 * @buf: buffer where to store the read data 108 * @pnum: physical eraseblock number to read from 109 * @offset: offset within the physical eraseblock from where to read 110 * @len: how many bytes to read 111 * 112 * This function reads data from offset @offset of physical eraseblock @pnum 113 * and stores the read data in the @buf buffer. The following return codes are 114 * possible: 115 * 116 * o %0 if all the requested data were successfully read; 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 118 * correctable bit-flips were detected; this is harmless but may indicate 119 * that this eraseblock may become bad soon (but do not have to); 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 121 * example it can be an ECC error in case of NAND; this most probably means 122 * that the data is corrupted; 123 * o %-EIO if some I/O error occurred; 124 * o other negative error codes in case of other errors. 125 */ 126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 127 int len) 128 { 129 int err, retries = 0; 130 size_t read; 131 loff_t addr; 132 133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 134 135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 137 ubi_assert(len > 0); 138 139 err = self_check_not_bad(ubi, pnum); 140 if (err) 141 return err; 142 143 /* 144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 145 * do not do this, the following may happen: 146 * 1. The buffer contains data from previous operation, e.g., read from 147 * another PEB previously. The data looks like expected, e.g., if we 148 * just do not read anything and return - the caller would not 149 * notice this. E.g., if we are reading a VID header, the buffer may 150 * contain a valid VID header from another PEB. 151 * 2. The driver is buggy and returns us success or -EBADMSG or 152 * -EUCLEAN, but it does not actually put any data to the buffer. 153 * 154 * This may confuse UBI or upper layers - they may think the buffer 155 * contains valid data while in fact it is just old data. This is 156 * especially possible because UBI (and UBIFS) relies on CRC, and 157 * treats data as correct even in case of ECC errors if the CRC is 158 * correct. 159 * 160 * Try to prevent this situation by changing the first byte of the 161 * buffer. 162 */ 163 *((uint8_t *)buf) ^= 0xFF; 164 165 addr = (loff_t)pnum * ubi->peb_size + offset; 166 retry: 167 err = mtd_read(ubi->mtd, addr, len, &read, buf); 168 if (err) { 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 170 171 if (mtd_is_bitflip(err)) { 172 /* 173 * -EUCLEAN is reported if there was a bit-flip which 174 * was corrected, so this is harmless. 175 * 176 * We do not report about it here unless debugging is 177 * enabled. A corresponding message will be printed 178 * later, when it is has been scrubbed. 179 */ 180 ubi_msg(ubi, "fixable bit-flip detected at PEB %d", 181 pnum); 182 ubi_assert(len == read); 183 return UBI_IO_BITFLIPS; 184 } 185 186 if (retries++ < UBI_IO_RETRIES) { 187 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 188 err, errstr, len, pnum, offset, read); 189 yield(); 190 goto retry; 191 } 192 193 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 194 err, errstr, len, pnum, offset, read); 195 dump_stack(); 196 197 /* 198 * The driver should never return -EBADMSG if it failed to read 199 * all the requested data. But some buggy drivers might do 200 * this, so we change it to -EIO. 201 */ 202 if (read != len && mtd_is_eccerr(err)) { 203 ubi_assert(0); 204 err = -EIO; 205 } 206 } else { 207 ubi_assert(len == read); 208 209 if (ubi_dbg_is_bitflip(ubi)) { 210 dbg_gen("bit-flip (emulated)"); 211 err = UBI_IO_BITFLIPS; 212 } 213 } 214 215 return err; 216 } 217 218 /** 219 * ubi_io_write - write data to a physical eraseblock. 220 * @ubi: UBI device description object 221 * @buf: buffer with the data to write 222 * @pnum: physical eraseblock number to write to 223 * @offset: offset within the physical eraseblock where to write 224 * @len: how many bytes to write 225 * 226 * This function writes @len bytes of data from buffer @buf to offset @offset 227 * of physical eraseblock @pnum. If all the data were successfully written, 228 * zero is returned. If an error occurred, this function returns a negative 229 * error code. If %-EIO is returned, the physical eraseblock most probably went 230 * bad. 231 * 232 * Note, in case of an error, it is possible that something was still written 233 * to the flash media, but may be some garbage. 234 */ 235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 236 int len) 237 { 238 int err; 239 size_t written; 240 loff_t addr; 241 242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 243 244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 246 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 248 249 if (ubi->ro_mode) { 250 ubi_err(ubi, "read-only mode"); 251 return -EROFS; 252 } 253 254 err = self_check_not_bad(ubi, pnum); 255 if (err) 256 return err; 257 258 /* The area we are writing to has to contain all 0xFF bytes */ 259 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 260 if (err) 261 return err; 262 263 if (offset >= ubi->leb_start) { 264 /* 265 * We write to the data area of the physical eraseblock. Make 266 * sure it has valid EC and VID headers. 267 */ 268 err = self_check_peb_ec_hdr(ubi, pnum); 269 if (err) 270 return err; 271 err = self_check_peb_vid_hdr(ubi, pnum); 272 if (err) 273 return err; 274 } 275 276 if (ubi_dbg_is_write_failure(ubi)) { 277 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", 278 len, pnum, offset); 279 dump_stack(); 280 return -EIO; 281 } 282 283 addr = (loff_t)pnum * ubi->peb_size + offset; 284 err = mtd_write(ubi->mtd, addr, len, &written, buf); 285 if (err) { 286 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 287 err, len, pnum, offset, written); 288 dump_stack(); 289 ubi_dump_flash(ubi, pnum, offset, len); 290 } else 291 ubi_assert(written == len); 292 293 if (!err) { 294 err = self_check_write(ubi, buf, pnum, offset, len); 295 if (err) 296 return err; 297 298 /* 299 * Since we always write sequentially, the rest of the PEB has 300 * to contain only 0xFF bytes. 301 */ 302 offset += len; 303 len = ubi->peb_size - offset; 304 if (len) 305 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 306 } 307 308 return err; 309 } 310 311 /** 312 * do_sync_erase - synchronously erase a physical eraseblock. 313 * @ubi: UBI device description object 314 * @pnum: the physical eraseblock number to erase 315 * 316 * This function synchronously erases physical eraseblock @pnum and returns 317 * zero in case of success and a negative error code in case of failure. If 318 * %-EIO is returned, the physical eraseblock most probably went bad. 319 */ 320 static int do_sync_erase(struct ubi_device *ubi, int pnum) 321 { 322 int err, retries = 0; 323 struct erase_info ei; 324 325 dbg_io("erase PEB %d", pnum); 326 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 327 328 if (ubi->ro_mode) { 329 ubi_err(ubi, "read-only mode"); 330 return -EROFS; 331 } 332 333 retry: 334 memset(&ei, 0, sizeof(struct erase_info)); 335 336 ei.addr = (loff_t)pnum * ubi->peb_size; 337 ei.len = ubi->peb_size; 338 339 err = mtd_erase(ubi->mtd, &ei); 340 if (err) { 341 if (retries++ < UBI_IO_RETRIES) { 342 ubi_warn(ubi, "error %d while erasing PEB %d, retry", 343 err, pnum); 344 yield(); 345 goto retry; 346 } 347 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); 348 dump_stack(); 349 return err; 350 } 351 352 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 353 if (err) 354 return err; 355 356 if (ubi_dbg_is_erase_failure(ubi)) { 357 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); 358 return -EIO; 359 } 360 361 return 0; 362 } 363 364 /* Patterns to write to a physical eraseblock when torturing it */ 365 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 366 367 /** 368 * torture_peb - test a supposedly bad physical eraseblock. 369 * @ubi: UBI device description object 370 * @pnum: the physical eraseblock number to test 371 * 372 * This function returns %-EIO if the physical eraseblock did not pass the 373 * test, a positive number of erase operations done if the test was 374 * successfully passed, and other negative error codes in case of other errors. 375 */ 376 static int torture_peb(struct ubi_device *ubi, int pnum) 377 { 378 int err, i, patt_count; 379 380 ubi_msg(ubi, "run torture test for PEB %d", pnum); 381 patt_count = ARRAY_SIZE(patterns); 382 ubi_assert(patt_count > 0); 383 384 mutex_lock(&ubi->buf_mutex); 385 for (i = 0; i < patt_count; i++) { 386 err = do_sync_erase(ubi, pnum); 387 if (err) 388 goto out; 389 390 /* Make sure the PEB contains only 0xFF bytes */ 391 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 392 if (err) 393 goto out; 394 395 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 396 if (err == 0) { 397 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", 398 pnum); 399 err = -EIO; 400 goto out; 401 } 402 403 /* Write a pattern and check it */ 404 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 405 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 406 if (err) 407 goto out; 408 409 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 410 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 411 if (err) 412 goto out; 413 414 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 415 ubi->peb_size); 416 if (err == 0) { 417 ubi_err(ubi, "pattern %x checking failed for PEB %d", 418 patterns[i], pnum); 419 err = -EIO; 420 goto out; 421 } 422 } 423 424 err = patt_count; 425 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); 426 427 out: 428 mutex_unlock(&ubi->buf_mutex); 429 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 430 /* 431 * If a bit-flip or data integrity error was detected, the test 432 * has not passed because it happened on a freshly erased 433 * physical eraseblock which means something is wrong with it. 434 */ 435 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", 436 pnum); 437 err = -EIO; 438 } 439 return err; 440 } 441 442 /** 443 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 444 * @ubi: UBI device description object 445 * @pnum: physical eraseblock number to prepare 446 * 447 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 448 * algorithm: the PEB is first filled with zeroes, then it is erased. And 449 * filling with zeroes starts from the end of the PEB. This was observed with 450 * Spansion S29GL512N NOR flash. 451 * 452 * This means that in case of a power cut we may end up with intact data at the 453 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 454 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 455 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 456 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 457 * 458 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 459 * magic numbers in order to invalidate them and prevent the failures. Returns 460 * zero in case of success and a negative error code in case of failure. 461 */ 462 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 463 { 464 int err; 465 size_t written; 466 loff_t addr; 467 uint32_t data = 0; 468 struct ubi_ec_hdr ec_hdr; 469 struct ubi_vid_io_buf vidb; 470 471 /* 472 * Note, we cannot generally define VID header buffers on stack, 473 * because of the way we deal with these buffers (see the header 474 * comment in this file). But we know this is a NOR-specific piece of 475 * code, so we can do this. But yes, this is error-prone and we should 476 * (pre-)allocate VID header buffer instead. 477 */ 478 struct ubi_vid_hdr vid_hdr; 479 480 /* 481 * If VID or EC is valid, we have to corrupt them before erasing. 482 * It is important to first invalidate the EC header, and then the VID 483 * header. Otherwise a power cut may lead to valid EC header and 484 * invalid VID header, in which case UBI will treat this PEB as 485 * corrupted and will try to preserve it, and print scary warnings. 486 */ 487 addr = (loff_t)pnum * ubi->peb_size; 488 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 489 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 490 err != UBI_IO_FF){ 491 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 492 if(err) 493 goto error; 494 } 495 496 ubi_init_vid_buf(ubi, &vidb, &vid_hdr); 497 ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb)); 498 499 err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0); 500 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 501 err != UBI_IO_FF){ 502 addr += ubi->vid_hdr_aloffset; 503 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 504 if (err) 505 goto error; 506 } 507 return 0; 508 509 error: 510 /* 511 * The PEB contains a valid VID or EC header, but we cannot invalidate 512 * it. Supposedly the flash media or the driver is screwed up, so 513 * return an error. 514 */ 515 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); 516 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 517 return -EIO; 518 } 519 520 /** 521 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 522 * @ubi: UBI device description object 523 * @pnum: physical eraseblock number to erase 524 * @torture: if this physical eraseblock has to be tortured 525 * 526 * This function synchronously erases physical eraseblock @pnum. If @torture 527 * flag is not zero, the physical eraseblock is checked by means of writing 528 * different patterns to it and reading them back. If the torturing is enabled, 529 * the physical eraseblock is erased more than once. 530 * 531 * This function returns the number of erasures made in case of success, %-EIO 532 * if the erasure failed or the torturing test failed, and other negative error 533 * codes in case of other errors. Note, %-EIO means that the physical 534 * eraseblock is bad. 535 */ 536 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 537 { 538 int err, ret = 0; 539 540 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 541 542 err = self_check_not_bad(ubi, pnum); 543 if (err != 0) 544 return err; 545 546 if (ubi->ro_mode) { 547 ubi_err(ubi, "read-only mode"); 548 return -EROFS; 549 } 550 551 if (ubi->nor_flash) { 552 err = nor_erase_prepare(ubi, pnum); 553 if (err) 554 return err; 555 } 556 557 if (torture) { 558 ret = torture_peb(ubi, pnum); 559 if (ret < 0) 560 return ret; 561 } 562 563 err = do_sync_erase(ubi, pnum); 564 if (err) 565 return err; 566 567 return ret + 1; 568 } 569 570 /** 571 * ubi_io_is_bad - check if a physical eraseblock is bad. 572 * @ubi: UBI device description object 573 * @pnum: the physical eraseblock number to check 574 * 575 * This function returns a positive number if the physical eraseblock is bad, 576 * zero if not, and a negative error code if an error occurred. 577 */ 578 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 579 { 580 struct mtd_info *mtd = ubi->mtd; 581 582 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 583 584 if (ubi->bad_allowed) { 585 int ret; 586 587 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 588 if (ret < 0) 589 ubi_err(ubi, "error %d while checking if PEB %d is bad", 590 ret, pnum); 591 else if (ret) 592 dbg_io("PEB %d is bad", pnum); 593 return ret; 594 } 595 596 return 0; 597 } 598 599 /** 600 * ubi_io_mark_bad - mark a physical eraseblock as bad. 601 * @ubi: UBI device description object 602 * @pnum: the physical eraseblock number to mark 603 * 604 * This function returns zero in case of success and a negative error code in 605 * case of failure. 606 */ 607 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 608 { 609 int err; 610 struct mtd_info *mtd = ubi->mtd; 611 612 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 613 614 if (ubi->ro_mode) { 615 ubi_err(ubi, "read-only mode"); 616 return -EROFS; 617 } 618 619 if (!ubi->bad_allowed) 620 return 0; 621 622 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 623 if (err) 624 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); 625 return err; 626 } 627 628 /** 629 * validate_ec_hdr - validate an erase counter header. 630 * @ubi: UBI device description object 631 * @ec_hdr: the erase counter header to check 632 * 633 * This function returns zero if the erase counter header is OK, and %1 if 634 * not. 635 */ 636 static int validate_ec_hdr(const struct ubi_device *ubi, 637 const struct ubi_ec_hdr *ec_hdr) 638 { 639 long long ec; 640 int vid_hdr_offset, leb_start; 641 642 ec = be64_to_cpu(ec_hdr->ec); 643 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 644 leb_start = be32_to_cpu(ec_hdr->data_offset); 645 646 if (ec_hdr->version != UBI_VERSION) { 647 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", 648 UBI_VERSION, (int)ec_hdr->version); 649 goto bad; 650 } 651 652 if (vid_hdr_offset != ubi->vid_hdr_offset) { 653 ubi_err(ubi, "bad VID header offset %d, expected %d", 654 vid_hdr_offset, ubi->vid_hdr_offset); 655 goto bad; 656 } 657 658 if (leb_start != ubi->leb_start) { 659 ubi_err(ubi, "bad data offset %d, expected %d", 660 leb_start, ubi->leb_start); 661 goto bad; 662 } 663 664 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 665 ubi_err(ubi, "bad erase counter %lld", ec); 666 goto bad; 667 } 668 669 return 0; 670 671 bad: 672 ubi_err(ubi, "bad EC header"); 673 ubi_dump_ec_hdr(ec_hdr); 674 dump_stack(); 675 return 1; 676 } 677 678 /** 679 * ubi_io_read_ec_hdr - read and check an erase counter header. 680 * @ubi: UBI device description object 681 * @pnum: physical eraseblock to read from 682 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 683 * header 684 * @verbose: be verbose if the header is corrupted or was not found 685 * 686 * This function reads erase counter header from physical eraseblock @pnum and 687 * stores it in @ec_hdr. This function also checks CRC checksum of the read 688 * erase counter header. The following codes may be returned: 689 * 690 * o %0 if the CRC checksum is correct and the header was successfully read; 691 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 692 * and corrected by the flash driver; this is harmless but may indicate that 693 * this eraseblock may become bad soon (but may be not); 694 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 695 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 696 * a data integrity error (uncorrectable ECC error in case of NAND); 697 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 698 * o a negative error code in case of failure. 699 */ 700 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 701 struct ubi_ec_hdr *ec_hdr, int verbose) 702 { 703 int err, read_err; 704 uint32_t crc, magic, hdr_crc; 705 706 dbg_io("read EC header from PEB %d", pnum); 707 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 708 709 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 710 if (read_err) { 711 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 712 return read_err; 713 714 /* 715 * We read all the data, but either a correctable bit-flip 716 * occurred, or MTD reported a data integrity error 717 * (uncorrectable ECC error in case of NAND). The former is 718 * harmless, the later may mean that the read data is 719 * corrupted. But we have a CRC check-sum and we will detect 720 * this. If the EC header is still OK, we just report this as 721 * there was a bit-flip, to force scrubbing. 722 */ 723 } 724 725 magic = be32_to_cpu(ec_hdr->magic); 726 if (magic != UBI_EC_HDR_MAGIC) { 727 if (mtd_is_eccerr(read_err)) 728 return UBI_IO_BAD_HDR_EBADMSG; 729 730 /* 731 * The magic field is wrong. Let's check if we have read all 732 * 0xFF. If yes, this physical eraseblock is assumed to be 733 * empty. 734 */ 735 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 736 /* The physical eraseblock is supposedly empty */ 737 if (verbose) 738 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", 739 pnum); 740 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 741 pnum); 742 if (!read_err) 743 return UBI_IO_FF; 744 else 745 return UBI_IO_FF_BITFLIPS; 746 } 747 748 /* 749 * This is not a valid erase counter header, and these are not 750 * 0xFF bytes. Report that the header is corrupted. 751 */ 752 if (verbose) { 753 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 754 pnum, magic, UBI_EC_HDR_MAGIC); 755 ubi_dump_ec_hdr(ec_hdr); 756 } 757 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 758 pnum, magic, UBI_EC_HDR_MAGIC); 759 return UBI_IO_BAD_HDR; 760 } 761 762 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 763 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 764 765 if (hdr_crc != crc) { 766 if (verbose) { 767 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 768 pnum, crc, hdr_crc); 769 ubi_dump_ec_hdr(ec_hdr); 770 } 771 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 772 pnum, crc, hdr_crc); 773 774 if (!read_err) 775 return UBI_IO_BAD_HDR; 776 else 777 return UBI_IO_BAD_HDR_EBADMSG; 778 } 779 780 /* And of course validate what has just been read from the media */ 781 err = validate_ec_hdr(ubi, ec_hdr); 782 if (err) { 783 ubi_err(ubi, "validation failed for PEB %d", pnum); 784 return -EINVAL; 785 } 786 787 /* 788 * If there was %-EBADMSG, but the header CRC is still OK, report about 789 * a bit-flip to force scrubbing on this PEB. 790 */ 791 return read_err ? UBI_IO_BITFLIPS : 0; 792 } 793 794 /** 795 * ubi_io_write_ec_hdr - write an erase counter header. 796 * @ubi: UBI device description object 797 * @pnum: physical eraseblock to write to 798 * @ec_hdr: the erase counter header to write 799 * 800 * This function writes erase counter header described by @ec_hdr to physical 801 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 802 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 803 * field. 804 * 805 * This function returns zero in case of success and a negative error code in 806 * case of failure. If %-EIO is returned, the physical eraseblock most probably 807 * went bad. 808 */ 809 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 810 struct ubi_ec_hdr *ec_hdr) 811 { 812 int err; 813 uint32_t crc; 814 815 dbg_io("write EC header to PEB %d", pnum); 816 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 817 818 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 819 ec_hdr->version = UBI_VERSION; 820 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 821 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 822 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 823 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 824 ec_hdr->hdr_crc = cpu_to_be32(crc); 825 826 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 827 if (err) 828 return err; 829 830 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) 831 return -EROFS; 832 833 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 834 return err; 835 } 836 837 /** 838 * validate_vid_hdr - validate a volume identifier header. 839 * @ubi: UBI device description object 840 * @vid_hdr: the volume identifier header to check 841 * 842 * This function checks that data stored in the volume identifier header 843 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 844 */ 845 static int validate_vid_hdr(const struct ubi_device *ubi, 846 const struct ubi_vid_hdr *vid_hdr) 847 { 848 int vol_type = vid_hdr->vol_type; 849 int copy_flag = vid_hdr->copy_flag; 850 int vol_id = be32_to_cpu(vid_hdr->vol_id); 851 int lnum = be32_to_cpu(vid_hdr->lnum); 852 int compat = vid_hdr->compat; 853 int data_size = be32_to_cpu(vid_hdr->data_size); 854 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 855 int data_pad = be32_to_cpu(vid_hdr->data_pad); 856 int data_crc = be32_to_cpu(vid_hdr->data_crc); 857 int usable_leb_size = ubi->leb_size - data_pad; 858 859 if (copy_flag != 0 && copy_flag != 1) { 860 ubi_err(ubi, "bad copy_flag"); 861 goto bad; 862 } 863 864 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 865 data_pad < 0) { 866 ubi_err(ubi, "negative values"); 867 goto bad; 868 } 869 870 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 871 ubi_err(ubi, "bad vol_id"); 872 goto bad; 873 } 874 875 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 876 ubi_err(ubi, "bad compat"); 877 goto bad; 878 } 879 880 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 881 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 882 compat != UBI_COMPAT_REJECT) { 883 ubi_err(ubi, "bad compat"); 884 goto bad; 885 } 886 887 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 888 ubi_err(ubi, "bad vol_type"); 889 goto bad; 890 } 891 892 if (data_pad >= ubi->leb_size / 2) { 893 ubi_err(ubi, "bad data_pad"); 894 goto bad; 895 } 896 897 if (data_size > ubi->leb_size) { 898 ubi_err(ubi, "bad data_size"); 899 goto bad; 900 } 901 902 if (vol_type == UBI_VID_STATIC) { 903 /* 904 * Although from high-level point of view static volumes may 905 * contain zero bytes of data, but no VID headers can contain 906 * zero at these fields, because they empty volumes do not have 907 * mapped logical eraseblocks. 908 */ 909 if (used_ebs == 0) { 910 ubi_err(ubi, "zero used_ebs"); 911 goto bad; 912 } 913 if (data_size == 0) { 914 ubi_err(ubi, "zero data_size"); 915 goto bad; 916 } 917 if (lnum < used_ebs - 1) { 918 if (data_size != usable_leb_size) { 919 ubi_err(ubi, "bad data_size"); 920 goto bad; 921 } 922 } else if (lnum == used_ebs - 1) { 923 if (data_size == 0) { 924 ubi_err(ubi, "bad data_size at last LEB"); 925 goto bad; 926 } 927 } else { 928 ubi_err(ubi, "too high lnum"); 929 goto bad; 930 } 931 } else { 932 if (copy_flag == 0) { 933 if (data_crc != 0) { 934 ubi_err(ubi, "non-zero data CRC"); 935 goto bad; 936 } 937 if (data_size != 0) { 938 ubi_err(ubi, "non-zero data_size"); 939 goto bad; 940 } 941 } else { 942 if (data_size == 0) { 943 ubi_err(ubi, "zero data_size of copy"); 944 goto bad; 945 } 946 } 947 if (used_ebs != 0) { 948 ubi_err(ubi, "bad used_ebs"); 949 goto bad; 950 } 951 } 952 953 return 0; 954 955 bad: 956 ubi_err(ubi, "bad VID header"); 957 ubi_dump_vid_hdr(vid_hdr); 958 dump_stack(); 959 return 1; 960 } 961 962 /** 963 * ubi_io_read_vid_hdr - read and check a volume identifier header. 964 * @ubi: UBI device description object 965 * @pnum: physical eraseblock number to read from 966 * @vidb: the volume identifier buffer to store data in 967 * @verbose: be verbose if the header is corrupted or wasn't found 968 * 969 * This function reads the volume identifier header from physical eraseblock 970 * @pnum and stores it in @vidb. It also checks CRC checksum of the read 971 * volume identifier header. The error codes are the same as in 972 * 'ubi_io_read_ec_hdr()'. 973 * 974 * Note, the implementation of this function is also very similar to 975 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 976 */ 977 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 978 struct ubi_vid_io_buf *vidb, int verbose) 979 { 980 int err, read_err; 981 uint32_t crc, magic, hdr_crc; 982 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 983 void *p = vidb->buffer; 984 985 dbg_io("read VID header from PEB %d", pnum); 986 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 987 988 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 989 ubi->vid_hdr_shift + UBI_VID_HDR_SIZE); 990 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 991 return read_err; 992 993 magic = be32_to_cpu(vid_hdr->magic); 994 if (magic != UBI_VID_HDR_MAGIC) { 995 if (mtd_is_eccerr(read_err)) 996 return UBI_IO_BAD_HDR_EBADMSG; 997 998 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 999 if (verbose) 1000 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", 1001 pnum); 1002 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1003 pnum); 1004 if (!read_err) 1005 return UBI_IO_FF; 1006 else 1007 return UBI_IO_FF_BITFLIPS; 1008 } 1009 1010 if (verbose) { 1011 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 1012 pnum, magic, UBI_VID_HDR_MAGIC); 1013 ubi_dump_vid_hdr(vid_hdr); 1014 } 1015 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1016 pnum, magic, UBI_VID_HDR_MAGIC); 1017 return UBI_IO_BAD_HDR; 1018 } 1019 1020 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1021 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1022 1023 if (hdr_crc != crc) { 1024 if (verbose) { 1025 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", 1026 pnum, crc, hdr_crc); 1027 ubi_dump_vid_hdr(vid_hdr); 1028 } 1029 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1030 pnum, crc, hdr_crc); 1031 if (!read_err) 1032 return UBI_IO_BAD_HDR; 1033 else 1034 return UBI_IO_BAD_HDR_EBADMSG; 1035 } 1036 1037 err = validate_vid_hdr(ubi, vid_hdr); 1038 if (err) { 1039 ubi_err(ubi, "validation failed for PEB %d", pnum); 1040 return -EINVAL; 1041 } 1042 1043 return read_err ? UBI_IO_BITFLIPS : 0; 1044 } 1045 1046 /** 1047 * ubi_io_write_vid_hdr - write a volume identifier header. 1048 * @ubi: UBI device description object 1049 * @pnum: the physical eraseblock number to write to 1050 * @vidb: the volume identifier buffer to write 1051 * 1052 * This function writes the volume identifier header described by @vid_hdr to 1053 * physical eraseblock @pnum. This function automatically fills the 1054 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates 1055 * header CRC checksum and stores it at vidb->hdr->hdr_crc. 1056 * 1057 * This function returns zero in case of success and a negative error code in 1058 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1059 * bad. 1060 */ 1061 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1062 struct ubi_vid_io_buf *vidb) 1063 { 1064 struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); 1065 int err; 1066 uint32_t crc; 1067 void *p = vidb->buffer; 1068 1069 dbg_io("write VID header to PEB %d", pnum); 1070 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1071 1072 err = self_check_peb_ec_hdr(ubi, pnum); 1073 if (err) 1074 return err; 1075 1076 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1077 vid_hdr->version = UBI_VERSION; 1078 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1079 vid_hdr->hdr_crc = cpu_to_be32(crc); 1080 1081 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1082 if (err) 1083 return err; 1084 1085 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) 1086 return -EROFS; 1087 1088 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1089 ubi->vid_hdr_alsize); 1090 return err; 1091 } 1092 1093 /** 1094 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1095 * @ubi: UBI device description object 1096 * @pnum: physical eraseblock number to check 1097 * 1098 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1099 * it is bad and a negative error code if an error occurred. 1100 */ 1101 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1102 { 1103 int err; 1104 1105 if (!ubi_dbg_chk_io(ubi)) 1106 return 0; 1107 1108 err = ubi_io_is_bad(ubi, pnum); 1109 if (!err) 1110 return err; 1111 1112 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1113 dump_stack(); 1114 return err > 0 ? -EINVAL : err; 1115 } 1116 1117 /** 1118 * self_check_ec_hdr - check if an erase counter header is all right. 1119 * @ubi: UBI device description object 1120 * @pnum: physical eraseblock number the erase counter header belongs to 1121 * @ec_hdr: the erase counter header to check 1122 * 1123 * This function returns zero if the erase counter header contains valid 1124 * values, and %-EINVAL if not. 1125 */ 1126 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1127 const struct ubi_ec_hdr *ec_hdr) 1128 { 1129 int err; 1130 uint32_t magic; 1131 1132 if (!ubi_dbg_chk_io(ubi)) 1133 return 0; 1134 1135 magic = be32_to_cpu(ec_hdr->magic); 1136 if (magic != UBI_EC_HDR_MAGIC) { 1137 ubi_err(ubi, "bad magic %#08x, must be %#08x", 1138 magic, UBI_EC_HDR_MAGIC); 1139 goto fail; 1140 } 1141 1142 err = validate_ec_hdr(ubi, ec_hdr); 1143 if (err) { 1144 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1145 goto fail; 1146 } 1147 1148 return 0; 1149 1150 fail: 1151 ubi_dump_ec_hdr(ec_hdr); 1152 dump_stack(); 1153 return -EINVAL; 1154 } 1155 1156 /** 1157 * self_check_peb_ec_hdr - check erase counter header. 1158 * @ubi: UBI device description object 1159 * @pnum: the physical eraseblock number to check 1160 * 1161 * This function returns zero if the erase counter header is all right and and 1162 * a negative error code if not or if an error occurred. 1163 */ 1164 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1165 { 1166 int err; 1167 uint32_t crc, hdr_crc; 1168 struct ubi_ec_hdr *ec_hdr; 1169 1170 if (!ubi_dbg_chk_io(ubi)) 1171 return 0; 1172 1173 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1174 if (!ec_hdr) 1175 return -ENOMEM; 1176 1177 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1178 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1179 goto exit; 1180 1181 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1182 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1183 if (hdr_crc != crc) { 1184 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", 1185 crc, hdr_crc); 1186 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1187 ubi_dump_ec_hdr(ec_hdr); 1188 dump_stack(); 1189 err = -EINVAL; 1190 goto exit; 1191 } 1192 1193 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1194 1195 exit: 1196 kfree(ec_hdr); 1197 return err; 1198 } 1199 1200 /** 1201 * self_check_vid_hdr - check that a volume identifier header is all right. 1202 * @ubi: UBI device description object 1203 * @pnum: physical eraseblock number the volume identifier header belongs to 1204 * @vid_hdr: the volume identifier header to check 1205 * 1206 * This function returns zero if the volume identifier header is all right, and 1207 * %-EINVAL if not. 1208 */ 1209 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1210 const struct ubi_vid_hdr *vid_hdr) 1211 { 1212 int err; 1213 uint32_t magic; 1214 1215 if (!ubi_dbg_chk_io(ubi)) 1216 return 0; 1217 1218 magic = be32_to_cpu(vid_hdr->magic); 1219 if (magic != UBI_VID_HDR_MAGIC) { 1220 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", 1221 magic, pnum, UBI_VID_HDR_MAGIC); 1222 goto fail; 1223 } 1224 1225 err = validate_vid_hdr(ubi, vid_hdr); 1226 if (err) { 1227 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1228 goto fail; 1229 } 1230 1231 return err; 1232 1233 fail: 1234 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1235 ubi_dump_vid_hdr(vid_hdr); 1236 dump_stack(); 1237 return -EINVAL; 1238 1239 } 1240 1241 /** 1242 * self_check_peb_vid_hdr - check volume identifier header. 1243 * @ubi: UBI device description object 1244 * @pnum: the physical eraseblock number to check 1245 * 1246 * This function returns zero if the volume identifier header is all right, 1247 * and a negative error code if not or if an error occurred. 1248 */ 1249 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1250 { 1251 int err; 1252 uint32_t crc, hdr_crc; 1253 struct ubi_vid_io_buf *vidb; 1254 struct ubi_vid_hdr *vid_hdr; 1255 void *p; 1256 1257 if (!ubi_dbg_chk_io(ubi)) 1258 return 0; 1259 1260 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 1261 if (!vidb) 1262 return -ENOMEM; 1263 1264 vid_hdr = ubi_get_vid_hdr(vidb); 1265 p = vidb->buffer; 1266 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1267 ubi->vid_hdr_alsize); 1268 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1269 goto exit; 1270 1271 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1272 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1273 if (hdr_crc != crc) { 1274 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1275 pnum, crc, hdr_crc); 1276 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1277 ubi_dump_vid_hdr(vid_hdr); 1278 dump_stack(); 1279 err = -EINVAL; 1280 goto exit; 1281 } 1282 1283 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1284 1285 exit: 1286 ubi_free_vid_buf(vidb); 1287 return err; 1288 } 1289 1290 /** 1291 * self_check_write - make sure write succeeded. 1292 * @ubi: UBI device description object 1293 * @buf: buffer with data which were written 1294 * @pnum: physical eraseblock number the data were written to 1295 * @offset: offset within the physical eraseblock the data were written to 1296 * @len: how many bytes were written 1297 * 1298 * This functions reads data which were recently written and compares it with 1299 * the original data buffer - the data have to match. Returns zero if the data 1300 * match and a negative error code if not or in case of failure. 1301 */ 1302 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1303 int offset, int len) 1304 { 1305 int err, i; 1306 size_t read; 1307 void *buf1; 1308 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1309 1310 if (!ubi_dbg_chk_io(ubi)) 1311 return 0; 1312 1313 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1314 if (!buf1) { 1315 ubi_err(ubi, "cannot allocate memory to check writes"); 1316 return 0; 1317 } 1318 1319 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1320 if (err && !mtd_is_bitflip(err)) 1321 goto out_free; 1322 1323 for (i = 0; i < len; i++) { 1324 uint8_t c = ((uint8_t *)buf)[i]; 1325 uint8_t c1 = ((uint8_t *)buf1)[i]; 1326 int dump_len; 1327 1328 if (c == c1) 1329 continue; 1330 1331 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", 1332 pnum, offset, len); 1333 ubi_msg(ubi, "data differ at position %d", i); 1334 dump_len = max_t(int, 128, len - i); 1335 ubi_msg(ubi, "hex dump of the original buffer from %d to %d", 1336 i, i + dump_len); 1337 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1338 buf + i, dump_len, 1); 1339 ubi_msg(ubi, "hex dump of the read buffer from %d to %d", 1340 i, i + dump_len); 1341 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1342 buf1 + i, dump_len, 1); 1343 dump_stack(); 1344 err = -EINVAL; 1345 goto out_free; 1346 } 1347 1348 vfree(buf1); 1349 return 0; 1350 1351 out_free: 1352 vfree(buf1); 1353 return err; 1354 } 1355 1356 /** 1357 * ubi_self_check_all_ff - check that a region of flash is empty. 1358 * @ubi: UBI device description object 1359 * @pnum: the physical eraseblock number to check 1360 * @offset: the starting offset within the physical eraseblock to check 1361 * @len: the length of the region to check 1362 * 1363 * This function returns zero if only 0xFF bytes are present at offset 1364 * @offset of the physical eraseblock @pnum, and a negative error code if not 1365 * or if an error occurred. 1366 */ 1367 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1368 { 1369 size_t read; 1370 int err; 1371 void *buf; 1372 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1373 1374 if (!ubi_dbg_chk_io(ubi)) 1375 return 0; 1376 1377 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1378 if (!buf) { 1379 ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); 1380 return 0; 1381 } 1382 1383 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1384 if (err && !mtd_is_bitflip(err)) { 1385 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1386 err, len, pnum, offset, read); 1387 goto error; 1388 } 1389 1390 err = ubi_check_pattern(buf, 0xFF, len); 1391 if (err == 0) { 1392 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1393 pnum, offset, len); 1394 goto fail; 1395 } 1396 1397 vfree(buf); 1398 return 0; 1399 1400 fail: 1401 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1402 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); 1403 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1404 err = -EINVAL; 1405 error: 1406 dump_stack(); 1407 vfree(buf); 1408 return err; 1409 } 1410