xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 95298d63)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2006, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 /*
10  * UBI input/output sub-system.
11  *
12  * This sub-system provides a uniform way to work with all kinds of the
13  * underlying MTD devices. It also implements handy functions for reading and
14  * writing UBI headers.
15  *
16  * We are trying to have a paranoid mindset and not to trust to what we read
17  * from the flash media in order to be more secure and robust. So this
18  * sub-system validates every single header it reads from the flash media.
19  *
20  * Some words about how the eraseblock headers are stored.
21  *
22  * The erase counter header is always stored at offset zero. By default, the
23  * VID header is stored after the EC header at the closest aligned offset
24  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25  * header at the closest aligned offset. But this default layout may be
26  * changed. For example, for different reasons (e.g., optimization) UBI may be
27  * asked to put the VID header at further offset, and even at an unaligned
28  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29  * proper padding in front of it. Data offset may also be changed but it has to
30  * be aligned.
31  *
32  * About minimal I/O units. In general, UBI assumes flash device model where
33  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35  * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
36  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37  * to do different optimizations.
38  *
39  * This is extremely useful in case of NAND flashes which admit of several
40  * write operations to one NAND page. In this case UBI can fit EC and VID
41  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
44  * users.
45  *
46  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
48  * headers.
49  *
50  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51  * device, e.g., make @ubi->min_io_size = 512 in the example above?
52  *
53  * A: because when writing a sub-page, MTD still writes a full 2K page but the
54  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56  * Thus, we prefer to use sub-pages only for EC and VID headers.
57  *
58  * As it was noted above, the VID header may start at a non-aligned offset.
59  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60  * the VID header may reside at offset 1984 which is the last 64 bytes of the
61  * last sub-page (EC header is always at offset zero). This causes some
62  * difficulties when reading and writing VID headers.
63  *
64  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65  * the data and want to write this VID header out. As we can only write in
66  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67  * to offset 448 of this buffer.
68  *
69  * The I/O sub-system does the following trick in order to avoid this extra
70  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72  * When the VID header is being written out, it shifts the VID header pointer
73  * back and writes the whole sub-page.
74  */
75 
76 #include <linux/crc32.h>
77 #include <linux/err.h>
78 #include <linux/slab.h>
79 #include "ubi.h"
80 
81 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
82 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
83 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
84 			     const struct ubi_ec_hdr *ec_hdr);
85 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
86 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
87 			      const struct ubi_vid_hdr *vid_hdr);
88 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
89 			    int offset, int len);
90 
91 /**
92  * ubi_io_read - read data from a physical eraseblock.
93  * @ubi: UBI device description object
94  * @buf: buffer where to store the read data
95  * @pnum: physical eraseblock number to read from
96  * @offset: offset within the physical eraseblock from where to read
97  * @len: how many bytes to read
98  *
99  * This function reads data from offset @offset of physical eraseblock @pnum
100  * and stores the read data in the @buf buffer. The following return codes are
101  * possible:
102  *
103  * o %0 if all the requested data were successfully read;
104  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
105  *   correctable bit-flips were detected; this is harmless but may indicate
106  *   that this eraseblock may become bad soon (but do not have to);
107  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
108  *   example it can be an ECC error in case of NAND; this most probably means
109  *   that the data is corrupted;
110  * o %-EIO if some I/O error occurred;
111  * o other negative error codes in case of other errors.
112  */
113 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
114 		int len)
115 {
116 	int err, retries = 0;
117 	size_t read;
118 	loff_t addr;
119 
120 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
121 
122 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
123 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
124 	ubi_assert(len > 0);
125 
126 	err = self_check_not_bad(ubi, pnum);
127 	if (err)
128 		return err;
129 
130 	/*
131 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
132 	 * do not do this, the following may happen:
133 	 * 1. The buffer contains data from previous operation, e.g., read from
134 	 *    another PEB previously. The data looks like expected, e.g., if we
135 	 *    just do not read anything and return - the caller would not
136 	 *    notice this. E.g., if we are reading a VID header, the buffer may
137 	 *    contain a valid VID header from another PEB.
138 	 * 2. The driver is buggy and returns us success or -EBADMSG or
139 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
140 	 *
141 	 * This may confuse UBI or upper layers - they may think the buffer
142 	 * contains valid data while in fact it is just old data. This is
143 	 * especially possible because UBI (and UBIFS) relies on CRC, and
144 	 * treats data as correct even in case of ECC errors if the CRC is
145 	 * correct.
146 	 *
147 	 * Try to prevent this situation by changing the first byte of the
148 	 * buffer.
149 	 */
150 	*((uint8_t *)buf) ^= 0xFF;
151 
152 	addr = (loff_t)pnum * ubi->peb_size + offset;
153 retry:
154 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
155 	if (err) {
156 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
157 
158 		if (mtd_is_bitflip(err)) {
159 			/*
160 			 * -EUCLEAN is reported if there was a bit-flip which
161 			 * was corrected, so this is harmless.
162 			 *
163 			 * We do not report about it here unless debugging is
164 			 * enabled. A corresponding message will be printed
165 			 * later, when it is has been scrubbed.
166 			 */
167 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
168 				pnum);
169 			ubi_assert(len == read);
170 			return UBI_IO_BITFLIPS;
171 		}
172 
173 		if (retries++ < UBI_IO_RETRIES) {
174 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
175 				 err, errstr, len, pnum, offset, read);
176 			yield();
177 			goto retry;
178 		}
179 
180 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
181 			err, errstr, len, pnum, offset, read);
182 		dump_stack();
183 
184 		/*
185 		 * The driver should never return -EBADMSG if it failed to read
186 		 * all the requested data. But some buggy drivers might do
187 		 * this, so we change it to -EIO.
188 		 */
189 		if (read != len && mtd_is_eccerr(err)) {
190 			ubi_assert(0);
191 			err = -EIO;
192 		}
193 	} else {
194 		ubi_assert(len == read);
195 
196 		if (ubi_dbg_is_bitflip(ubi)) {
197 			dbg_gen("bit-flip (emulated)");
198 			err = UBI_IO_BITFLIPS;
199 		}
200 	}
201 
202 	return err;
203 }
204 
205 /**
206  * ubi_io_write - write data to a physical eraseblock.
207  * @ubi: UBI device description object
208  * @buf: buffer with the data to write
209  * @pnum: physical eraseblock number to write to
210  * @offset: offset within the physical eraseblock where to write
211  * @len: how many bytes to write
212  *
213  * This function writes @len bytes of data from buffer @buf to offset @offset
214  * of physical eraseblock @pnum. If all the data were successfully written,
215  * zero is returned. If an error occurred, this function returns a negative
216  * error code. If %-EIO is returned, the physical eraseblock most probably went
217  * bad.
218  *
219  * Note, in case of an error, it is possible that something was still written
220  * to the flash media, but may be some garbage.
221  */
222 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
223 		 int len)
224 {
225 	int err;
226 	size_t written;
227 	loff_t addr;
228 
229 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
230 
231 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
232 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
233 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
234 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
235 
236 	if (ubi->ro_mode) {
237 		ubi_err(ubi, "read-only mode");
238 		return -EROFS;
239 	}
240 
241 	err = self_check_not_bad(ubi, pnum);
242 	if (err)
243 		return err;
244 
245 	/* The area we are writing to has to contain all 0xFF bytes */
246 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
247 	if (err)
248 		return err;
249 
250 	if (offset >= ubi->leb_start) {
251 		/*
252 		 * We write to the data area of the physical eraseblock. Make
253 		 * sure it has valid EC and VID headers.
254 		 */
255 		err = self_check_peb_ec_hdr(ubi, pnum);
256 		if (err)
257 			return err;
258 		err = self_check_peb_vid_hdr(ubi, pnum);
259 		if (err)
260 			return err;
261 	}
262 
263 	if (ubi_dbg_is_write_failure(ubi)) {
264 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
265 			len, pnum, offset);
266 		dump_stack();
267 		return -EIO;
268 	}
269 
270 	addr = (loff_t)pnum * ubi->peb_size + offset;
271 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
272 	if (err) {
273 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
274 			err, len, pnum, offset, written);
275 		dump_stack();
276 		ubi_dump_flash(ubi, pnum, offset, len);
277 	} else
278 		ubi_assert(written == len);
279 
280 	if (!err) {
281 		err = self_check_write(ubi, buf, pnum, offset, len);
282 		if (err)
283 			return err;
284 
285 		/*
286 		 * Since we always write sequentially, the rest of the PEB has
287 		 * to contain only 0xFF bytes.
288 		 */
289 		offset += len;
290 		len = ubi->peb_size - offset;
291 		if (len)
292 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
293 	}
294 
295 	return err;
296 }
297 
298 /**
299  * do_sync_erase - synchronously erase a physical eraseblock.
300  * @ubi: UBI device description object
301  * @pnum: the physical eraseblock number to erase
302  *
303  * This function synchronously erases physical eraseblock @pnum and returns
304  * zero in case of success and a negative error code in case of failure. If
305  * %-EIO is returned, the physical eraseblock most probably went bad.
306  */
307 static int do_sync_erase(struct ubi_device *ubi, int pnum)
308 {
309 	int err, retries = 0;
310 	struct erase_info ei;
311 
312 	dbg_io("erase PEB %d", pnum);
313 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
314 
315 	if (ubi->ro_mode) {
316 		ubi_err(ubi, "read-only mode");
317 		return -EROFS;
318 	}
319 
320 retry:
321 	memset(&ei, 0, sizeof(struct erase_info));
322 
323 	ei.addr     = (loff_t)pnum * ubi->peb_size;
324 	ei.len      = ubi->peb_size;
325 
326 	err = mtd_erase(ubi->mtd, &ei);
327 	if (err) {
328 		if (retries++ < UBI_IO_RETRIES) {
329 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
330 				 err, pnum);
331 			yield();
332 			goto retry;
333 		}
334 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
335 		dump_stack();
336 		return err;
337 	}
338 
339 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
340 	if (err)
341 		return err;
342 
343 	if (ubi_dbg_is_erase_failure(ubi)) {
344 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
345 		return -EIO;
346 	}
347 
348 	return 0;
349 }
350 
351 /* Patterns to write to a physical eraseblock when torturing it */
352 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
353 
354 /**
355  * torture_peb - test a supposedly bad physical eraseblock.
356  * @ubi: UBI device description object
357  * @pnum: the physical eraseblock number to test
358  *
359  * This function returns %-EIO if the physical eraseblock did not pass the
360  * test, a positive number of erase operations done if the test was
361  * successfully passed, and other negative error codes in case of other errors.
362  */
363 static int torture_peb(struct ubi_device *ubi, int pnum)
364 {
365 	int err, i, patt_count;
366 
367 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
368 	patt_count = ARRAY_SIZE(patterns);
369 	ubi_assert(patt_count > 0);
370 
371 	mutex_lock(&ubi->buf_mutex);
372 	for (i = 0; i < patt_count; i++) {
373 		err = do_sync_erase(ubi, pnum);
374 		if (err)
375 			goto out;
376 
377 		/* Make sure the PEB contains only 0xFF bytes */
378 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
379 		if (err)
380 			goto out;
381 
382 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
383 		if (err == 0) {
384 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
385 				pnum);
386 			err = -EIO;
387 			goto out;
388 		}
389 
390 		/* Write a pattern and check it */
391 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
392 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
393 		if (err)
394 			goto out;
395 
396 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
397 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
398 		if (err)
399 			goto out;
400 
401 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
402 					ubi->peb_size);
403 		if (err == 0) {
404 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
405 				patterns[i], pnum);
406 			err = -EIO;
407 			goto out;
408 		}
409 	}
410 
411 	err = patt_count;
412 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
413 
414 out:
415 	mutex_unlock(&ubi->buf_mutex);
416 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
417 		/*
418 		 * If a bit-flip or data integrity error was detected, the test
419 		 * has not passed because it happened on a freshly erased
420 		 * physical eraseblock which means something is wrong with it.
421 		 */
422 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
423 			pnum);
424 		err = -EIO;
425 	}
426 	return err;
427 }
428 
429 /**
430  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
431  * @ubi: UBI device description object
432  * @pnum: physical eraseblock number to prepare
433  *
434  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
435  * algorithm: the PEB is first filled with zeroes, then it is erased. And
436  * filling with zeroes starts from the end of the PEB. This was observed with
437  * Spansion S29GL512N NOR flash.
438  *
439  * This means that in case of a power cut we may end up with intact data at the
440  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
441  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
442  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
443  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
444  *
445  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
446  * magic numbers in order to invalidate them and prevent the failures. Returns
447  * zero in case of success and a negative error code in case of failure.
448  */
449 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
450 {
451 	int err;
452 	size_t written;
453 	loff_t addr;
454 	uint32_t data = 0;
455 	struct ubi_ec_hdr ec_hdr;
456 	struct ubi_vid_io_buf vidb;
457 
458 	/*
459 	 * Note, we cannot generally define VID header buffers on stack,
460 	 * because of the way we deal with these buffers (see the header
461 	 * comment in this file). But we know this is a NOR-specific piece of
462 	 * code, so we can do this. But yes, this is error-prone and we should
463 	 * (pre-)allocate VID header buffer instead.
464 	 */
465 	struct ubi_vid_hdr vid_hdr;
466 
467 	/*
468 	 * If VID or EC is valid, we have to corrupt them before erasing.
469 	 * It is important to first invalidate the EC header, and then the VID
470 	 * header. Otherwise a power cut may lead to valid EC header and
471 	 * invalid VID header, in which case UBI will treat this PEB as
472 	 * corrupted and will try to preserve it, and print scary warnings.
473 	 */
474 	addr = (loff_t)pnum * ubi->peb_size;
475 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
476 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
477 	    err != UBI_IO_FF){
478 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
479 		if(err)
480 			goto error;
481 	}
482 
483 	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
484 	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
485 
486 	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
487 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
488 	    err != UBI_IO_FF){
489 		addr += ubi->vid_hdr_aloffset;
490 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
491 		if (err)
492 			goto error;
493 	}
494 	return 0;
495 
496 error:
497 	/*
498 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
499 	 * it. Supposedly the flash media or the driver is screwed up, so
500 	 * return an error.
501 	 */
502 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
503 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
504 	return -EIO;
505 }
506 
507 /**
508  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
509  * @ubi: UBI device description object
510  * @pnum: physical eraseblock number to erase
511  * @torture: if this physical eraseblock has to be tortured
512  *
513  * This function synchronously erases physical eraseblock @pnum. If @torture
514  * flag is not zero, the physical eraseblock is checked by means of writing
515  * different patterns to it and reading them back. If the torturing is enabled,
516  * the physical eraseblock is erased more than once.
517  *
518  * This function returns the number of erasures made in case of success, %-EIO
519  * if the erasure failed or the torturing test failed, and other negative error
520  * codes in case of other errors. Note, %-EIO means that the physical
521  * eraseblock is bad.
522  */
523 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
524 {
525 	int err, ret = 0;
526 
527 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
528 
529 	err = self_check_not_bad(ubi, pnum);
530 	if (err != 0)
531 		return err;
532 
533 	if (ubi->ro_mode) {
534 		ubi_err(ubi, "read-only mode");
535 		return -EROFS;
536 	}
537 
538 	if (ubi->nor_flash) {
539 		err = nor_erase_prepare(ubi, pnum);
540 		if (err)
541 			return err;
542 	}
543 
544 	if (torture) {
545 		ret = torture_peb(ubi, pnum);
546 		if (ret < 0)
547 			return ret;
548 	}
549 
550 	err = do_sync_erase(ubi, pnum);
551 	if (err)
552 		return err;
553 
554 	return ret + 1;
555 }
556 
557 /**
558  * ubi_io_is_bad - check if a physical eraseblock is bad.
559  * @ubi: UBI device description object
560  * @pnum: the physical eraseblock number to check
561  *
562  * This function returns a positive number if the physical eraseblock is bad,
563  * zero if not, and a negative error code if an error occurred.
564  */
565 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
566 {
567 	struct mtd_info *mtd = ubi->mtd;
568 
569 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
570 
571 	if (ubi->bad_allowed) {
572 		int ret;
573 
574 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
575 		if (ret < 0)
576 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
577 				ret, pnum);
578 		else if (ret)
579 			dbg_io("PEB %d is bad", pnum);
580 		return ret;
581 	}
582 
583 	return 0;
584 }
585 
586 /**
587  * ubi_io_mark_bad - mark a physical eraseblock as bad.
588  * @ubi: UBI device description object
589  * @pnum: the physical eraseblock number to mark
590  *
591  * This function returns zero in case of success and a negative error code in
592  * case of failure.
593  */
594 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
595 {
596 	int err;
597 	struct mtd_info *mtd = ubi->mtd;
598 
599 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
600 
601 	if (ubi->ro_mode) {
602 		ubi_err(ubi, "read-only mode");
603 		return -EROFS;
604 	}
605 
606 	if (!ubi->bad_allowed)
607 		return 0;
608 
609 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
610 	if (err)
611 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
612 	return err;
613 }
614 
615 /**
616  * validate_ec_hdr - validate an erase counter header.
617  * @ubi: UBI device description object
618  * @ec_hdr: the erase counter header to check
619  *
620  * This function returns zero if the erase counter header is OK, and %1 if
621  * not.
622  */
623 static int validate_ec_hdr(const struct ubi_device *ubi,
624 			   const struct ubi_ec_hdr *ec_hdr)
625 {
626 	long long ec;
627 	int vid_hdr_offset, leb_start;
628 
629 	ec = be64_to_cpu(ec_hdr->ec);
630 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
631 	leb_start = be32_to_cpu(ec_hdr->data_offset);
632 
633 	if (ec_hdr->version != UBI_VERSION) {
634 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
635 			UBI_VERSION, (int)ec_hdr->version);
636 		goto bad;
637 	}
638 
639 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
640 		ubi_err(ubi, "bad VID header offset %d, expected %d",
641 			vid_hdr_offset, ubi->vid_hdr_offset);
642 		goto bad;
643 	}
644 
645 	if (leb_start != ubi->leb_start) {
646 		ubi_err(ubi, "bad data offset %d, expected %d",
647 			leb_start, ubi->leb_start);
648 		goto bad;
649 	}
650 
651 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
652 		ubi_err(ubi, "bad erase counter %lld", ec);
653 		goto bad;
654 	}
655 
656 	return 0;
657 
658 bad:
659 	ubi_err(ubi, "bad EC header");
660 	ubi_dump_ec_hdr(ec_hdr);
661 	dump_stack();
662 	return 1;
663 }
664 
665 /**
666  * ubi_io_read_ec_hdr - read and check an erase counter header.
667  * @ubi: UBI device description object
668  * @pnum: physical eraseblock to read from
669  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
670  * header
671  * @verbose: be verbose if the header is corrupted or was not found
672  *
673  * This function reads erase counter header from physical eraseblock @pnum and
674  * stores it in @ec_hdr. This function also checks CRC checksum of the read
675  * erase counter header. The following codes may be returned:
676  *
677  * o %0 if the CRC checksum is correct and the header was successfully read;
678  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
679  *   and corrected by the flash driver; this is harmless but may indicate that
680  *   this eraseblock may become bad soon (but may be not);
681  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
682  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
683  *   a data integrity error (uncorrectable ECC error in case of NAND);
684  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
685  * o a negative error code in case of failure.
686  */
687 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
688 		       struct ubi_ec_hdr *ec_hdr, int verbose)
689 {
690 	int err, read_err;
691 	uint32_t crc, magic, hdr_crc;
692 
693 	dbg_io("read EC header from PEB %d", pnum);
694 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
695 
696 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
697 	if (read_err) {
698 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
699 			return read_err;
700 
701 		/*
702 		 * We read all the data, but either a correctable bit-flip
703 		 * occurred, or MTD reported a data integrity error
704 		 * (uncorrectable ECC error in case of NAND). The former is
705 		 * harmless, the later may mean that the read data is
706 		 * corrupted. But we have a CRC check-sum and we will detect
707 		 * this. If the EC header is still OK, we just report this as
708 		 * there was a bit-flip, to force scrubbing.
709 		 */
710 	}
711 
712 	magic = be32_to_cpu(ec_hdr->magic);
713 	if (magic != UBI_EC_HDR_MAGIC) {
714 		if (mtd_is_eccerr(read_err))
715 			return UBI_IO_BAD_HDR_EBADMSG;
716 
717 		/*
718 		 * The magic field is wrong. Let's check if we have read all
719 		 * 0xFF. If yes, this physical eraseblock is assumed to be
720 		 * empty.
721 		 */
722 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
723 			/* The physical eraseblock is supposedly empty */
724 			if (verbose)
725 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
726 					 pnum);
727 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
728 				pnum);
729 			if (!read_err)
730 				return UBI_IO_FF;
731 			else
732 				return UBI_IO_FF_BITFLIPS;
733 		}
734 
735 		/*
736 		 * This is not a valid erase counter header, and these are not
737 		 * 0xFF bytes. Report that the header is corrupted.
738 		 */
739 		if (verbose) {
740 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
741 				 pnum, magic, UBI_EC_HDR_MAGIC);
742 			ubi_dump_ec_hdr(ec_hdr);
743 		}
744 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
745 			pnum, magic, UBI_EC_HDR_MAGIC);
746 		return UBI_IO_BAD_HDR;
747 	}
748 
749 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
750 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
751 
752 	if (hdr_crc != crc) {
753 		if (verbose) {
754 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
755 				 pnum, crc, hdr_crc);
756 			ubi_dump_ec_hdr(ec_hdr);
757 		}
758 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
759 			pnum, crc, hdr_crc);
760 
761 		if (!read_err)
762 			return UBI_IO_BAD_HDR;
763 		else
764 			return UBI_IO_BAD_HDR_EBADMSG;
765 	}
766 
767 	/* And of course validate what has just been read from the media */
768 	err = validate_ec_hdr(ubi, ec_hdr);
769 	if (err) {
770 		ubi_err(ubi, "validation failed for PEB %d", pnum);
771 		return -EINVAL;
772 	}
773 
774 	/*
775 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
776 	 * a bit-flip to force scrubbing on this PEB.
777 	 */
778 	return read_err ? UBI_IO_BITFLIPS : 0;
779 }
780 
781 /**
782  * ubi_io_write_ec_hdr - write an erase counter header.
783  * @ubi: UBI device description object
784  * @pnum: physical eraseblock to write to
785  * @ec_hdr: the erase counter header to write
786  *
787  * This function writes erase counter header described by @ec_hdr to physical
788  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
789  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
790  * field.
791  *
792  * This function returns zero in case of success and a negative error code in
793  * case of failure. If %-EIO is returned, the physical eraseblock most probably
794  * went bad.
795  */
796 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
797 			struct ubi_ec_hdr *ec_hdr)
798 {
799 	int err;
800 	uint32_t crc;
801 
802 	dbg_io("write EC header to PEB %d", pnum);
803 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
804 
805 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
806 	ec_hdr->version = UBI_VERSION;
807 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
808 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
809 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
810 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
811 	ec_hdr->hdr_crc = cpu_to_be32(crc);
812 
813 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
814 	if (err)
815 		return err;
816 
817 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
818 		return -EROFS;
819 
820 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
821 	return err;
822 }
823 
824 /**
825  * validate_vid_hdr - validate a volume identifier header.
826  * @ubi: UBI device description object
827  * @vid_hdr: the volume identifier header to check
828  *
829  * This function checks that data stored in the volume identifier header
830  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
831  */
832 static int validate_vid_hdr(const struct ubi_device *ubi,
833 			    const struct ubi_vid_hdr *vid_hdr)
834 {
835 	int vol_type = vid_hdr->vol_type;
836 	int copy_flag = vid_hdr->copy_flag;
837 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
838 	int lnum = be32_to_cpu(vid_hdr->lnum);
839 	int compat = vid_hdr->compat;
840 	int data_size = be32_to_cpu(vid_hdr->data_size);
841 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
842 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
843 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
844 	int usable_leb_size = ubi->leb_size - data_pad;
845 
846 	if (copy_flag != 0 && copy_flag != 1) {
847 		ubi_err(ubi, "bad copy_flag");
848 		goto bad;
849 	}
850 
851 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
852 	    data_pad < 0) {
853 		ubi_err(ubi, "negative values");
854 		goto bad;
855 	}
856 
857 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
858 		ubi_err(ubi, "bad vol_id");
859 		goto bad;
860 	}
861 
862 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
863 		ubi_err(ubi, "bad compat");
864 		goto bad;
865 	}
866 
867 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
868 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
869 	    compat != UBI_COMPAT_REJECT) {
870 		ubi_err(ubi, "bad compat");
871 		goto bad;
872 	}
873 
874 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
875 		ubi_err(ubi, "bad vol_type");
876 		goto bad;
877 	}
878 
879 	if (data_pad >= ubi->leb_size / 2) {
880 		ubi_err(ubi, "bad data_pad");
881 		goto bad;
882 	}
883 
884 	if (data_size > ubi->leb_size) {
885 		ubi_err(ubi, "bad data_size");
886 		goto bad;
887 	}
888 
889 	if (vol_type == UBI_VID_STATIC) {
890 		/*
891 		 * Although from high-level point of view static volumes may
892 		 * contain zero bytes of data, but no VID headers can contain
893 		 * zero at these fields, because they empty volumes do not have
894 		 * mapped logical eraseblocks.
895 		 */
896 		if (used_ebs == 0) {
897 			ubi_err(ubi, "zero used_ebs");
898 			goto bad;
899 		}
900 		if (data_size == 0) {
901 			ubi_err(ubi, "zero data_size");
902 			goto bad;
903 		}
904 		if (lnum < used_ebs - 1) {
905 			if (data_size != usable_leb_size) {
906 				ubi_err(ubi, "bad data_size");
907 				goto bad;
908 			}
909 		} else if (lnum == used_ebs - 1) {
910 			if (data_size == 0) {
911 				ubi_err(ubi, "bad data_size at last LEB");
912 				goto bad;
913 			}
914 		} else {
915 			ubi_err(ubi, "too high lnum");
916 			goto bad;
917 		}
918 	} else {
919 		if (copy_flag == 0) {
920 			if (data_crc != 0) {
921 				ubi_err(ubi, "non-zero data CRC");
922 				goto bad;
923 			}
924 			if (data_size != 0) {
925 				ubi_err(ubi, "non-zero data_size");
926 				goto bad;
927 			}
928 		} else {
929 			if (data_size == 0) {
930 				ubi_err(ubi, "zero data_size of copy");
931 				goto bad;
932 			}
933 		}
934 		if (used_ebs != 0) {
935 			ubi_err(ubi, "bad used_ebs");
936 			goto bad;
937 		}
938 	}
939 
940 	return 0;
941 
942 bad:
943 	ubi_err(ubi, "bad VID header");
944 	ubi_dump_vid_hdr(vid_hdr);
945 	dump_stack();
946 	return 1;
947 }
948 
949 /**
950  * ubi_io_read_vid_hdr - read and check a volume identifier header.
951  * @ubi: UBI device description object
952  * @pnum: physical eraseblock number to read from
953  * @vidb: the volume identifier buffer to store data in
954  * @verbose: be verbose if the header is corrupted or wasn't found
955  *
956  * This function reads the volume identifier header from physical eraseblock
957  * @pnum and stores it in @vidb. It also checks CRC checksum of the read
958  * volume identifier header. The error codes are the same as in
959  * 'ubi_io_read_ec_hdr()'.
960  *
961  * Note, the implementation of this function is also very similar to
962  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
963  */
964 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
965 			struct ubi_vid_io_buf *vidb, int verbose)
966 {
967 	int err, read_err;
968 	uint32_t crc, magic, hdr_crc;
969 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
970 	void *p = vidb->buffer;
971 
972 	dbg_io("read VID header from PEB %d", pnum);
973 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
974 
975 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
976 			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
977 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
978 		return read_err;
979 
980 	magic = be32_to_cpu(vid_hdr->magic);
981 	if (magic != UBI_VID_HDR_MAGIC) {
982 		if (mtd_is_eccerr(read_err))
983 			return UBI_IO_BAD_HDR_EBADMSG;
984 
985 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
986 			if (verbose)
987 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
988 					 pnum);
989 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
990 				pnum);
991 			if (!read_err)
992 				return UBI_IO_FF;
993 			else
994 				return UBI_IO_FF_BITFLIPS;
995 		}
996 
997 		if (verbose) {
998 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
999 				 pnum, magic, UBI_VID_HDR_MAGIC);
1000 			ubi_dump_vid_hdr(vid_hdr);
1001 		}
1002 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1003 			pnum, magic, UBI_VID_HDR_MAGIC);
1004 		return UBI_IO_BAD_HDR;
1005 	}
1006 
1007 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1008 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1009 
1010 	if (hdr_crc != crc) {
1011 		if (verbose) {
1012 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1013 				 pnum, crc, hdr_crc);
1014 			ubi_dump_vid_hdr(vid_hdr);
1015 		}
1016 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1017 			pnum, crc, hdr_crc);
1018 		if (!read_err)
1019 			return UBI_IO_BAD_HDR;
1020 		else
1021 			return UBI_IO_BAD_HDR_EBADMSG;
1022 	}
1023 
1024 	err = validate_vid_hdr(ubi, vid_hdr);
1025 	if (err) {
1026 		ubi_err(ubi, "validation failed for PEB %d", pnum);
1027 		return -EINVAL;
1028 	}
1029 
1030 	return read_err ? UBI_IO_BITFLIPS : 0;
1031 }
1032 
1033 /**
1034  * ubi_io_write_vid_hdr - write a volume identifier header.
1035  * @ubi: UBI device description object
1036  * @pnum: the physical eraseblock number to write to
1037  * @vidb: the volume identifier buffer to write
1038  *
1039  * This function writes the volume identifier header described by @vid_hdr to
1040  * physical eraseblock @pnum. This function automatically fills the
1041  * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1042  * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1043  *
1044  * This function returns zero in case of success and a negative error code in
1045  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1046  * bad.
1047  */
1048 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1049 			 struct ubi_vid_io_buf *vidb)
1050 {
1051 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1052 	int err;
1053 	uint32_t crc;
1054 	void *p = vidb->buffer;
1055 
1056 	dbg_io("write VID header to PEB %d", pnum);
1057 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1058 
1059 	err = self_check_peb_ec_hdr(ubi, pnum);
1060 	if (err)
1061 		return err;
1062 
1063 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1064 	vid_hdr->version = UBI_VERSION;
1065 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1066 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1067 
1068 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1069 	if (err)
1070 		return err;
1071 
1072 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1073 		return -EROFS;
1074 
1075 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1076 			   ubi->vid_hdr_alsize);
1077 	return err;
1078 }
1079 
1080 /**
1081  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1082  * @ubi: UBI device description object
1083  * @pnum: physical eraseblock number to check
1084  *
1085  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1086  * it is bad and a negative error code if an error occurred.
1087  */
1088 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1089 {
1090 	int err;
1091 
1092 	if (!ubi_dbg_chk_io(ubi))
1093 		return 0;
1094 
1095 	err = ubi_io_is_bad(ubi, pnum);
1096 	if (!err)
1097 		return err;
1098 
1099 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1100 	dump_stack();
1101 	return err > 0 ? -EINVAL : err;
1102 }
1103 
1104 /**
1105  * self_check_ec_hdr - check if an erase counter header is all right.
1106  * @ubi: UBI device description object
1107  * @pnum: physical eraseblock number the erase counter header belongs to
1108  * @ec_hdr: the erase counter header to check
1109  *
1110  * This function returns zero if the erase counter header contains valid
1111  * values, and %-EINVAL if not.
1112  */
1113 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1114 			     const struct ubi_ec_hdr *ec_hdr)
1115 {
1116 	int err;
1117 	uint32_t magic;
1118 
1119 	if (!ubi_dbg_chk_io(ubi))
1120 		return 0;
1121 
1122 	magic = be32_to_cpu(ec_hdr->magic);
1123 	if (magic != UBI_EC_HDR_MAGIC) {
1124 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1125 			magic, UBI_EC_HDR_MAGIC);
1126 		goto fail;
1127 	}
1128 
1129 	err = validate_ec_hdr(ubi, ec_hdr);
1130 	if (err) {
1131 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1132 		goto fail;
1133 	}
1134 
1135 	return 0;
1136 
1137 fail:
1138 	ubi_dump_ec_hdr(ec_hdr);
1139 	dump_stack();
1140 	return -EINVAL;
1141 }
1142 
1143 /**
1144  * self_check_peb_ec_hdr - check erase counter header.
1145  * @ubi: UBI device description object
1146  * @pnum: the physical eraseblock number to check
1147  *
1148  * This function returns zero if the erase counter header is all right and and
1149  * a negative error code if not or if an error occurred.
1150  */
1151 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1152 {
1153 	int err;
1154 	uint32_t crc, hdr_crc;
1155 	struct ubi_ec_hdr *ec_hdr;
1156 
1157 	if (!ubi_dbg_chk_io(ubi))
1158 		return 0;
1159 
1160 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1161 	if (!ec_hdr)
1162 		return -ENOMEM;
1163 
1164 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1165 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1166 		goto exit;
1167 
1168 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1169 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1170 	if (hdr_crc != crc) {
1171 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1172 			crc, hdr_crc);
1173 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1174 		ubi_dump_ec_hdr(ec_hdr);
1175 		dump_stack();
1176 		err = -EINVAL;
1177 		goto exit;
1178 	}
1179 
1180 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1181 
1182 exit:
1183 	kfree(ec_hdr);
1184 	return err;
1185 }
1186 
1187 /**
1188  * self_check_vid_hdr - check that a volume identifier header is all right.
1189  * @ubi: UBI device description object
1190  * @pnum: physical eraseblock number the volume identifier header belongs to
1191  * @vid_hdr: the volume identifier header to check
1192  *
1193  * This function returns zero if the volume identifier header is all right, and
1194  * %-EINVAL if not.
1195  */
1196 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1197 			      const struct ubi_vid_hdr *vid_hdr)
1198 {
1199 	int err;
1200 	uint32_t magic;
1201 
1202 	if (!ubi_dbg_chk_io(ubi))
1203 		return 0;
1204 
1205 	magic = be32_to_cpu(vid_hdr->magic);
1206 	if (magic != UBI_VID_HDR_MAGIC) {
1207 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1208 			magic, pnum, UBI_VID_HDR_MAGIC);
1209 		goto fail;
1210 	}
1211 
1212 	err = validate_vid_hdr(ubi, vid_hdr);
1213 	if (err) {
1214 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1215 		goto fail;
1216 	}
1217 
1218 	return err;
1219 
1220 fail:
1221 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1222 	ubi_dump_vid_hdr(vid_hdr);
1223 	dump_stack();
1224 	return -EINVAL;
1225 
1226 }
1227 
1228 /**
1229  * self_check_peb_vid_hdr - check volume identifier header.
1230  * @ubi: UBI device description object
1231  * @pnum: the physical eraseblock number to check
1232  *
1233  * This function returns zero if the volume identifier header is all right,
1234  * and a negative error code if not or if an error occurred.
1235  */
1236 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1237 {
1238 	int err;
1239 	uint32_t crc, hdr_crc;
1240 	struct ubi_vid_io_buf *vidb;
1241 	struct ubi_vid_hdr *vid_hdr;
1242 	void *p;
1243 
1244 	if (!ubi_dbg_chk_io(ubi))
1245 		return 0;
1246 
1247 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1248 	if (!vidb)
1249 		return -ENOMEM;
1250 
1251 	vid_hdr = ubi_get_vid_hdr(vidb);
1252 	p = vidb->buffer;
1253 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1254 			  ubi->vid_hdr_alsize);
1255 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1256 		goto exit;
1257 
1258 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1259 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1260 	if (hdr_crc != crc) {
1261 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1262 			pnum, crc, hdr_crc);
1263 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1264 		ubi_dump_vid_hdr(vid_hdr);
1265 		dump_stack();
1266 		err = -EINVAL;
1267 		goto exit;
1268 	}
1269 
1270 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1271 
1272 exit:
1273 	ubi_free_vid_buf(vidb);
1274 	return err;
1275 }
1276 
1277 /**
1278  * self_check_write - make sure write succeeded.
1279  * @ubi: UBI device description object
1280  * @buf: buffer with data which were written
1281  * @pnum: physical eraseblock number the data were written to
1282  * @offset: offset within the physical eraseblock the data were written to
1283  * @len: how many bytes were written
1284  *
1285  * This functions reads data which were recently written and compares it with
1286  * the original data buffer - the data have to match. Returns zero if the data
1287  * match and a negative error code if not or in case of failure.
1288  */
1289 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1290 			    int offset, int len)
1291 {
1292 	int err, i;
1293 	size_t read;
1294 	void *buf1;
1295 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1296 
1297 	if (!ubi_dbg_chk_io(ubi))
1298 		return 0;
1299 
1300 	buf1 = __vmalloc(len, GFP_NOFS);
1301 	if (!buf1) {
1302 		ubi_err(ubi, "cannot allocate memory to check writes");
1303 		return 0;
1304 	}
1305 
1306 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1307 	if (err && !mtd_is_bitflip(err))
1308 		goto out_free;
1309 
1310 	for (i = 0; i < len; i++) {
1311 		uint8_t c = ((uint8_t *)buf)[i];
1312 		uint8_t c1 = ((uint8_t *)buf1)[i];
1313 		int dump_len;
1314 
1315 		if (c == c1)
1316 			continue;
1317 
1318 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1319 			pnum, offset, len);
1320 		ubi_msg(ubi, "data differ at position %d", i);
1321 		dump_len = max_t(int, 128, len - i);
1322 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1323 			i, i + dump_len);
1324 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1325 			       buf + i, dump_len, 1);
1326 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1327 			i, i + dump_len);
1328 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1329 			       buf1 + i, dump_len, 1);
1330 		dump_stack();
1331 		err = -EINVAL;
1332 		goto out_free;
1333 	}
1334 
1335 	vfree(buf1);
1336 	return 0;
1337 
1338 out_free:
1339 	vfree(buf1);
1340 	return err;
1341 }
1342 
1343 /**
1344  * ubi_self_check_all_ff - check that a region of flash is empty.
1345  * @ubi: UBI device description object
1346  * @pnum: the physical eraseblock number to check
1347  * @offset: the starting offset within the physical eraseblock to check
1348  * @len: the length of the region to check
1349  *
1350  * This function returns zero if only 0xFF bytes are present at offset
1351  * @offset of the physical eraseblock @pnum, and a negative error code if not
1352  * or if an error occurred.
1353  */
1354 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1355 {
1356 	size_t read;
1357 	int err;
1358 	void *buf;
1359 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1360 
1361 	if (!ubi_dbg_chk_io(ubi))
1362 		return 0;
1363 
1364 	buf = __vmalloc(len, GFP_NOFS);
1365 	if (!buf) {
1366 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1367 		return 0;
1368 	}
1369 
1370 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1371 	if (err && !mtd_is_bitflip(err)) {
1372 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1373 			err, len, pnum, offset, read);
1374 		goto error;
1375 	}
1376 
1377 	err = ubi_check_pattern(buf, 0xFF, len);
1378 	if (err == 0) {
1379 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1380 			pnum, offset, len);
1381 		goto fail;
1382 	}
1383 
1384 	vfree(buf);
1385 	return 0;
1386 
1387 fail:
1388 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1389 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1390 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1391 	err = -EINVAL;
1392 error:
1393 	dump_stack();
1394 	vfree(buf);
1395 	return err;
1396 }
1397