xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 			     const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 			      const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 			    int offset, int len);
103 
104 /**
105  * ubi_io_read - read data from a physical eraseblock.
106  * @ubi: UBI device description object
107  * @buf: buffer where to store the read data
108  * @pnum: physical eraseblock number to read from
109  * @offset: offset within the physical eraseblock from where to read
110  * @len: how many bytes to read
111  *
112  * This function reads data from offset @offset of physical eraseblock @pnum
113  * and stores the read data in the @buf buffer. The following return codes are
114  * possible:
115  *
116  * o %0 if all the requested data were successfully read;
117  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118  *   correctable bit-flips were detected; this is harmless but may indicate
119  *   that this eraseblock may become bad soon (but do not have to);
120  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121  *   example it can be an ECC error in case of NAND; this most probably means
122  *   that the data is corrupted;
123  * o %-EIO if some I/O error occurred;
124  * o other negative error codes in case of other errors.
125  */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 		int len)
128 {
129 	int err, retries = 0;
130 	size_t read;
131 	loff_t addr;
132 
133 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134 
135 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 	ubi_assert(len > 0);
138 
139 	err = self_check_not_bad(ubi, pnum);
140 	if (err)
141 		return err;
142 
143 	/*
144 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 	 * do not do this, the following may happen:
146 	 * 1. The buffer contains data from previous operation, e.g., read from
147 	 *    another PEB previously. The data looks like expected, e.g., if we
148 	 *    just do not read anything and return - the caller would not
149 	 *    notice this. E.g., if we are reading a VID header, the buffer may
150 	 *    contain a valid VID header from another PEB.
151 	 * 2. The driver is buggy and returns us success or -EBADMSG or
152 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
153 	 *
154 	 * This may confuse UBI or upper layers - they may think the buffer
155 	 * contains valid data while in fact it is just old data. This is
156 	 * especially possible because UBI (and UBIFS) relies on CRC, and
157 	 * treats data as correct even in case of ECC errors if the CRC is
158 	 * correct.
159 	 *
160 	 * Try to prevent this situation by changing the first byte of the
161 	 * buffer.
162 	 */
163 	*((uint8_t *)buf) ^= 0xFF;
164 
165 	addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 	if (err) {
169 		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170 
171 		if (mtd_is_bitflip(err)) {
172 			/*
173 			 * -EUCLEAN is reported if there was a bit-flip which
174 			 * was corrected, so this is harmless.
175 			 *
176 			 * We do not report about it here unless debugging is
177 			 * enabled. A corresponding message will be printed
178 			 * later, when it is has been scrubbed.
179 			 */
180 			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
181 				pnum);
182 			ubi_assert(len == read);
183 			return UBI_IO_BITFLIPS;
184 		}
185 
186 		if (retries++ < UBI_IO_RETRIES) {
187 			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188 				 err, errstr, len, pnum, offset, read);
189 			yield();
190 			goto retry;
191 		}
192 
193 		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194 			err, errstr, len, pnum, offset, read);
195 		dump_stack();
196 
197 		/*
198 		 * The driver should never return -EBADMSG if it failed to read
199 		 * all the requested data. But some buggy drivers might do
200 		 * this, so we change it to -EIO.
201 		 */
202 		if (read != len && mtd_is_eccerr(err)) {
203 			ubi_assert(0);
204 			err = -EIO;
205 		}
206 	} else {
207 		ubi_assert(len == read);
208 
209 		if (ubi_dbg_is_bitflip(ubi)) {
210 			dbg_gen("bit-flip (emulated)");
211 			err = UBI_IO_BITFLIPS;
212 		}
213 	}
214 
215 	return err;
216 }
217 
218 /**
219  * ubi_io_write - write data to a physical eraseblock.
220  * @ubi: UBI device description object
221  * @buf: buffer with the data to write
222  * @pnum: physical eraseblock number to write to
223  * @offset: offset within the physical eraseblock where to write
224  * @len: how many bytes to write
225  *
226  * This function writes @len bytes of data from buffer @buf to offset @offset
227  * of physical eraseblock @pnum. If all the data were successfully written,
228  * zero is returned. If an error occurred, this function returns a negative
229  * error code. If %-EIO is returned, the physical eraseblock most probably went
230  * bad.
231  *
232  * Note, in case of an error, it is possible that something was still written
233  * to the flash media, but may be some garbage.
234  */
235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 		 int len)
237 {
238 	int err;
239 	size_t written;
240 	loff_t addr;
241 
242 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243 
244 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248 
249 	if (ubi->ro_mode) {
250 		ubi_err(ubi, "read-only mode");
251 		return -EROFS;
252 	}
253 
254 	err = self_check_not_bad(ubi, pnum);
255 	if (err)
256 		return err;
257 
258 	/* The area we are writing to has to contain all 0xFF bytes */
259 	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260 	if (err)
261 		return err;
262 
263 	if (offset >= ubi->leb_start) {
264 		/*
265 		 * We write to the data area of the physical eraseblock. Make
266 		 * sure it has valid EC and VID headers.
267 		 */
268 		err = self_check_peb_ec_hdr(ubi, pnum);
269 		if (err)
270 			return err;
271 		err = self_check_peb_vid_hdr(ubi, pnum);
272 		if (err)
273 			return err;
274 	}
275 
276 	if (ubi_dbg_is_write_failure(ubi)) {
277 		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
278 			len, pnum, offset);
279 		dump_stack();
280 		return -EIO;
281 	}
282 
283 	addr = (loff_t)pnum * ubi->peb_size + offset;
284 	err = mtd_write(ubi->mtd, addr, len, &written, buf);
285 	if (err) {
286 		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287 			err, len, pnum, offset, written);
288 		dump_stack();
289 		ubi_dump_flash(ubi, pnum, offset, len);
290 	} else
291 		ubi_assert(written == len);
292 
293 	if (!err) {
294 		err = self_check_write(ubi, buf, pnum, offset, len);
295 		if (err)
296 			return err;
297 
298 		/*
299 		 * Since we always write sequentially, the rest of the PEB has
300 		 * to contain only 0xFF bytes.
301 		 */
302 		offset += len;
303 		len = ubi->peb_size - offset;
304 		if (len)
305 			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
306 	}
307 
308 	return err;
309 }
310 
311 /**
312  * erase_callback - MTD erasure call-back.
313  * @ei: MTD erase information object.
314  *
315  * Note, even though MTD erase interface is asynchronous, all the current
316  * implementations are synchronous anyway.
317  */
318 static void erase_callback(struct erase_info *ei)
319 {
320 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
321 }
322 
323 /**
324  * do_sync_erase - synchronously erase a physical eraseblock.
325  * @ubi: UBI device description object
326  * @pnum: the physical eraseblock number to erase
327  *
328  * This function synchronously erases physical eraseblock @pnum and returns
329  * zero in case of success and a negative error code in case of failure. If
330  * %-EIO is returned, the physical eraseblock most probably went bad.
331  */
332 static int do_sync_erase(struct ubi_device *ubi, int pnum)
333 {
334 	int err, retries = 0;
335 	struct erase_info ei;
336 	wait_queue_head_t wq;
337 
338 	dbg_io("erase PEB %d", pnum);
339 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340 
341 	if (ubi->ro_mode) {
342 		ubi_err(ubi, "read-only mode");
343 		return -EROFS;
344 	}
345 
346 retry:
347 	init_waitqueue_head(&wq);
348 	memset(&ei, 0, sizeof(struct erase_info));
349 
350 	ei.mtd      = ubi->mtd;
351 	ei.addr     = (loff_t)pnum * ubi->peb_size;
352 	ei.len      = ubi->peb_size;
353 	ei.callback = erase_callback;
354 	ei.priv     = (unsigned long)&wq;
355 
356 	err = mtd_erase(ubi->mtd, &ei);
357 	if (err) {
358 		if (retries++ < UBI_IO_RETRIES) {
359 			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
360 				 err, pnum);
361 			yield();
362 			goto retry;
363 		}
364 		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
365 		dump_stack();
366 		return err;
367 	}
368 
369 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370 					   ei.state == MTD_ERASE_FAILED);
371 	if (err) {
372 		ubi_err(ubi, "interrupted PEB %d erasure", pnum);
373 		return -EINTR;
374 	}
375 
376 	if (ei.state == MTD_ERASE_FAILED) {
377 		if (retries++ < UBI_IO_RETRIES) {
378 			ubi_warn(ubi, "error while erasing PEB %d, retry",
379 				 pnum);
380 			yield();
381 			goto retry;
382 		}
383 		ubi_err(ubi, "cannot erase PEB %d", pnum);
384 		dump_stack();
385 		return -EIO;
386 	}
387 
388 	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
389 	if (err)
390 		return err;
391 
392 	if (ubi_dbg_is_erase_failure(ubi)) {
393 		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
394 		return -EIO;
395 	}
396 
397 	return 0;
398 }
399 
400 /* Patterns to write to a physical eraseblock when torturing it */
401 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
402 
403 /**
404  * torture_peb - test a supposedly bad physical eraseblock.
405  * @ubi: UBI device description object
406  * @pnum: the physical eraseblock number to test
407  *
408  * This function returns %-EIO if the physical eraseblock did not pass the
409  * test, a positive number of erase operations done if the test was
410  * successfully passed, and other negative error codes in case of other errors.
411  */
412 static int torture_peb(struct ubi_device *ubi, int pnum)
413 {
414 	int err, i, patt_count;
415 
416 	ubi_msg(ubi, "run torture test for PEB %d", pnum);
417 	patt_count = ARRAY_SIZE(patterns);
418 	ubi_assert(patt_count > 0);
419 
420 	mutex_lock(&ubi->buf_mutex);
421 	for (i = 0; i < patt_count; i++) {
422 		err = do_sync_erase(ubi, pnum);
423 		if (err)
424 			goto out;
425 
426 		/* Make sure the PEB contains only 0xFF bytes */
427 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
428 		if (err)
429 			goto out;
430 
431 		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
432 		if (err == 0) {
433 			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
434 				pnum);
435 			err = -EIO;
436 			goto out;
437 		}
438 
439 		/* Write a pattern and check it */
440 		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
441 		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
442 		if (err)
443 			goto out;
444 
445 		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
446 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
447 		if (err)
448 			goto out;
449 
450 		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
451 					ubi->peb_size);
452 		if (err == 0) {
453 			ubi_err(ubi, "pattern %x checking failed for PEB %d",
454 				patterns[i], pnum);
455 			err = -EIO;
456 			goto out;
457 		}
458 	}
459 
460 	err = patt_count;
461 	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
462 
463 out:
464 	mutex_unlock(&ubi->buf_mutex);
465 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
466 		/*
467 		 * If a bit-flip or data integrity error was detected, the test
468 		 * has not passed because it happened on a freshly erased
469 		 * physical eraseblock which means something is wrong with it.
470 		 */
471 		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
472 			pnum);
473 		err = -EIO;
474 	}
475 	return err;
476 }
477 
478 /**
479  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
480  * @ubi: UBI device description object
481  * @pnum: physical eraseblock number to prepare
482  *
483  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
484  * algorithm: the PEB is first filled with zeroes, then it is erased. And
485  * filling with zeroes starts from the end of the PEB. This was observed with
486  * Spansion S29GL512N NOR flash.
487  *
488  * This means that in case of a power cut we may end up with intact data at the
489  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
490  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
491  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
492  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
493  *
494  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
495  * magic numbers in order to invalidate them and prevent the failures. Returns
496  * zero in case of success and a negative error code in case of failure.
497  */
498 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
499 {
500 	int err;
501 	size_t written;
502 	loff_t addr;
503 	uint32_t data = 0;
504 	struct ubi_ec_hdr ec_hdr;
505 	struct ubi_vid_io_buf vidb;
506 
507 	/*
508 	 * Note, we cannot generally define VID header buffers on stack,
509 	 * because of the way we deal with these buffers (see the header
510 	 * comment in this file). But we know this is a NOR-specific piece of
511 	 * code, so we can do this. But yes, this is error-prone and we should
512 	 * (pre-)allocate VID header buffer instead.
513 	 */
514 	struct ubi_vid_hdr vid_hdr;
515 
516 	/*
517 	 * If VID or EC is valid, we have to corrupt them before erasing.
518 	 * It is important to first invalidate the EC header, and then the VID
519 	 * header. Otherwise a power cut may lead to valid EC header and
520 	 * invalid VID header, in which case UBI will treat this PEB as
521 	 * corrupted and will try to preserve it, and print scary warnings.
522 	 */
523 	addr = (loff_t)pnum * ubi->peb_size;
524 	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
525 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
526 	    err != UBI_IO_FF){
527 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
528 		if(err)
529 			goto error;
530 	}
531 
532 	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
533 	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
534 
535 	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
536 	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
537 	    err != UBI_IO_FF){
538 		addr += ubi->vid_hdr_aloffset;
539 		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
540 		if (err)
541 			goto error;
542 	}
543 	return 0;
544 
545 error:
546 	/*
547 	 * The PEB contains a valid VID or EC header, but we cannot invalidate
548 	 * it. Supposedly the flash media or the driver is screwed up, so
549 	 * return an error.
550 	 */
551 	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
552 	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
553 	return -EIO;
554 }
555 
556 /**
557  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
558  * @ubi: UBI device description object
559  * @pnum: physical eraseblock number to erase
560  * @torture: if this physical eraseblock has to be tortured
561  *
562  * This function synchronously erases physical eraseblock @pnum. If @torture
563  * flag is not zero, the physical eraseblock is checked by means of writing
564  * different patterns to it and reading them back. If the torturing is enabled,
565  * the physical eraseblock is erased more than once.
566  *
567  * This function returns the number of erasures made in case of success, %-EIO
568  * if the erasure failed or the torturing test failed, and other negative error
569  * codes in case of other errors. Note, %-EIO means that the physical
570  * eraseblock is bad.
571  */
572 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
573 {
574 	int err, ret = 0;
575 
576 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
577 
578 	err = self_check_not_bad(ubi, pnum);
579 	if (err != 0)
580 		return err;
581 
582 	if (ubi->ro_mode) {
583 		ubi_err(ubi, "read-only mode");
584 		return -EROFS;
585 	}
586 
587 	if (ubi->nor_flash) {
588 		err = nor_erase_prepare(ubi, pnum);
589 		if (err)
590 			return err;
591 	}
592 
593 	if (torture) {
594 		ret = torture_peb(ubi, pnum);
595 		if (ret < 0)
596 			return ret;
597 	}
598 
599 	err = do_sync_erase(ubi, pnum);
600 	if (err)
601 		return err;
602 
603 	return ret + 1;
604 }
605 
606 /**
607  * ubi_io_is_bad - check if a physical eraseblock is bad.
608  * @ubi: UBI device description object
609  * @pnum: the physical eraseblock number to check
610  *
611  * This function returns a positive number if the physical eraseblock is bad,
612  * zero if not, and a negative error code if an error occurred.
613  */
614 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
615 {
616 	struct mtd_info *mtd = ubi->mtd;
617 
618 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
619 
620 	if (ubi->bad_allowed) {
621 		int ret;
622 
623 		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
624 		if (ret < 0)
625 			ubi_err(ubi, "error %d while checking if PEB %d is bad",
626 				ret, pnum);
627 		else if (ret)
628 			dbg_io("PEB %d is bad", pnum);
629 		return ret;
630 	}
631 
632 	return 0;
633 }
634 
635 /**
636  * ubi_io_mark_bad - mark a physical eraseblock as bad.
637  * @ubi: UBI device description object
638  * @pnum: the physical eraseblock number to mark
639  *
640  * This function returns zero in case of success and a negative error code in
641  * case of failure.
642  */
643 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
644 {
645 	int err;
646 	struct mtd_info *mtd = ubi->mtd;
647 
648 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
649 
650 	if (ubi->ro_mode) {
651 		ubi_err(ubi, "read-only mode");
652 		return -EROFS;
653 	}
654 
655 	if (!ubi->bad_allowed)
656 		return 0;
657 
658 	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
659 	if (err)
660 		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
661 	return err;
662 }
663 
664 /**
665  * validate_ec_hdr - validate an erase counter header.
666  * @ubi: UBI device description object
667  * @ec_hdr: the erase counter header to check
668  *
669  * This function returns zero if the erase counter header is OK, and %1 if
670  * not.
671  */
672 static int validate_ec_hdr(const struct ubi_device *ubi,
673 			   const struct ubi_ec_hdr *ec_hdr)
674 {
675 	long long ec;
676 	int vid_hdr_offset, leb_start;
677 
678 	ec = be64_to_cpu(ec_hdr->ec);
679 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
680 	leb_start = be32_to_cpu(ec_hdr->data_offset);
681 
682 	if (ec_hdr->version != UBI_VERSION) {
683 		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
684 			UBI_VERSION, (int)ec_hdr->version);
685 		goto bad;
686 	}
687 
688 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
689 		ubi_err(ubi, "bad VID header offset %d, expected %d",
690 			vid_hdr_offset, ubi->vid_hdr_offset);
691 		goto bad;
692 	}
693 
694 	if (leb_start != ubi->leb_start) {
695 		ubi_err(ubi, "bad data offset %d, expected %d",
696 			leb_start, ubi->leb_start);
697 		goto bad;
698 	}
699 
700 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
701 		ubi_err(ubi, "bad erase counter %lld", ec);
702 		goto bad;
703 	}
704 
705 	return 0;
706 
707 bad:
708 	ubi_err(ubi, "bad EC header");
709 	ubi_dump_ec_hdr(ec_hdr);
710 	dump_stack();
711 	return 1;
712 }
713 
714 /**
715  * ubi_io_read_ec_hdr - read and check an erase counter header.
716  * @ubi: UBI device description object
717  * @pnum: physical eraseblock to read from
718  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
719  * header
720  * @verbose: be verbose if the header is corrupted or was not found
721  *
722  * This function reads erase counter header from physical eraseblock @pnum and
723  * stores it in @ec_hdr. This function also checks CRC checksum of the read
724  * erase counter header. The following codes may be returned:
725  *
726  * o %0 if the CRC checksum is correct and the header was successfully read;
727  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
728  *   and corrected by the flash driver; this is harmless but may indicate that
729  *   this eraseblock may become bad soon (but may be not);
730  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
731  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
732  *   a data integrity error (uncorrectable ECC error in case of NAND);
733  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
734  * o a negative error code in case of failure.
735  */
736 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
737 		       struct ubi_ec_hdr *ec_hdr, int verbose)
738 {
739 	int err, read_err;
740 	uint32_t crc, magic, hdr_crc;
741 
742 	dbg_io("read EC header from PEB %d", pnum);
743 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
744 
745 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
746 	if (read_err) {
747 		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
748 			return read_err;
749 
750 		/*
751 		 * We read all the data, but either a correctable bit-flip
752 		 * occurred, or MTD reported a data integrity error
753 		 * (uncorrectable ECC error in case of NAND). The former is
754 		 * harmless, the later may mean that the read data is
755 		 * corrupted. But we have a CRC check-sum and we will detect
756 		 * this. If the EC header is still OK, we just report this as
757 		 * there was a bit-flip, to force scrubbing.
758 		 */
759 	}
760 
761 	magic = be32_to_cpu(ec_hdr->magic);
762 	if (magic != UBI_EC_HDR_MAGIC) {
763 		if (mtd_is_eccerr(read_err))
764 			return UBI_IO_BAD_HDR_EBADMSG;
765 
766 		/*
767 		 * The magic field is wrong. Let's check if we have read all
768 		 * 0xFF. If yes, this physical eraseblock is assumed to be
769 		 * empty.
770 		 */
771 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
772 			/* The physical eraseblock is supposedly empty */
773 			if (verbose)
774 				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
775 					 pnum);
776 			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
777 				pnum);
778 			if (!read_err)
779 				return UBI_IO_FF;
780 			else
781 				return UBI_IO_FF_BITFLIPS;
782 		}
783 
784 		/*
785 		 * This is not a valid erase counter header, and these are not
786 		 * 0xFF bytes. Report that the header is corrupted.
787 		 */
788 		if (verbose) {
789 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
790 				 pnum, magic, UBI_EC_HDR_MAGIC);
791 			ubi_dump_ec_hdr(ec_hdr);
792 		}
793 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
794 			pnum, magic, UBI_EC_HDR_MAGIC);
795 		return UBI_IO_BAD_HDR;
796 	}
797 
798 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
799 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
800 
801 	if (hdr_crc != crc) {
802 		if (verbose) {
803 			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
804 				 pnum, crc, hdr_crc);
805 			ubi_dump_ec_hdr(ec_hdr);
806 		}
807 		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
808 			pnum, crc, hdr_crc);
809 
810 		if (!read_err)
811 			return UBI_IO_BAD_HDR;
812 		else
813 			return UBI_IO_BAD_HDR_EBADMSG;
814 	}
815 
816 	/* And of course validate what has just been read from the media */
817 	err = validate_ec_hdr(ubi, ec_hdr);
818 	if (err) {
819 		ubi_err(ubi, "validation failed for PEB %d", pnum);
820 		return -EINVAL;
821 	}
822 
823 	/*
824 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
825 	 * a bit-flip to force scrubbing on this PEB.
826 	 */
827 	return read_err ? UBI_IO_BITFLIPS : 0;
828 }
829 
830 /**
831  * ubi_io_write_ec_hdr - write an erase counter header.
832  * @ubi: UBI device description object
833  * @pnum: physical eraseblock to write to
834  * @ec_hdr: the erase counter header to write
835  *
836  * This function writes erase counter header described by @ec_hdr to physical
837  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
838  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
839  * field.
840  *
841  * This function returns zero in case of success and a negative error code in
842  * case of failure. If %-EIO is returned, the physical eraseblock most probably
843  * went bad.
844  */
845 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
846 			struct ubi_ec_hdr *ec_hdr)
847 {
848 	int err;
849 	uint32_t crc;
850 
851 	dbg_io("write EC header to PEB %d", pnum);
852 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
853 
854 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
855 	ec_hdr->version = UBI_VERSION;
856 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
857 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
858 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
859 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
860 	ec_hdr->hdr_crc = cpu_to_be32(crc);
861 
862 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
863 	if (err)
864 		return err;
865 
866 	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
867 		return -EROFS;
868 
869 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
870 	return err;
871 }
872 
873 /**
874  * validate_vid_hdr - validate a volume identifier header.
875  * @ubi: UBI device description object
876  * @vid_hdr: the volume identifier header to check
877  *
878  * This function checks that data stored in the volume identifier header
879  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
880  */
881 static int validate_vid_hdr(const struct ubi_device *ubi,
882 			    const struct ubi_vid_hdr *vid_hdr)
883 {
884 	int vol_type = vid_hdr->vol_type;
885 	int copy_flag = vid_hdr->copy_flag;
886 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
887 	int lnum = be32_to_cpu(vid_hdr->lnum);
888 	int compat = vid_hdr->compat;
889 	int data_size = be32_to_cpu(vid_hdr->data_size);
890 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
891 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
892 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
893 	int usable_leb_size = ubi->leb_size - data_pad;
894 
895 	if (copy_flag != 0 && copy_flag != 1) {
896 		ubi_err(ubi, "bad copy_flag");
897 		goto bad;
898 	}
899 
900 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
901 	    data_pad < 0) {
902 		ubi_err(ubi, "negative values");
903 		goto bad;
904 	}
905 
906 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
907 		ubi_err(ubi, "bad vol_id");
908 		goto bad;
909 	}
910 
911 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
912 		ubi_err(ubi, "bad compat");
913 		goto bad;
914 	}
915 
916 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
917 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
918 	    compat != UBI_COMPAT_REJECT) {
919 		ubi_err(ubi, "bad compat");
920 		goto bad;
921 	}
922 
923 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
924 		ubi_err(ubi, "bad vol_type");
925 		goto bad;
926 	}
927 
928 	if (data_pad >= ubi->leb_size / 2) {
929 		ubi_err(ubi, "bad data_pad");
930 		goto bad;
931 	}
932 
933 	if (data_size > ubi->leb_size) {
934 		ubi_err(ubi, "bad data_size");
935 		goto bad;
936 	}
937 
938 	if (vol_type == UBI_VID_STATIC) {
939 		/*
940 		 * Although from high-level point of view static volumes may
941 		 * contain zero bytes of data, but no VID headers can contain
942 		 * zero at these fields, because they empty volumes do not have
943 		 * mapped logical eraseblocks.
944 		 */
945 		if (used_ebs == 0) {
946 			ubi_err(ubi, "zero used_ebs");
947 			goto bad;
948 		}
949 		if (data_size == 0) {
950 			ubi_err(ubi, "zero data_size");
951 			goto bad;
952 		}
953 		if (lnum < used_ebs - 1) {
954 			if (data_size != usable_leb_size) {
955 				ubi_err(ubi, "bad data_size");
956 				goto bad;
957 			}
958 		} else if (lnum == used_ebs - 1) {
959 			if (data_size == 0) {
960 				ubi_err(ubi, "bad data_size at last LEB");
961 				goto bad;
962 			}
963 		} else {
964 			ubi_err(ubi, "too high lnum");
965 			goto bad;
966 		}
967 	} else {
968 		if (copy_flag == 0) {
969 			if (data_crc != 0) {
970 				ubi_err(ubi, "non-zero data CRC");
971 				goto bad;
972 			}
973 			if (data_size != 0) {
974 				ubi_err(ubi, "non-zero data_size");
975 				goto bad;
976 			}
977 		} else {
978 			if (data_size == 0) {
979 				ubi_err(ubi, "zero data_size of copy");
980 				goto bad;
981 			}
982 		}
983 		if (used_ebs != 0) {
984 			ubi_err(ubi, "bad used_ebs");
985 			goto bad;
986 		}
987 	}
988 
989 	return 0;
990 
991 bad:
992 	ubi_err(ubi, "bad VID header");
993 	ubi_dump_vid_hdr(vid_hdr);
994 	dump_stack();
995 	return 1;
996 }
997 
998 /**
999  * ubi_io_read_vid_hdr - read and check a volume identifier header.
1000  * @ubi: UBI device description object
1001  * @pnum: physical eraseblock number to read from
1002  * @vidb: the volume identifier buffer to store data in
1003  * @verbose: be verbose if the header is corrupted or wasn't found
1004  *
1005  * This function reads the volume identifier header from physical eraseblock
1006  * @pnum and stores it in @vidb. It also checks CRC checksum of the read
1007  * volume identifier header. The error codes are the same as in
1008  * 'ubi_io_read_ec_hdr()'.
1009  *
1010  * Note, the implementation of this function is also very similar to
1011  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1012  */
1013 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1014 			struct ubi_vid_io_buf *vidb, int verbose)
1015 {
1016 	int err, read_err;
1017 	uint32_t crc, magic, hdr_crc;
1018 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1019 	void *p = vidb->buffer;
1020 
1021 	dbg_io("read VID header from PEB %d", pnum);
1022 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1023 
1024 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1025 			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
1026 	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1027 		return read_err;
1028 
1029 	magic = be32_to_cpu(vid_hdr->magic);
1030 	if (magic != UBI_VID_HDR_MAGIC) {
1031 		if (mtd_is_eccerr(read_err))
1032 			return UBI_IO_BAD_HDR_EBADMSG;
1033 
1034 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1035 			if (verbose)
1036 				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1037 					 pnum);
1038 			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1039 				pnum);
1040 			if (!read_err)
1041 				return UBI_IO_FF;
1042 			else
1043 				return UBI_IO_FF_BITFLIPS;
1044 		}
1045 
1046 		if (verbose) {
1047 			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1048 				 pnum, magic, UBI_VID_HDR_MAGIC);
1049 			ubi_dump_vid_hdr(vid_hdr);
1050 		}
1051 		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1052 			pnum, magic, UBI_VID_HDR_MAGIC);
1053 		return UBI_IO_BAD_HDR;
1054 	}
1055 
1056 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1057 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1058 
1059 	if (hdr_crc != crc) {
1060 		if (verbose) {
1061 			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1062 				 pnum, crc, hdr_crc);
1063 			ubi_dump_vid_hdr(vid_hdr);
1064 		}
1065 		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1066 			pnum, crc, hdr_crc);
1067 		if (!read_err)
1068 			return UBI_IO_BAD_HDR;
1069 		else
1070 			return UBI_IO_BAD_HDR_EBADMSG;
1071 	}
1072 
1073 	err = validate_vid_hdr(ubi, vid_hdr);
1074 	if (err) {
1075 		ubi_err(ubi, "validation failed for PEB %d", pnum);
1076 		return -EINVAL;
1077 	}
1078 
1079 	return read_err ? UBI_IO_BITFLIPS : 0;
1080 }
1081 
1082 /**
1083  * ubi_io_write_vid_hdr - write a volume identifier header.
1084  * @ubi: UBI device description object
1085  * @pnum: the physical eraseblock number to write to
1086  * @vidb: the volume identifier buffer to write
1087  *
1088  * This function writes the volume identifier header described by @vid_hdr to
1089  * physical eraseblock @pnum. This function automatically fills the
1090  * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1091  * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1092  *
1093  * This function returns zero in case of success and a negative error code in
1094  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1095  * bad.
1096  */
1097 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1098 			 struct ubi_vid_io_buf *vidb)
1099 {
1100 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1101 	int err;
1102 	uint32_t crc;
1103 	void *p = vidb->buffer;
1104 
1105 	dbg_io("write VID header to PEB %d", pnum);
1106 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1107 
1108 	err = self_check_peb_ec_hdr(ubi, pnum);
1109 	if (err)
1110 		return err;
1111 
1112 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1113 	vid_hdr->version = UBI_VERSION;
1114 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1115 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1116 
1117 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1118 	if (err)
1119 		return err;
1120 
1121 	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1122 		return -EROFS;
1123 
1124 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1125 			   ubi->vid_hdr_alsize);
1126 	return err;
1127 }
1128 
1129 /**
1130  * self_check_not_bad - ensure that a physical eraseblock is not bad.
1131  * @ubi: UBI device description object
1132  * @pnum: physical eraseblock number to check
1133  *
1134  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1135  * it is bad and a negative error code if an error occurred.
1136  */
1137 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1138 {
1139 	int err;
1140 
1141 	if (!ubi_dbg_chk_io(ubi))
1142 		return 0;
1143 
1144 	err = ubi_io_is_bad(ubi, pnum);
1145 	if (!err)
1146 		return err;
1147 
1148 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1149 	dump_stack();
1150 	return err > 0 ? -EINVAL : err;
1151 }
1152 
1153 /**
1154  * self_check_ec_hdr - check if an erase counter header is all right.
1155  * @ubi: UBI device description object
1156  * @pnum: physical eraseblock number the erase counter header belongs to
1157  * @ec_hdr: the erase counter header to check
1158  *
1159  * This function returns zero if the erase counter header contains valid
1160  * values, and %-EINVAL if not.
1161  */
1162 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1163 			     const struct ubi_ec_hdr *ec_hdr)
1164 {
1165 	int err;
1166 	uint32_t magic;
1167 
1168 	if (!ubi_dbg_chk_io(ubi))
1169 		return 0;
1170 
1171 	magic = be32_to_cpu(ec_hdr->magic);
1172 	if (magic != UBI_EC_HDR_MAGIC) {
1173 		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1174 			magic, UBI_EC_HDR_MAGIC);
1175 		goto fail;
1176 	}
1177 
1178 	err = validate_ec_hdr(ubi, ec_hdr);
1179 	if (err) {
1180 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1181 		goto fail;
1182 	}
1183 
1184 	return 0;
1185 
1186 fail:
1187 	ubi_dump_ec_hdr(ec_hdr);
1188 	dump_stack();
1189 	return -EINVAL;
1190 }
1191 
1192 /**
1193  * self_check_peb_ec_hdr - check erase counter header.
1194  * @ubi: UBI device description object
1195  * @pnum: the physical eraseblock number to check
1196  *
1197  * This function returns zero if the erase counter header is all right and and
1198  * a negative error code if not or if an error occurred.
1199  */
1200 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1201 {
1202 	int err;
1203 	uint32_t crc, hdr_crc;
1204 	struct ubi_ec_hdr *ec_hdr;
1205 
1206 	if (!ubi_dbg_chk_io(ubi))
1207 		return 0;
1208 
1209 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1210 	if (!ec_hdr)
1211 		return -ENOMEM;
1212 
1213 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1214 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1215 		goto exit;
1216 
1217 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1218 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1219 	if (hdr_crc != crc) {
1220 		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1221 			crc, hdr_crc);
1222 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1223 		ubi_dump_ec_hdr(ec_hdr);
1224 		dump_stack();
1225 		err = -EINVAL;
1226 		goto exit;
1227 	}
1228 
1229 	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1230 
1231 exit:
1232 	kfree(ec_hdr);
1233 	return err;
1234 }
1235 
1236 /**
1237  * self_check_vid_hdr - check that a volume identifier header is all right.
1238  * @ubi: UBI device description object
1239  * @pnum: physical eraseblock number the volume identifier header belongs to
1240  * @vid_hdr: the volume identifier header to check
1241  *
1242  * This function returns zero if the volume identifier header is all right, and
1243  * %-EINVAL if not.
1244  */
1245 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1246 			      const struct ubi_vid_hdr *vid_hdr)
1247 {
1248 	int err;
1249 	uint32_t magic;
1250 
1251 	if (!ubi_dbg_chk_io(ubi))
1252 		return 0;
1253 
1254 	magic = be32_to_cpu(vid_hdr->magic);
1255 	if (magic != UBI_VID_HDR_MAGIC) {
1256 		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1257 			magic, pnum, UBI_VID_HDR_MAGIC);
1258 		goto fail;
1259 	}
1260 
1261 	err = validate_vid_hdr(ubi, vid_hdr);
1262 	if (err) {
1263 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1264 		goto fail;
1265 	}
1266 
1267 	return err;
1268 
1269 fail:
1270 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1271 	ubi_dump_vid_hdr(vid_hdr);
1272 	dump_stack();
1273 	return -EINVAL;
1274 
1275 }
1276 
1277 /**
1278  * self_check_peb_vid_hdr - check volume identifier header.
1279  * @ubi: UBI device description object
1280  * @pnum: the physical eraseblock number to check
1281  *
1282  * This function returns zero if the volume identifier header is all right,
1283  * and a negative error code if not or if an error occurred.
1284  */
1285 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1286 {
1287 	int err;
1288 	uint32_t crc, hdr_crc;
1289 	struct ubi_vid_io_buf *vidb;
1290 	struct ubi_vid_hdr *vid_hdr;
1291 	void *p;
1292 
1293 	if (!ubi_dbg_chk_io(ubi))
1294 		return 0;
1295 
1296 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1297 	if (!vidb)
1298 		return -ENOMEM;
1299 
1300 	vid_hdr = ubi_get_vid_hdr(vidb);
1301 	p = vidb->buffer;
1302 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1303 			  ubi->vid_hdr_alsize);
1304 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1305 		goto exit;
1306 
1307 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1308 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1309 	if (hdr_crc != crc) {
1310 		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1311 			pnum, crc, hdr_crc);
1312 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1313 		ubi_dump_vid_hdr(vid_hdr);
1314 		dump_stack();
1315 		err = -EINVAL;
1316 		goto exit;
1317 	}
1318 
1319 	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1320 
1321 exit:
1322 	ubi_free_vid_buf(vidb);
1323 	return err;
1324 }
1325 
1326 /**
1327  * self_check_write - make sure write succeeded.
1328  * @ubi: UBI device description object
1329  * @buf: buffer with data which were written
1330  * @pnum: physical eraseblock number the data were written to
1331  * @offset: offset within the physical eraseblock the data were written to
1332  * @len: how many bytes were written
1333  *
1334  * This functions reads data which were recently written and compares it with
1335  * the original data buffer - the data have to match. Returns zero if the data
1336  * match and a negative error code if not or in case of failure.
1337  */
1338 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1339 			    int offset, int len)
1340 {
1341 	int err, i;
1342 	size_t read;
1343 	void *buf1;
1344 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1345 
1346 	if (!ubi_dbg_chk_io(ubi))
1347 		return 0;
1348 
1349 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1350 	if (!buf1) {
1351 		ubi_err(ubi, "cannot allocate memory to check writes");
1352 		return 0;
1353 	}
1354 
1355 	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1356 	if (err && !mtd_is_bitflip(err))
1357 		goto out_free;
1358 
1359 	for (i = 0; i < len; i++) {
1360 		uint8_t c = ((uint8_t *)buf)[i];
1361 		uint8_t c1 = ((uint8_t *)buf1)[i];
1362 		int dump_len;
1363 
1364 		if (c == c1)
1365 			continue;
1366 
1367 		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1368 			pnum, offset, len);
1369 		ubi_msg(ubi, "data differ at position %d", i);
1370 		dump_len = max_t(int, 128, len - i);
1371 		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1372 			i, i + dump_len);
1373 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1374 			       buf + i, dump_len, 1);
1375 		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1376 			i, i + dump_len);
1377 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1378 			       buf1 + i, dump_len, 1);
1379 		dump_stack();
1380 		err = -EINVAL;
1381 		goto out_free;
1382 	}
1383 
1384 	vfree(buf1);
1385 	return 0;
1386 
1387 out_free:
1388 	vfree(buf1);
1389 	return err;
1390 }
1391 
1392 /**
1393  * ubi_self_check_all_ff - check that a region of flash is empty.
1394  * @ubi: UBI device description object
1395  * @pnum: the physical eraseblock number to check
1396  * @offset: the starting offset within the physical eraseblock to check
1397  * @len: the length of the region to check
1398  *
1399  * This function returns zero if only 0xFF bytes are present at offset
1400  * @offset of the physical eraseblock @pnum, and a negative error code if not
1401  * or if an error occurred.
1402  */
1403 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1404 {
1405 	size_t read;
1406 	int err;
1407 	void *buf;
1408 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1409 
1410 	if (!ubi_dbg_chk_io(ubi))
1411 		return 0;
1412 
1413 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1414 	if (!buf) {
1415 		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1416 		return 0;
1417 	}
1418 
1419 	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1420 	if (err && !mtd_is_bitflip(err)) {
1421 		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1422 			err, len, pnum, offset, read);
1423 		goto error;
1424 	}
1425 
1426 	err = ubi_check_pattern(buf, 0xFF, len);
1427 	if (err == 0) {
1428 		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1429 			pnum, offset, len);
1430 		goto fail;
1431 	}
1432 
1433 	vfree(buf);
1434 	return 0;
1435 
1436 fail:
1437 	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1438 	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1439 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1440 	err = -EINVAL;
1441 error:
1442 	dump_stack();
1443 	vfree(buf);
1444 	return err;
1445 }
1446