1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum); 95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 97 const struct ubi_ec_hdr *ec_hdr); 98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 100 const struct ubi_vid_hdr *vid_hdr); 101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 102 int offset, int len); 103 104 /** 105 * ubi_io_read - read data from a physical eraseblock. 106 * @ubi: UBI device description object 107 * @buf: buffer where to store the read data 108 * @pnum: physical eraseblock number to read from 109 * @offset: offset within the physical eraseblock from where to read 110 * @len: how many bytes to read 111 * 112 * This function reads data from offset @offset of physical eraseblock @pnum 113 * and stores the read data in the @buf buffer. The following return codes are 114 * possible: 115 * 116 * o %0 if all the requested data were successfully read; 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 118 * correctable bit-flips were detected; this is harmless but may indicate 119 * that this eraseblock may become bad soon (but do not have to); 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 121 * example it can be an ECC error in case of NAND; this most probably means 122 * that the data is corrupted; 123 * o %-EIO if some I/O error occurred; 124 * o other negative error codes in case of other errors. 125 */ 126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 127 int len) 128 { 129 int err, retries = 0; 130 size_t read; 131 loff_t addr; 132 133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 134 135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 137 ubi_assert(len > 0); 138 139 err = self_check_not_bad(ubi, pnum); 140 if (err) 141 return err; 142 143 /* 144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 145 * do not do this, the following may happen: 146 * 1. The buffer contains data from previous operation, e.g., read from 147 * another PEB previously. The data looks like expected, e.g., if we 148 * just do not read anything and return - the caller would not 149 * notice this. E.g., if we are reading a VID header, the buffer may 150 * contain a valid VID header from another PEB. 151 * 2. The driver is buggy and returns us success or -EBADMSG or 152 * -EUCLEAN, but it does not actually put any data to the buffer. 153 * 154 * This may confuse UBI or upper layers - they may think the buffer 155 * contains valid data while in fact it is just old data. This is 156 * especially possible because UBI (and UBIFS) relies on CRC, and 157 * treats data as correct even in case of ECC errors if the CRC is 158 * correct. 159 * 160 * Try to prevent this situation by changing the first byte of the 161 * buffer. 162 */ 163 *((uint8_t *)buf) ^= 0xFF; 164 165 addr = (loff_t)pnum * ubi->peb_size + offset; 166 retry: 167 err = mtd_read(ubi->mtd, addr, len, &read, buf); 168 if (err) { 169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; 170 171 if (mtd_is_bitflip(err)) { 172 /* 173 * -EUCLEAN is reported if there was a bit-flip which 174 * was corrected, so this is harmless. 175 * 176 * We do not report about it here unless debugging is 177 * enabled. A corresponding message will be printed 178 * later, when it is has been scrubbed. 179 */ 180 ubi_msg(ubi, "fixable bit-flip detected at PEB %d", 181 pnum); 182 ubi_assert(len == read); 183 return UBI_IO_BITFLIPS; 184 } 185 186 if (retries++ < UBI_IO_RETRIES) { 187 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", 188 err, errstr, len, pnum, offset, read); 189 yield(); 190 goto retry; 191 } 192 193 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", 194 err, errstr, len, pnum, offset, read); 195 dump_stack(); 196 197 /* 198 * The driver should never return -EBADMSG if it failed to read 199 * all the requested data. But some buggy drivers might do 200 * this, so we change it to -EIO. 201 */ 202 if (read != len && mtd_is_eccerr(err)) { 203 ubi_assert(0); 204 err = -EIO; 205 } 206 } else { 207 ubi_assert(len == read); 208 209 if (ubi_dbg_is_bitflip(ubi)) { 210 dbg_gen("bit-flip (emulated)"); 211 err = UBI_IO_BITFLIPS; 212 } 213 } 214 215 return err; 216 } 217 218 /** 219 * ubi_io_write - write data to a physical eraseblock. 220 * @ubi: UBI device description object 221 * @buf: buffer with the data to write 222 * @pnum: physical eraseblock number to write to 223 * @offset: offset within the physical eraseblock where to write 224 * @len: how many bytes to write 225 * 226 * This function writes @len bytes of data from buffer @buf to offset @offset 227 * of physical eraseblock @pnum. If all the data were successfully written, 228 * zero is returned. If an error occurred, this function returns a negative 229 * error code. If %-EIO is returned, the physical eraseblock most probably went 230 * bad. 231 * 232 * Note, in case of an error, it is possible that something was still written 233 * to the flash media, but may be some garbage. 234 */ 235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 236 int len) 237 { 238 int err; 239 size_t written; 240 loff_t addr; 241 242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 243 244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 246 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 248 249 if (ubi->ro_mode) { 250 ubi_err(ubi, "read-only mode"); 251 return -EROFS; 252 } 253 254 err = self_check_not_bad(ubi, pnum); 255 if (err) 256 return err; 257 258 /* The area we are writing to has to contain all 0xFF bytes */ 259 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 260 if (err) 261 return err; 262 263 if (offset >= ubi->leb_start) { 264 /* 265 * We write to the data area of the physical eraseblock. Make 266 * sure it has valid EC and VID headers. 267 */ 268 err = self_check_peb_ec_hdr(ubi, pnum); 269 if (err) 270 return err; 271 err = self_check_peb_vid_hdr(ubi, pnum); 272 if (err) 273 return err; 274 } 275 276 if (ubi_dbg_is_write_failure(ubi)) { 277 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", 278 len, pnum, offset); 279 dump_stack(); 280 return -EIO; 281 } 282 283 addr = (loff_t)pnum * ubi->peb_size + offset; 284 err = mtd_write(ubi->mtd, addr, len, &written, buf); 285 if (err) { 286 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", 287 err, len, pnum, offset, written); 288 dump_stack(); 289 ubi_dump_flash(ubi, pnum, offset, len); 290 } else 291 ubi_assert(written == len); 292 293 if (!err) { 294 err = self_check_write(ubi, buf, pnum, offset, len); 295 if (err) 296 return err; 297 298 /* 299 * Since we always write sequentially, the rest of the PEB has 300 * to contain only 0xFF bytes. 301 */ 302 offset += len; 303 len = ubi->peb_size - offset; 304 if (len) 305 err = ubi_self_check_all_ff(ubi, pnum, offset, len); 306 } 307 308 return err; 309 } 310 311 /** 312 * erase_callback - MTD erasure call-back. 313 * @ei: MTD erase information object. 314 * 315 * Note, even though MTD erase interface is asynchronous, all the current 316 * implementations are synchronous anyway. 317 */ 318 static void erase_callback(struct erase_info *ei) 319 { 320 wake_up_interruptible((wait_queue_head_t *)ei->priv); 321 } 322 323 /** 324 * do_sync_erase - synchronously erase a physical eraseblock. 325 * @ubi: UBI device description object 326 * @pnum: the physical eraseblock number to erase 327 * 328 * This function synchronously erases physical eraseblock @pnum and returns 329 * zero in case of success and a negative error code in case of failure. If 330 * %-EIO is returned, the physical eraseblock most probably went bad. 331 */ 332 static int do_sync_erase(struct ubi_device *ubi, int pnum) 333 { 334 int err, retries = 0; 335 struct erase_info ei; 336 wait_queue_head_t wq; 337 338 dbg_io("erase PEB %d", pnum); 339 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 340 341 if (ubi->ro_mode) { 342 ubi_err(ubi, "read-only mode"); 343 return -EROFS; 344 } 345 346 retry: 347 init_waitqueue_head(&wq); 348 memset(&ei, 0, sizeof(struct erase_info)); 349 350 ei.mtd = ubi->mtd; 351 ei.addr = (loff_t)pnum * ubi->peb_size; 352 ei.len = ubi->peb_size; 353 ei.callback = erase_callback; 354 ei.priv = (unsigned long)&wq; 355 356 err = mtd_erase(ubi->mtd, &ei); 357 if (err) { 358 if (retries++ < UBI_IO_RETRIES) { 359 ubi_warn(ubi, "error %d while erasing PEB %d, retry", 360 err, pnum); 361 yield(); 362 goto retry; 363 } 364 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); 365 dump_stack(); 366 return err; 367 } 368 369 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 370 ei.state == MTD_ERASE_FAILED); 371 if (err) { 372 ubi_err(ubi, "interrupted PEB %d erasure", pnum); 373 return -EINTR; 374 } 375 376 if (ei.state == MTD_ERASE_FAILED) { 377 if (retries++ < UBI_IO_RETRIES) { 378 ubi_warn(ubi, "error while erasing PEB %d, retry", 379 pnum); 380 yield(); 381 goto retry; 382 } 383 ubi_err(ubi, "cannot erase PEB %d", pnum); 384 dump_stack(); 385 return -EIO; 386 } 387 388 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); 389 if (err) 390 return err; 391 392 if (ubi_dbg_is_erase_failure(ubi)) { 393 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); 394 return -EIO; 395 } 396 397 return 0; 398 } 399 400 /* Patterns to write to a physical eraseblock when torturing it */ 401 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 402 403 /** 404 * torture_peb - test a supposedly bad physical eraseblock. 405 * @ubi: UBI device description object 406 * @pnum: the physical eraseblock number to test 407 * 408 * This function returns %-EIO if the physical eraseblock did not pass the 409 * test, a positive number of erase operations done if the test was 410 * successfully passed, and other negative error codes in case of other errors. 411 */ 412 static int torture_peb(struct ubi_device *ubi, int pnum) 413 { 414 int err, i, patt_count; 415 416 ubi_msg(ubi, "run torture test for PEB %d", pnum); 417 patt_count = ARRAY_SIZE(patterns); 418 ubi_assert(patt_count > 0); 419 420 mutex_lock(&ubi->buf_mutex); 421 for (i = 0; i < patt_count; i++) { 422 err = do_sync_erase(ubi, pnum); 423 if (err) 424 goto out; 425 426 /* Make sure the PEB contains only 0xFF bytes */ 427 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 428 if (err) 429 goto out; 430 431 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); 432 if (err == 0) { 433 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", 434 pnum); 435 err = -EIO; 436 goto out; 437 } 438 439 /* Write a pattern and check it */ 440 memset(ubi->peb_buf, patterns[i], ubi->peb_size); 441 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 442 if (err) 443 goto out; 444 445 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); 446 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 447 if (err) 448 goto out; 449 450 err = ubi_check_pattern(ubi->peb_buf, patterns[i], 451 ubi->peb_size); 452 if (err == 0) { 453 ubi_err(ubi, "pattern %x checking failed for PEB %d", 454 patterns[i], pnum); 455 err = -EIO; 456 goto out; 457 } 458 } 459 460 err = patt_count; 461 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); 462 463 out: 464 mutex_unlock(&ubi->buf_mutex); 465 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 466 /* 467 * If a bit-flip or data integrity error was detected, the test 468 * has not passed because it happened on a freshly erased 469 * physical eraseblock which means something is wrong with it. 470 */ 471 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", 472 pnum); 473 err = -EIO; 474 } 475 return err; 476 } 477 478 /** 479 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 480 * @ubi: UBI device description object 481 * @pnum: physical eraseblock number to prepare 482 * 483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 484 * algorithm: the PEB is first filled with zeroes, then it is erased. And 485 * filling with zeroes starts from the end of the PEB. This was observed with 486 * Spansion S29GL512N NOR flash. 487 * 488 * This means that in case of a power cut we may end up with intact data at the 489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 493 * 494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 495 * magic numbers in order to invalidate them and prevent the failures. Returns 496 * zero in case of success and a negative error code in case of failure. 497 */ 498 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 499 { 500 int err; 501 size_t written; 502 loff_t addr; 503 uint32_t data = 0; 504 struct ubi_ec_hdr ec_hdr; 505 506 /* 507 * Note, we cannot generally define VID header buffers on stack, 508 * because of the way we deal with these buffers (see the header 509 * comment in this file). But we know this is a NOR-specific piece of 510 * code, so we can do this. But yes, this is error-prone and we should 511 * (pre-)allocate VID header buffer instead. 512 */ 513 struct ubi_vid_hdr vid_hdr; 514 515 /* 516 * If VID or EC is valid, we have to corrupt them before erasing. 517 * It is important to first invalidate the EC header, and then the VID 518 * header. Otherwise a power cut may lead to valid EC header and 519 * invalid VID header, in which case UBI will treat this PEB as 520 * corrupted and will try to preserve it, and print scary warnings. 521 */ 522 addr = (loff_t)pnum * ubi->peb_size; 523 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 524 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 525 err != UBI_IO_FF){ 526 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 527 if(err) 528 goto error; 529 } 530 531 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 532 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && 533 err != UBI_IO_FF){ 534 addr += ubi->vid_hdr_aloffset; 535 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); 536 if (err) 537 goto error; 538 } 539 return 0; 540 541 error: 542 /* 543 * The PEB contains a valid VID or EC header, but we cannot invalidate 544 * it. Supposedly the flash media or the driver is screwed up, so 545 * return an error. 546 */ 547 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); 548 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); 549 return -EIO; 550 } 551 552 /** 553 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 554 * @ubi: UBI device description object 555 * @pnum: physical eraseblock number to erase 556 * @torture: if this physical eraseblock has to be tortured 557 * 558 * This function synchronously erases physical eraseblock @pnum. If @torture 559 * flag is not zero, the physical eraseblock is checked by means of writing 560 * different patterns to it and reading them back. If the torturing is enabled, 561 * the physical eraseblock is erased more than once. 562 * 563 * This function returns the number of erasures made in case of success, %-EIO 564 * if the erasure failed or the torturing test failed, and other negative error 565 * codes in case of other errors. Note, %-EIO means that the physical 566 * eraseblock is bad. 567 */ 568 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 569 { 570 int err, ret = 0; 571 572 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 573 574 err = self_check_not_bad(ubi, pnum); 575 if (err != 0) 576 return err; 577 578 if (ubi->ro_mode) { 579 ubi_err(ubi, "read-only mode"); 580 return -EROFS; 581 } 582 583 if (ubi->nor_flash) { 584 err = nor_erase_prepare(ubi, pnum); 585 if (err) 586 return err; 587 } 588 589 if (torture) { 590 ret = torture_peb(ubi, pnum); 591 if (ret < 0) 592 return ret; 593 } 594 595 err = do_sync_erase(ubi, pnum); 596 if (err) 597 return err; 598 599 return ret + 1; 600 } 601 602 /** 603 * ubi_io_is_bad - check if a physical eraseblock is bad. 604 * @ubi: UBI device description object 605 * @pnum: the physical eraseblock number to check 606 * 607 * This function returns a positive number if the physical eraseblock is bad, 608 * zero if not, and a negative error code if an error occurred. 609 */ 610 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 611 { 612 struct mtd_info *mtd = ubi->mtd; 613 614 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 615 616 if (ubi->bad_allowed) { 617 int ret; 618 619 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 620 if (ret < 0) 621 ubi_err(ubi, "error %d while checking if PEB %d is bad", 622 ret, pnum); 623 else if (ret) 624 dbg_io("PEB %d is bad", pnum); 625 return ret; 626 } 627 628 return 0; 629 } 630 631 /** 632 * ubi_io_mark_bad - mark a physical eraseblock as bad. 633 * @ubi: UBI device description object 634 * @pnum: the physical eraseblock number to mark 635 * 636 * This function returns zero in case of success and a negative error code in 637 * case of failure. 638 */ 639 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 640 { 641 int err; 642 struct mtd_info *mtd = ubi->mtd; 643 644 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 645 646 if (ubi->ro_mode) { 647 ubi_err(ubi, "read-only mode"); 648 return -EROFS; 649 } 650 651 if (!ubi->bad_allowed) 652 return 0; 653 654 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 655 if (err) 656 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); 657 return err; 658 } 659 660 /** 661 * validate_ec_hdr - validate an erase counter header. 662 * @ubi: UBI device description object 663 * @ec_hdr: the erase counter header to check 664 * 665 * This function returns zero if the erase counter header is OK, and %1 if 666 * not. 667 */ 668 static int validate_ec_hdr(const struct ubi_device *ubi, 669 const struct ubi_ec_hdr *ec_hdr) 670 { 671 long long ec; 672 int vid_hdr_offset, leb_start; 673 674 ec = be64_to_cpu(ec_hdr->ec); 675 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 676 leb_start = be32_to_cpu(ec_hdr->data_offset); 677 678 if (ec_hdr->version != UBI_VERSION) { 679 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", 680 UBI_VERSION, (int)ec_hdr->version); 681 goto bad; 682 } 683 684 if (vid_hdr_offset != ubi->vid_hdr_offset) { 685 ubi_err(ubi, "bad VID header offset %d, expected %d", 686 vid_hdr_offset, ubi->vid_hdr_offset); 687 goto bad; 688 } 689 690 if (leb_start != ubi->leb_start) { 691 ubi_err(ubi, "bad data offset %d, expected %d", 692 leb_start, ubi->leb_start); 693 goto bad; 694 } 695 696 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 697 ubi_err(ubi, "bad erase counter %lld", ec); 698 goto bad; 699 } 700 701 return 0; 702 703 bad: 704 ubi_err(ubi, "bad EC header"); 705 ubi_dump_ec_hdr(ec_hdr); 706 dump_stack(); 707 return 1; 708 } 709 710 /** 711 * ubi_io_read_ec_hdr - read and check an erase counter header. 712 * @ubi: UBI device description object 713 * @pnum: physical eraseblock to read from 714 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 715 * header 716 * @verbose: be verbose if the header is corrupted or was not found 717 * 718 * This function reads erase counter header from physical eraseblock @pnum and 719 * stores it in @ec_hdr. This function also checks CRC checksum of the read 720 * erase counter header. The following codes may be returned: 721 * 722 * o %0 if the CRC checksum is correct and the header was successfully read; 723 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 724 * and corrected by the flash driver; this is harmless but may indicate that 725 * this eraseblock may become bad soon (but may be not); 726 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 727 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 728 * a data integrity error (uncorrectable ECC error in case of NAND); 729 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 730 * o a negative error code in case of failure. 731 */ 732 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 733 struct ubi_ec_hdr *ec_hdr, int verbose) 734 { 735 int err, read_err; 736 uint32_t crc, magic, hdr_crc; 737 738 dbg_io("read EC header from PEB %d", pnum); 739 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 740 741 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 742 if (read_err) { 743 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 744 return read_err; 745 746 /* 747 * We read all the data, but either a correctable bit-flip 748 * occurred, or MTD reported a data integrity error 749 * (uncorrectable ECC error in case of NAND). The former is 750 * harmless, the later may mean that the read data is 751 * corrupted. But we have a CRC check-sum and we will detect 752 * this. If the EC header is still OK, we just report this as 753 * there was a bit-flip, to force scrubbing. 754 */ 755 } 756 757 magic = be32_to_cpu(ec_hdr->magic); 758 if (magic != UBI_EC_HDR_MAGIC) { 759 if (mtd_is_eccerr(read_err)) 760 return UBI_IO_BAD_HDR_EBADMSG; 761 762 /* 763 * The magic field is wrong. Let's check if we have read all 764 * 0xFF. If yes, this physical eraseblock is assumed to be 765 * empty. 766 */ 767 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 768 /* The physical eraseblock is supposedly empty */ 769 if (verbose) 770 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", 771 pnum); 772 dbg_bld("no EC header found at PEB %d, only 0xFF bytes", 773 pnum); 774 if (!read_err) 775 return UBI_IO_FF; 776 else 777 return UBI_IO_FF_BITFLIPS; 778 } 779 780 /* 781 * This is not a valid erase counter header, and these are not 782 * 0xFF bytes. Report that the header is corrupted. 783 */ 784 if (verbose) { 785 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 786 pnum, magic, UBI_EC_HDR_MAGIC); 787 ubi_dump_ec_hdr(ec_hdr); 788 } 789 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 790 pnum, magic, UBI_EC_HDR_MAGIC); 791 return UBI_IO_BAD_HDR; 792 } 793 794 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 795 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 796 797 if (hdr_crc != crc) { 798 if (verbose) { 799 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 800 pnum, crc, hdr_crc); 801 ubi_dump_ec_hdr(ec_hdr); 802 } 803 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", 804 pnum, crc, hdr_crc); 805 806 if (!read_err) 807 return UBI_IO_BAD_HDR; 808 else 809 return UBI_IO_BAD_HDR_EBADMSG; 810 } 811 812 /* And of course validate what has just been read from the media */ 813 err = validate_ec_hdr(ubi, ec_hdr); 814 if (err) { 815 ubi_err(ubi, "validation failed for PEB %d", pnum); 816 return -EINVAL; 817 } 818 819 /* 820 * If there was %-EBADMSG, but the header CRC is still OK, report about 821 * a bit-flip to force scrubbing on this PEB. 822 */ 823 return read_err ? UBI_IO_BITFLIPS : 0; 824 } 825 826 /** 827 * ubi_io_write_ec_hdr - write an erase counter header. 828 * @ubi: UBI device description object 829 * @pnum: physical eraseblock to write to 830 * @ec_hdr: the erase counter header to write 831 * 832 * This function writes erase counter header described by @ec_hdr to physical 833 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 834 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 835 * field. 836 * 837 * This function returns zero in case of success and a negative error code in 838 * case of failure. If %-EIO is returned, the physical eraseblock most probably 839 * went bad. 840 */ 841 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 842 struct ubi_ec_hdr *ec_hdr) 843 { 844 int err; 845 uint32_t crc; 846 847 dbg_io("write EC header to PEB %d", pnum); 848 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 849 850 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 851 ec_hdr->version = UBI_VERSION; 852 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 853 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 854 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 855 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 856 ec_hdr->hdr_crc = cpu_to_be32(crc); 857 858 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 859 if (err) 860 return err; 861 862 if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) 863 return -EROFS; 864 865 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 866 return err; 867 } 868 869 /** 870 * validate_vid_hdr - validate a volume identifier header. 871 * @ubi: UBI device description object 872 * @vid_hdr: the volume identifier header to check 873 * 874 * This function checks that data stored in the volume identifier header 875 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 876 */ 877 static int validate_vid_hdr(const struct ubi_device *ubi, 878 const struct ubi_vid_hdr *vid_hdr) 879 { 880 int vol_type = vid_hdr->vol_type; 881 int copy_flag = vid_hdr->copy_flag; 882 int vol_id = be32_to_cpu(vid_hdr->vol_id); 883 int lnum = be32_to_cpu(vid_hdr->lnum); 884 int compat = vid_hdr->compat; 885 int data_size = be32_to_cpu(vid_hdr->data_size); 886 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 887 int data_pad = be32_to_cpu(vid_hdr->data_pad); 888 int data_crc = be32_to_cpu(vid_hdr->data_crc); 889 int usable_leb_size = ubi->leb_size - data_pad; 890 891 if (copy_flag != 0 && copy_flag != 1) { 892 ubi_err(ubi, "bad copy_flag"); 893 goto bad; 894 } 895 896 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 897 data_pad < 0) { 898 ubi_err(ubi, "negative values"); 899 goto bad; 900 } 901 902 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 903 ubi_err(ubi, "bad vol_id"); 904 goto bad; 905 } 906 907 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 908 ubi_err(ubi, "bad compat"); 909 goto bad; 910 } 911 912 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 913 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 914 compat != UBI_COMPAT_REJECT) { 915 ubi_err(ubi, "bad compat"); 916 goto bad; 917 } 918 919 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 920 ubi_err(ubi, "bad vol_type"); 921 goto bad; 922 } 923 924 if (data_pad >= ubi->leb_size / 2) { 925 ubi_err(ubi, "bad data_pad"); 926 goto bad; 927 } 928 929 if (vol_type == UBI_VID_STATIC) { 930 /* 931 * Although from high-level point of view static volumes may 932 * contain zero bytes of data, but no VID headers can contain 933 * zero at these fields, because they empty volumes do not have 934 * mapped logical eraseblocks. 935 */ 936 if (used_ebs == 0) { 937 ubi_err(ubi, "zero used_ebs"); 938 goto bad; 939 } 940 if (data_size == 0) { 941 ubi_err(ubi, "zero data_size"); 942 goto bad; 943 } 944 if (lnum < used_ebs - 1) { 945 if (data_size != usable_leb_size) { 946 ubi_err(ubi, "bad data_size"); 947 goto bad; 948 } 949 } else if (lnum == used_ebs - 1) { 950 if (data_size == 0) { 951 ubi_err(ubi, "bad data_size at last LEB"); 952 goto bad; 953 } 954 } else { 955 ubi_err(ubi, "too high lnum"); 956 goto bad; 957 } 958 } else { 959 if (copy_flag == 0) { 960 if (data_crc != 0) { 961 ubi_err(ubi, "non-zero data CRC"); 962 goto bad; 963 } 964 if (data_size != 0) { 965 ubi_err(ubi, "non-zero data_size"); 966 goto bad; 967 } 968 } else { 969 if (data_size == 0) { 970 ubi_err(ubi, "zero data_size of copy"); 971 goto bad; 972 } 973 } 974 if (used_ebs != 0) { 975 ubi_err(ubi, "bad used_ebs"); 976 goto bad; 977 } 978 } 979 980 return 0; 981 982 bad: 983 ubi_err(ubi, "bad VID header"); 984 ubi_dump_vid_hdr(vid_hdr); 985 dump_stack(); 986 return 1; 987 } 988 989 /** 990 * ubi_io_read_vid_hdr - read and check a volume identifier header. 991 * @ubi: UBI device description object 992 * @pnum: physical eraseblock number to read from 993 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 994 * identifier header 995 * @verbose: be verbose if the header is corrupted or wasn't found 996 * 997 * This function reads the volume identifier header from physical eraseblock 998 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 999 * volume identifier header. The error codes are the same as in 1000 * 'ubi_io_read_ec_hdr()'. 1001 * 1002 * Note, the implementation of this function is also very similar to 1003 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 1004 */ 1005 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1006 struct ubi_vid_hdr *vid_hdr, int verbose) 1007 { 1008 int err, read_err; 1009 uint32_t crc, magic, hdr_crc; 1010 void *p; 1011 1012 dbg_io("read VID header from PEB %d", pnum); 1013 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1014 1015 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1016 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1017 ubi->vid_hdr_alsize); 1018 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) 1019 return read_err; 1020 1021 magic = be32_to_cpu(vid_hdr->magic); 1022 if (magic != UBI_VID_HDR_MAGIC) { 1023 if (mtd_is_eccerr(read_err)) 1024 return UBI_IO_BAD_HDR_EBADMSG; 1025 1026 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1027 if (verbose) 1028 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", 1029 pnum); 1030 dbg_bld("no VID header found at PEB %d, only 0xFF bytes", 1031 pnum); 1032 if (!read_err) 1033 return UBI_IO_FF; 1034 else 1035 return UBI_IO_FF_BITFLIPS; 1036 } 1037 1038 if (verbose) { 1039 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", 1040 pnum, magic, UBI_VID_HDR_MAGIC); 1041 ubi_dump_vid_hdr(vid_hdr); 1042 } 1043 dbg_bld("bad magic number at PEB %d: %08x instead of %08x", 1044 pnum, magic, UBI_VID_HDR_MAGIC); 1045 return UBI_IO_BAD_HDR; 1046 } 1047 1048 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1049 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1050 1051 if (hdr_crc != crc) { 1052 if (verbose) { 1053 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", 1054 pnum, crc, hdr_crc); 1055 ubi_dump_vid_hdr(vid_hdr); 1056 } 1057 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", 1058 pnum, crc, hdr_crc); 1059 if (!read_err) 1060 return UBI_IO_BAD_HDR; 1061 else 1062 return UBI_IO_BAD_HDR_EBADMSG; 1063 } 1064 1065 err = validate_vid_hdr(ubi, vid_hdr); 1066 if (err) { 1067 ubi_err(ubi, "validation failed for PEB %d", pnum); 1068 return -EINVAL; 1069 } 1070 1071 return read_err ? UBI_IO_BITFLIPS : 0; 1072 } 1073 1074 /** 1075 * ubi_io_write_vid_hdr - write a volume identifier header. 1076 * @ubi: UBI device description object 1077 * @pnum: the physical eraseblock number to write to 1078 * @vid_hdr: the volume identifier header to write 1079 * 1080 * This function writes the volume identifier header described by @vid_hdr to 1081 * physical eraseblock @pnum. This function automatically fills the 1082 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1083 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1084 * 1085 * This function returns zero in case of success and a negative error code in 1086 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1087 * bad. 1088 */ 1089 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1090 struct ubi_vid_hdr *vid_hdr) 1091 { 1092 int err; 1093 uint32_t crc; 1094 void *p; 1095 1096 dbg_io("write VID header to PEB %d", pnum); 1097 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1098 1099 err = self_check_peb_ec_hdr(ubi, pnum); 1100 if (err) 1101 return err; 1102 1103 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1104 vid_hdr->version = UBI_VERSION; 1105 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1106 vid_hdr->hdr_crc = cpu_to_be32(crc); 1107 1108 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1109 if (err) 1110 return err; 1111 1112 if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) 1113 return -EROFS; 1114 1115 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1116 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1117 ubi->vid_hdr_alsize); 1118 return err; 1119 } 1120 1121 /** 1122 * self_check_not_bad - ensure that a physical eraseblock is not bad. 1123 * @ubi: UBI device description object 1124 * @pnum: physical eraseblock number to check 1125 * 1126 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1127 * it is bad and a negative error code if an error occurred. 1128 */ 1129 static int self_check_not_bad(const struct ubi_device *ubi, int pnum) 1130 { 1131 int err; 1132 1133 if (!ubi_dbg_chk_io(ubi)) 1134 return 0; 1135 1136 err = ubi_io_is_bad(ubi, pnum); 1137 if (!err) 1138 return err; 1139 1140 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1141 dump_stack(); 1142 return err > 0 ? -EINVAL : err; 1143 } 1144 1145 /** 1146 * self_check_ec_hdr - check if an erase counter header is all right. 1147 * @ubi: UBI device description object 1148 * @pnum: physical eraseblock number the erase counter header belongs to 1149 * @ec_hdr: the erase counter header to check 1150 * 1151 * This function returns zero if the erase counter header contains valid 1152 * values, and %-EINVAL if not. 1153 */ 1154 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1155 const struct ubi_ec_hdr *ec_hdr) 1156 { 1157 int err; 1158 uint32_t magic; 1159 1160 if (!ubi_dbg_chk_io(ubi)) 1161 return 0; 1162 1163 magic = be32_to_cpu(ec_hdr->magic); 1164 if (magic != UBI_EC_HDR_MAGIC) { 1165 ubi_err(ubi, "bad magic %#08x, must be %#08x", 1166 magic, UBI_EC_HDR_MAGIC); 1167 goto fail; 1168 } 1169 1170 err = validate_ec_hdr(ubi, ec_hdr); 1171 if (err) { 1172 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1173 goto fail; 1174 } 1175 1176 return 0; 1177 1178 fail: 1179 ubi_dump_ec_hdr(ec_hdr); 1180 dump_stack(); 1181 return -EINVAL; 1182 } 1183 1184 /** 1185 * self_check_peb_ec_hdr - check erase counter header. 1186 * @ubi: UBI device description object 1187 * @pnum: the physical eraseblock number to check 1188 * 1189 * This function returns zero if the erase counter header is all right and and 1190 * a negative error code if not or if an error occurred. 1191 */ 1192 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1193 { 1194 int err; 1195 uint32_t crc, hdr_crc; 1196 struct ubi_ec_hdr *ec_hdr; 1197 1198 if (!ubi_dbg_chk_io(ubi)) 1199 return 0; 1200 1201 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1202 if (!ec_hdr) 1203 return -ENOMEM; 1204 1205 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1206 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1207 goto exit; 1208 1209 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1210 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1211 if (hdr_crc != crc) { 1212 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", 1213 crc, hdr_crc); 1214 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1215 ubi_dump_ec_hdr(ec_hdr); 1216 dump_stack(); 1217 err = -EINVAL; 1218 goto exit; 1219 } 1220 1221 err = self_check_ec_hdr(ubi, pnum, ec_hdr); 1222 1223 exit: 1224 kfree(ec_hdr); 1225 return err; 1226 } 1227 1228 /** 1229 * self_check_vid_hdr - check that a volume identifier header is all right. 1230 * @ubi: UBI device description object 1231 * @pnum: physical eraseblock number the volume identifier header belongs to 1232 * @vid_hdr: the volume identifier header to check 1233 * 1234 * This function returns zero if the volume identifier header is all right, and 1235 * %-EINVAL if not. 1236 */ 1237 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1238 const struct ubi_vid_hdr *vid_hdr) 1239 { 1240 int err; 1241 uint32_t magic; 1242 1243 if (!ubi_dbg_chk_io(ubi)) 1244 return 0; 1245 1246 magic = be32_to_cpu(vid_hdr->magic); 1247 if (magic != UBI_VID_HDR_MAGIC) { 1248 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", 1249 magic, pnum, UBI_VID_HDR_MAGIC); 1250 goto fail; 1251 } 1252 1253 err = validate_vid_hdr(ubi, vid_hdr); 1254 if (err) { 1255 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1256 goto fail; 1257 } 1258 1259 return err; 1260 1261 fail: 1262 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1263 ubi_dump_vid_hdr(vid_hdr); 1264 dump_stack(); 1265 return -EINVAL; 1266 1267 } 1268 1269 /** 1270 * self_check_peb_vid_hdr - check volume identifier header. 1271 * @ubi: UBI device description object 1272 * @pnum: the physical eraseblock number to check 1273 * 1274 * This function returns zero if the volume identifier header is all right, 1275 * and a negative error code if not or if an error occurred. 1276 */ 1277 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1278 { 1279 int err; 1280 uint32_t crc, hdr_crc; 1281 struct ubi_vid_hdr *vid_hdr; 1282 void *p; 1283 1284 if (!ubi_dbg_chk_io(ubi)) 1285 return 0; 1286 1287 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1288 if (!vid_hdr) 1289 return -ENOMEM; 1290 1291 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1292 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1293 ubi->vid_hdr_alsize); 1294 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 1295 goto exit; 1296 1297 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1298 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1299 if (hdr_crc != crc) { 1300 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", 1301 pnum, crc, hdr_crc); 1302 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1303 ubi_dump_vid_hdr(vid_hdr); 1304 dump_stack(); 1305 err = -EINVAL; 1306 goto exit; 1307 } 1308 1309 err = self_check_vid_hdr(ubi, pnum, vid_hdr); 1310 1311 exit: 1312 ubi_free_vid_hdr(ubi, vid_hdr); 1313 return err; 1314 } 1315 1316 /** 1317 * self_check_write - make sure write succeeded. 1318 * @ubi: UBI device description object 1319 * @buf: buffer with data which were written 1320 * @pnum: physical eraseblock number the data were written to 1321 * @offset: offset within the physical eraseblock the data were written to 1322 * @len: how many bytes were written 1323 * 1324 * This functions reads data which were recently written and compares it with 1325 * the original data buffer - the data have to match. Returns zero if the data 1326 * match and a negative error code if not or in case of failure. 1327 */ 1328 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1329 int offset, int len) 1330 { 1331 int err, i; 1332 size_t read; 1333 void *buf1; 1334 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1335 1336 if (!ubi_dbg_chk_io(ubi)) 1337 return 0; 1338 1339 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1340 if (!buf1) { 1341 ubi_err(ubi, "cannot allocate memory to check writes"); 1342 return 0; 1343 } 1344 1345 err = mtd_read(ubi->mtd, addr, len, &read, buf1); 1346 if (err && !mtd_is_bitflip(err)) 1347 goto out_free; 1348 1349 for (i = 0; i < len; i++) { 1350 uint8_t c = ((uint8_t *)buf)[i]; 1351 uint8_t c1 = ((uint8_t *)buf1)[i]; 1352 int dump_len; 1353 1354 if (c == c1) 1355 continue; 1356 1357 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", 1358 pnum, offset, len); 1359 ubi_msg(ubi, "data differ at position %d", i); 1360 dump_len = max_t(int, 128, len - i); 1361 ubi_msg(ubi, "hex dump of the original buffer from %d to %d", 1362 i, i + dump_len); 1363 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1364 buf + i, dump_len, 1); 1365 ubi_msg(ubi, "hex dump of the read buffer from %d to %d", 1366 i, i + dump_len); 1367 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1368 buf1 + i, dump_len, 1); 1369 dump_stack(); 1370 err = -EINVAL; 1371 goto out_free; 1372 } 1373 1374 vfree(buf1); 1375 return 0; 1376 1377 out_free: 1378 vfree(buf1); 1379 return err; 1380 } 1381 1382 /** 1383 * ubi_self_check_all_ff - check that a region of flash is empty. 1384 * @ubi: UBI device description object 1385 * @pnum: the physical eraseblock number to check 1386 * @offset: the starting offset within the physical eraseblock to check 1387 * @len: the length of the region to check 1388 * 1389 * This function returns zero if only 0xFF bytes are present at offset 1390 * @offset of the physical eraseblock @pnum, and a negative error code if not 1391 * or if an error occurred. 1392 */ 1393 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1394 { 1395 size_t read; 1396 int err; 1397 void *buf; 1398 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1399 1400 if (!ubi_dbg_chk_io(ubi)) 1401 return 0; 1402 1403 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1404 if (!buf) { 1405 ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); 1406 return 0; 1407 } 1408 1409 err = mtd_read(ubi->mtd, addr, len, &read, buf); 1410 if (err && !mtd_is_bitflip(err)) { 1411 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", 1412 err, len, pnum, offset, read); 1413 goto error; 1414 } 1415 1416 err = ubi_check_pattern(buf, 0xFF, len); 1417 if (err == 0) { 1418 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", 1419 pnum, offset, len); 1420 goto fail; 1421 } 1422 1423 vfree(buf); 1424 return 0; 1425 1426 fail: 1427 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1428 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); 1429 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1430 err = -EINVAL; 1431 error: 1432 dump_stack(); 1433 vfree(buf); 1434 return err; 1435 } 1436