xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 81d67439)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 #ifdef CONFIG_MTD_UBI_DEBUG
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 				 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 				  const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109 
110 /**
111  * ubi_io_read - read data from a physical eraseblock.
112  * @ubi: UBI device description object
113  * @buf: buffer where to store the read data
114  * @pnum: physical eraseblock number to read from
115  * @offset: offset within the physical eraseblock from where to read
116  * @len: how many bytes to read
117  *
118  * This function reads data from offset @offset of physical eraseblock @pnum
119  * and stores the read data in the @buf buffer. The following return codes are
120  * possible:
121  *
122  * o %0 if all the requested data were successfully read;
123  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124  *   correctable bit-flips were detected; this is harmless but may indicate
125  *   that this eraseblock may become bad soon (but do not have to);
126  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127  *   example it can be an ECC error in case of NAND; this most probably means
128  *   that the data is corrupted;
129  * o %-EIO if some I/O error occurred;
130  * o other negative error codes in case of other errors.
131  */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 		int len)
134 {
135 	int err, retries = 0;
136 	size_t read;
137 	loff_t addr;
138 
139 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 
141 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 	ubi_assert(len > 0);
144 
145 	err = paranoid_check_not_bad(ubi, pnum);
146 	if (err)
147 		return err;
148 
149 	/*
150 	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
151 	 * do not do this, the following may happen:
152 	 * 1. The buffer contains data from previous operation, e.g., read from
153 	 *    another PEB previously. The data looks like expected, e.g., if we
154 	 *    just do not read anything and return - the caller would not
155 	 *    notice this. E.g., if we are reading a VID header, the buffer may
156 	 *    contain a valid VID header from another PEB.
157 	 * 2. The driver is buggy and returns us success or -EBADMSG or
158 	 *    -EUCLEAN, but it does not actually put any data to the buffer.
159 	 *
160 	 * This may confuse UBI or upper layers - they may think the buffer
161 	 * contains valid data while in fact it is just old data. This is
162 	 * especially possible because UBI (and UBIFS) relies on CRC, and
163 	 * treats data as correct even in case of ECC errors if the CRC is
164 	 * correct.
165 	 *
166 	 * Try to prevent this situation by changing the first byte of the
167 	 * buffer.
168 	 */
169 	*((uint8_t *)buf) ^= 0xFF;
170 
171 	addr = (loff_t)pnum * ubi->peb_size + offset;
172 retry:
173 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
174 	if (err) {
175 		const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
176 
177 		if (err == -EUCLEAN) {
178 			/*
179 			 * -EUCLEAN is reported if there was a bit-flip which
180 			 * was corrected, so this is harmless.
181 			 *
182 			 * We do not report about it here unless debugging is
183 			 * enabled. A corresponding message will be printed
184 			 * later, when it is has been scrubbed.
185 			 */
186 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
187 			ubi_assert(len == read);
188 			return UBI_IO_BITFLIPS;
189 		}
190 
191 		if (retries++ < UBI_IO_RETRIES) {
192 			dbg_io("error %d%s while reading %d bytes from PEB "
193 			       "%d:%d, read only %zd bytes, retry",
194 			       err, errstr, len, pnum, offset, read);
195 			yield();
196 			goto retry;
197 		}
198 
199 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
200 			"read %zd bytes", err, errstr, len, pnum, offset, read);
201 		ubi_dbg_dump_stack();
202 
203 		/*
204 		 * The driver should never return -EBADMSG if it failed to read
205 		 * all the requested data. But some buggy drivers might do
206 		 * this, so we change it to -EIO.
207 		 */
208 		if (read != len && err == -EBADMSG) {
209 			ubi_assert(0);
210 			err = -EIO;
211 		}
212 	} else {
213 		ubi_assert(len == read);
214 
215 		if (ubi_dbg_is_bitflip(ubi)) {
216 			dbg_gen("bit-flip (emulated)");
217 			err = UBI_IO_BITFLIPS;
218 		}
219 	}
220 
221 	return err;
222 }
223 
224 /**
225  * ubi_io_write - write data to a physical eraseblock.
226  * @ubi: UBI device description object
227  * @buf: buffer with the data to write
228  * @pnum: physical eraseblock number to write to
229  * @offset: offset within the physical eraseblock where to write
230  * @len: how many bytes to write
231  *
232  * This function writes @len bytes of data from buffer @buf to offset @offset
233  * of physical eraseblock @pnum. If all the data were successfully written,
234  * zero is returned. If an error occurred, this function returns a negative
235  * error code. If %-EIO is returned, the physical eraseblock most probably went
236  * bad.
237  *
238  * Note, in case of an error, it is possible that something was still written
239  * to the flash media, but may be some garbage.
240  */
241 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
242 		 int len)
243 {
244 	int err;
245 	size_t written;
246 	loff_t addr;
247 
248 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
249 
250 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
251 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
252 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
253 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
254 
255 	if (ubi->ro_mode) {
256 		ubi_err("read-only mode");
257 		return -EROFS;
258 	}
259 
260 	/* The below has to be compiled out if paranoid checks are disabled */
261 
262 	err = paranoid_check_not_bad(ubi, pnum);
263 	if (err)
264 		return err;
265 
266 	/* The area we are writing to has to contain all 0xFF bytes */
267 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
268 	if (err)
269 		return err;
270 
271 	if (offset >= ubi->leb_start) {
272 		/*
273 		 * We write to the data area of the physical eraseblock. Make
274 		 * sure it has valid EC and VID headers.
275 		 */
276 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
277 		if (err)
278 			return err;
279 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
280 		if (err)
281 			return err;
282 	}
283 
284 	if (ubi_dbg_is_write_failure(ubi)) {
285 		dbg_err("cannot write %d bytes to PEB %d:%d "
286 			"(emulated)", len, pnum, offset);
287 		ubi_dbg_dump_stack();
288 		return -EIO;
289 	}
290 
291 	addr = (loff_t)pnum * ubi->peb_size + offset;
292 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
293 	if (err) {
294 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
295 			"%zd bytes", err, len, pnum, offset, written);
296 		ubi_dbg_dump_stack();
297 		ubi_dbg_dump_flash(ubi, pnum, offset, len);
298 	} else
299 		ubi_assert(written == len);
300 
301 	if (!err) {
302 		err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
303 		if (err)
304 			return err;
305 
306 		/*
307 		 * Since we always write sequentially, the rest of the PEB has
308 		 * to contain only 0xFF bytes.
309 		 */
310 		offset += len;
311 		len = ubi->peb_size - offset;
312 		if (len)
313 			err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
314 	}
315 
316 	return err;
317 }
318 
319 /**
320  * erase_callback - MTD erasure call-back.
321  * @ei: MTD erase information object.
322  *
323  * Note, even though MTD erase interface is asynchronous, all the current
324  * implementations are synchronous anyway.
325  */
326 static void erase_callback(struct erase_info *ei)
327 {
328 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
329 }
330 
331 /**
332  * do_sync_erase - synchronously erase a physical eraseblock.
333  * @ubi: UBI device description object
334  * @pnum: the physical eraseblock number to erase
335  *
336  * This function synchronously erases physical eraseblock @pnum and returns
337  * zero in case of success and a negative error code in case of failure. If
338  * %-EIO is returned, the physical eraseblock most probably went bad.
339  */
340 static int do_sync_erase(struct ubi_device *ubi, int pnum)
341 {
342 	int err, retries = 0;
343 	struct erase_info ei;
344 	wait_queue_head_t wq;
345 
346 	dbg_io("erase PEB %d", pnum);
347 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
348 
349 	if (ubi->ro_mode) {
350 		ubi_err("read-only mode");
351 		return -EROFS;
352 	}
353 
354 retry:
355 	init_waitqueue_head(&wq);
356 	memset(&ei, 0, sizeof(struct erase_info));
357 
358 	ei.mtd      = ubi->mtd;
359 	ei.addr     = (loff_t)pnum * ubi->peb_size;
360 	ei.len      = ubi->peb_size;
361 	ei.callback = erase_callback;
362 	ei.priv     = (unsigned long)&wq;
363 
364 	err = ubi->mtd->erase(ubi->mtd, &ei);
365 	if (err) {
366 		if (retries++ < UBI_IO_RETRIES) {
367 			dbg_io("error %d while erasing PEB %d, retry",
368 			       err, pnum);
369 			yield();
370 			goto retry;
371 		}
372 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
373 		ubi_dbg_dump_stack();
374 		return err;
375 	}
376 
377 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
378 					   ei.state == MTD_ERASE_FAILED);
379 	if (err) {
380 		ubi_err("interrupted PEB %d erasure", pnum);
381 		return -EINTR;
382 	}
383 
384 	if (ei.state == MTD_ERASE_FAILED) {
385 		if (retries++ < UBI_IO_RETRIES) {
386 			dbg_io("error while erasing PEB %d, retry", pnum);
387 			yield();
388 			goto retry;
389 		}
390 		ubi_err("cannot erase PEB %d", pnum);
391 		ubi_dbg_dump_stack();
392 		return -EIO;
393 	}
394 
395 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
396 	if (err)
397 		return err;
398 
399 	if (ubi_dbg_is_erase_failure(ubi)) {
400 		dbg_err("cannot erase PEB %d (emulated)", pnum);
401 		return -EIO;
402 	}
403 
404 	return 0;
405 }
406 
407 /* Patterns to write to a physical eraseblock when torturing it */
408 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
409 
410 /**
411  * torture_peb - test a supposedly bad physical eraseblock.
412  * @ubi: UBI device description object
413  * @pnum: the physical eraseblock number to test
414  *
415  * This function returns %-EIO if the physical eraseblock did not pass the
416  * test, a positive number of erase operations done if the test was
417  * successfully passed, and other negative error codes in case of other errors.
418  */
419 static int torture_peb(struct ubi_device *ubi, int pnum)
420 {
421 	int err, i, patt_count;
422 
423 	ubi_msg("run torture test for PEB %d", pnum);
424 	patt_count = ARRAY_SIZE(patterns);
425 	ubi_assert(patt_count > 0);
426 
427 	mutex_lock(&ubi->buf_mutex);
428 	for (i = 0; i < patt_count; i++) {
429 		err = do_sync_erase(ubi, pnum);
430 		if (err)
431 			goto out;
432 
433 		/* Make sure the PEB contains only 0xFF bytes */
434 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
435 		if (err)
436 			goto out;
437 
438 		err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
439 		if (err == 0) {
440 			ubi_err("erased PEB %d, but a non-0xFF byte found",
441 				pnum);
442 			err = -EIO;
443 			goto out;
444 		}
445 
446 		/* Write a pattern and check it */
447 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
448 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
449 		if (err)
450 			goto out;
451 
452 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
453 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
454 		if (err)
455 			goto out;
456 
457 		err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
458 					ubi->peb_size);
459 		if (err == 0) {
460 			ubi_err("pattern %x checking failed for PEB %d",
461 				patterns[i], pnum);
462 			err = -EIO;
463 			goto out;
464 		}
465 	}
466 
467 	err = patt_count;
468 	ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
469 
470 out:
471 	mutex_unlock(&ubi->buf_mutex);
472 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
473 		/*
474 		 * If a bit-flip or data integrity error was detected, the test
475 		 * has not passed because it happened on a freshly erased
476 		 * physical eraseblock which means something is wrong with it.
477 		 */
478 		ubi_err("read problems on freshly erased PEB %d, must be bad",
479 			pnum);
480 		err = -EIO;
481 	}
482 	return err;
483 }
484 
485 /**
486  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
487  * @ubi: UBI device description object
488  * @pnum: physical eraseblock number to prepare
489  *
490  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
491  * algorithm: the PEB is first filled with zeroes, then it is erased. And
492  * filling with zeroes starts from the end of the PEB. This was observed with
493  * Spansion S29GL512N NOR flash.
494  *
495  * This means that in case of a power cut we may end up with intact data at the
496  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
497  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
498  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
499  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
500  *
501  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
502  * magic numbers in order to invalidate them and prevent the failures. Returns
503  * zero in case of success and a negative error code in case of failure.
504  */
505 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
506 {
507 	int err, err1;
508 	size_t written;
509 	loff_t addr;
510 	uint32_t data = 0;
511 	/*
512 	 * Note, we cannot generally define VID header buffers on stack,
513 	 * because of the way we deal with these buffers (see the header
514 	 * comment in this file). But we know this is a NOR-specific piece of
515 	 * code, so we can do this. But yes, this is error-prone and we should
516 	 * (pre-)allocate VID header buffer instead.
517 	 */
518 	struct ubi_vid_hdr vid_hdr;
519 
520 	/*
521 	 * It is important to first invalidate the EC header, and then the VID
522 	 * header. Otherwise a power cut may lead to valid EC header and
523 	 * invalid VID header, in which case UBI will treat this PEB as
524 	 * corrupted and will try to preserve it, and print scary warnings (see
525 	 * the header comment in scan.c for more information).
526 	 */
527 	addr = (loff_t)pnum * ubi->peb_size;
528 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
529 	if (!err) {
530 		addr += ubi->vid_hdr_aloffset;
531 		err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
532 				      (void *)&data);
533 		if (!err)
534 			return 0;
535 	}
536 
537 	/*
538 	 * We failed to write to the media. This was observed with Spansion
539 	 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
540 	 * was interrupted at a very inappropriate moment, so it became
541 	 * unwritable. In this case we probably anyway have garbage in this
542 	 * PEB.
543 	 */
544 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
545 	if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
546 	    err1 == UBI_IO_FF) {
547 		struct ubi_ec_hdr ec_hdr;
548 
549 		err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
550 		if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
551 		    err1 == UBI_IO_FF)
552 			/*
553 			 * Both VID and EC headers are corrupted, so we can
554 			 * safely erase this PEB and not afraid that it will be
555 			 * treated as a valid PEB in case of an unclean reboot.
556 			 */
557 			return 0;
558 	}
559 
560 	/*
561 	 * The PEB contains a valid VID header, but we cannot invalidate it.
562 	 * Supposedly the flash media or the driver is screwed up, so return an
563 	 * error.
564 	 */
565 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
566 		pnum, err, err1);
567 	ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
568 	return -EIO;
569 }
570 
571 /**
572  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
573  * @ubi: UBI device description object
574  * @pnum: physical eraseblock number to erase
575  * @torture: if this physical eraseblock has to be tortured
576  *
577  * This function synchronously erases physical eraseblock @pnum. If @torture
578  * flag is not zero, the physical eraseblock is checked by means of writing
579  * different patterns to it and reading them back. If the torturing is enabled,
580  * the physical eraseblock is erased more than once.
581  *
582  * This function returns the number of erasures made in case of success, %-EIO
583  * if the erasure failed or the torturing test failed, and other negative error
584  * codes in case of other errors. Note, %-EIO means that the physical
585  * eraseblock is bad.
586  */
587 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
588 {
589 	int err, ret = 0;
590 
591 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
592 
593 	err = paranoid_check_not_bad(ubi, pnum);
594 	if (err != 0)
595 		return err;
596 
597 	if (ubi->ro_mode) {
598 		ubi_err("read-only mode");
599 		return -EROFS;
600 	}
601 
602 	if (ubi->nor_flash) {
603 		err = nor_erase_prepare(ubi, pnum);
604 		if (err)
605 			return err;
606 	}
607 
608 	if (torture) {
609 		ret = torture_peb(ubi, pnum);
610 		if (ret < 0)
611 			return ret;
612 	}
613 
614 	err = do_sync_erase(ubi, pnum);
615 	if (err)
616 		return err;
617 
618 	return ret + 1;
619 }
620 
621 /**
622  * ubi_io_is_bad - check if a physical eraseblock is bad.
623  * @ubi: UBI device description object
624  * @pnum: the physical eraseblock number to check
625  *
626  * This function returns a positive number if the physical eraseblock is bad,
627  * zero if not, and a negative error code if an error occurred.
628  */
629 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
630 {
631 	struct mtd_info *mtd = ubi->mtd;
632 
633 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
634 
635 	if (ubi->bad_allowed) {
636 		int ret;
637 
638 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
639 		if (ret < 0)
640 			ubi_err("error %d while checking if PEB %d is bad",
641 				ret, pnum);
642 		else if (ret)
643 			dbg_io("PEB %d is bad", pnum);
644 		return ret;
645 	}
646 
647 	return 0;
648 }
649 
650 /**
651  * ubi_io_mark_bad - mark a physical eraseblock as bad.
652  * @ubi: UBI device description object
653  * @pnum: the physical eraseblock number to mark
654  *
655  * This function returns zero in case of success and a negative error code in
656  * case of failure.
657  */
658 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
659 {
660 	int err;
661 	struct mtd_info *mtd = ubi->mtd;
662 
663 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
664 
665 	if (ubi->ro_mode) {
666 		ubi_err("read-only mode");
667 		return -EROFS;
668 	}
669 
670 	if (!ubi->bad_allowed)
671 		return 0;
672 
673 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
674 	if (err)
675 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
676 	return err;
677 }
678 
679 /**
680  * validate_ec_hdr - validate an erase counter header.
681  * @ubi: UBI device description object
682  * @ec_hdr: the erase counter header to check
683  *
684  * This function returns zero if the erase counter header is OK, and %1 if
685  * not.
686  */
687 static int validate_ec_hdr(const struct ubi_device *ubi,
688 			   const struct ubi_ec_hdr *ec_hdr)
689 {
690 	long long ec;
691 	int vid_hdr_offset, leb_start;
692 
693 	ec = be64_to_cpu(ec_hdr->ec);
694 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
695 	leb_start = be32_to_cpu(ec_hdr->data_offset);
696 
697 	if (ec_hdr->version != UBI_VERSION) {
698 		ubi_err("node with incompatible UBI version found: "
699 			"this UBI version is %d, image version is %d",
700 			UBI_VERSION, (int)ec_hdr->version);
701 		goto bad;
702 	}
703 
704 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
705 		ubi_err("bad VID header offset %d, expected %d",
706 			vid_hdr_offset, ubi->vid_hdr_offset);
707 		goto bad;
708 	}
709 
710 	if (leb_start != ubi->leb_start) {
711 		ubi_err("bad data offset %d, expected %d",
712 			leb_start, ubi->leb_start);
713 		goto bad;
714 	}
715 
716 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
717 		ubi_err("bad erase counter %lld", ec);
718 		goto bad;
719 	}
720 
721 	return 0;
722 
723 bad:
724 	ubi_err("bad EC header");
725 	ubi_dbg_dump_ec_hdr(ec_hdr);
726 	ubi_dbg_dump_stack();
727 	return 1;
728 }
729 
730 /**
731  * ubi_io_read_ec_hdr - read and check an erase counter header.
732  * @ubi: UBI device description object
733  * @pnum: physical eraseblock to read from
734  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
735  * header
736  * @verbose: be verbose if the header is corrupted or was not found
737  *
738  * This function reads erase counter header from physical eraseblock @pnum and
739  * stores it in @ec_hdr. This function also checks CRC checksum of the read
740  * erase counter header. The following codes may be returned:
741  *
742  * o %0 if the CRC checksum is correct and the header was successfully read;
743  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
744  *   and corrected by the flash driver; this is harmless but may indicate that
745  *   this eraseblock may become bad soon (but may be not);
746  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
747  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
748  *   a data integrity error (uncorrectable ECC error in case of NAND);
749  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
750  * o a negative error code in case of failure.
751  */
752 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
753 		       struct ubi_ec_hdr *ec_hdr, int verbose)
754 {
755 	int err, read_err;
756 	uint32_t crc, magic, hdr_crc;
757 
758 	dbg_io("read EC header from PEB %d", pnum);
759 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
760 
761 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
762 	if (read_err) {
763 		if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
764 			return read_err;
765 
766 		/*
767 		 * We read all the data, but either a correctable bit-flip
768 		 * occurred, or MTD reported a data integrity error
769 		 * (uncorrectable ECC error in case of NAND). The former is
770 		 * harmless, the later may mean that the read data is
771 		 * corrupted. But we have a CRC check-sum and we will detect
772 		 * this. If the EC header is still OK, we just report this as
773 		 * there was a bit-flip, to force scrubbing.
774 		 */
775 	}
776 
777 	magic = be32_to_cpu(ec_hdr->magic);
778 	if (magic != UBI_EC_HDR_MAGIC) {
779 		if (read_err == -EBADMSG)
780 			return UBI_IO_BAD_HDR_EBADMSG;
781 
782 		/*
783 		 * The magic field is wrong. Let's check if we have read all
784 		 * 0xFF. If yes, this physical eraseblock is assumed to be
785 		 * empty.
786 		 */
787 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
788 			/* The physical eraseblock is supposedly empty */
789 			if (verbose)
790 				ubi_warn("no EC header found at PEB %d, "
791 					 "only 0xFF bytes", pnum);
792 			dbg_bld("no EC header found at PEB %d, "
793 				"only 0xFF bytes", pnum);
794 			if (!read_err)
795 				return UBI_IO_FF;
796 			else
797 				return UBI_IO_FF_BITFLIPS;
798 		}
799 
800 		/*
801 		 * This is not a valid erase counter header, and these are not
802 		 * 0xFF bytes. Report that the header is corrupted.
803 		 */
804 		if (verbose) {
805 			ubi_warn("bad magic number at PEB %d: %08x instead of "
806 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
807 			ubi_dbg_dump_ec_hdr(ec_hdr);
808 		}
809 		dbg_bld("bad magic number at PEB %d: %08x instead of "
810 			"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
811 		return UBI_IO_BAD_HDR;
812 	}
813 
814 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
815 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
816 
817 	if (hdr_crc != crc) {
818 		if (verbose) {
819 			ubi_warn("bad EC header CRC at PEB %d, calculated "
820 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
821 			ubi_dbg_dump_ec_hdr(ec_hdr);
822 		}
823 		dbg_bld("bad EC header CRC at PEB %d, calculated "
824 			"%#08x, read %#08x", pnum, crc, hdr_crc);
825 
826 		if (!read_err)
827 			return UBI_IO_BAD_HDR;
828 		else
829 			return UBI_IO_BAD_HDR_EBADMSG;
830 	}
831 
832 	/* And of course validate what has just been read from the media */
833 	err = validate_ec_hdr(ubi, ec_hdr);
834 	if (err) {
835 		ubi_err("validation failed for PEB %d", pnum);
836 		return -EINVAL;
837 	}
838 
839 	/*
840 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
841 	 * a bit-flip to force scrubbing on this PEB.
842 	 */
843 	return read_err ? UBI_IO_BITFLIPS : 0;
844 }
845 
846 /**
847  * ubi_io_write_ec_hdr - write an erase counter header.
848  * @ubi: UBI device description object
849  * @pnum: physical eraseblock to write to
850  * @ec_hdr: the erase counter header to write
851  *
852  * This function writes erase counter header described by @ec_hdr to physical
853  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
854  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
855  * field.
856  *
857  * This function returns zero in case of success and a negative error code in
858  * case of failure. If %-EIO is returned, the physical eraseblock most probably
859  * went bad.
860  */
861 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
862 			struct ubi_ec_hdr *ec_hdr)
863 {
864 	int err;
865 	uint32_t crc;
866 
867 	dbg_io("write EC header to PEB %d", pnum);
868 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
869 
870 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
871 	ec_hdr->version = UBI_VERSION;
872 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
873 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
874 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
875 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
876 	ec_hdr->hdr_crc = cpu_to_be32(crc);
877 
878 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
879 	if (err)
880 		return err;
881 
882 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
883 	return err;
884 }
885 
886 /**
887  * validate_vid_hdr - validate a volume identifier header.
888  * @ubi: UBI device description object
889  * @vid_hdr: the volume identifier header to check
890  *
891  * This function checks that data stored in the volume identifier header
892  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
893  */
894 static int validate_vid_hdr(const struct ubi_device *ubi,
895 			    const struct ubi_vid_hdr *vid_hdr)
896 {
897 	int vol_type = vid_hdr->vol_type;
898 	int copy_flag = vid_hdr->copy_flag;
899 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
900 	int lnum = be32_to_cpu(vid_hdr->lnum);
901 	int compat = vid_hdr->compat;
902 	int data_size = be32_to_cpu(vid_hdr->data_size);
903 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
904 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
905 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
906 	int usable_leb_size = ubi->leb_size - data_pad;
907 
908 	if (copy_flag != 0 && copy_flag != 1) {
909 		dbg_err("bad copy_flag");
910 		goto bad;
911 	}
912 
913 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
914 	    data_pad < 0) {
915 		dbg_err("negative values");
916 		goto bad;
917 	}
918 
919 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
920 		dbg_err("bad vol_id");
921 		goto bad;
922 	}
923 
924 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
925 		dbg_err("bad compat");
926 		goto bad;
927 	}
928 
929 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
930 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
931 	    compat != UBI_COMPAT_REJECT) {
932 		dbg_err("bad compat");
933 		goto bad;
934 	}
935 
936 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
937 		dbg_err("bad vol_type");
938 		goto bad;
939 	}
940 
941 	if (data_pad >= ubi->leb_size / 2) {
942 		dbg_err("bad data_pad");
943 		goto bad;
944 	}
945 
946 	if (vol_type == UBI_VID_STATIC) {
947 		/*
948 		 * Although from high-level point of view static volumes may
949 		 * contain zero bytes of data, but no VID headers can contain
950 		 * zero at these fields, because they empty volumes do not have
951 		 * mapped logical eraseblocks.
952 		 */
953 		if (used_ebs == 0) {
954 			dbg_err("zero used_ebs");
955 			goto bad;
956 		}
957 		if (data_size == 0) {
958 			dbg_err("zero data_size");
959 			goto bad;
960 		}
961 		if (lnum < used_ebs - 1) {
962 			if (data_size != usable_leb_size) {
963 				dbg_err("bad data_size");
964 				goto bad;
965 			}
966 		} else if (lnum == used_ebs - 1) {
967 			if (data_size == 0) {
968 				dbg_err("bad data_size at last LEB");
969 				goto bad;
970 			}
971 		} else {
972 			dbg_err("too high lnum");
973 			goto bad;
974 		}
975 	} else {
976 		if (copy_flag == 0) {
977 			if (data_crc != 0) {
978 				dbg_err("non-zero data CRC");
979 				goto bad;
980 			}
981 			if (data_size != 0) {
982 				dbg_err("non-zero data_size");
983 				goto bad;
984 			}
985 		} else {
986 			if (data_size == 0) {
987 				dbg_err("zero data_size of copy");
988 				goto bad;
989 			}
990 		}
991 		if (used_ebs != 0) {
992 			dbg_err("bad used_ebs");
993 			goto bad;
994 		}
995 	}
996 
997 	return 0;
998 
999 bad:
1000 	ubi_err("bad VID header");
1001 	ubi_dbg_dump_vid_hdr(vid_hdr);
1002 	ubi_dbg_dump_stack();
1003 	return 1;
1004 }
1005 
1006 /**
1007  * ubi_io_read_vid_hdr - read and check a volume identifier header.
1008  * @ubi: UBI device description object
1009  * @pnum: physical eraseblock number to read from
1010  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1011  * identifier header
1012  * @verbose: be verbose if the header is corrupted or wasn't found
1013  *
1014  * This function reads the volume identifier header from physical eraseblock
1015  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1016  * volume identifier header. The error codes are the same as in
1017  * 'ubi_io_read_ec_hdr()'.
1018  *
1019  * Note, the implementation of this function is also very similar to
1020  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1021  */
1022 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1023 			struct ubi_vid_hdr *vid_hdr, int verbose)
1024 {
1025 	int err, read_err;
1026 	uint32_t crc, magic, hdr_crc;
1027 	void *p;
1028 
1029 	dbg_io("read VID header from PEB %d", pnum);
1030 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1031 
1032 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1033 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1034 			  ubi->vid_hdr_alsize);
1035 	if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
1036 		return read_err;
1037 
1038 	magic = be32_to_cpu(vid_hdr->magic);
1039 	if (magic != UBI_VID_HDR_MAGIC) {
1040 		if (read_err == -EBADMSG)
1041 			return UBI_IO_BAD_HDR_EBADMSG;
1042 
1043 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1044 			if (verbose)
1045 				ubi_warn("no VID header found at PEB %d, "
1046 					 "only 0xFF bytes", pnum);
1047 			dbg_bld("no VID header found at PEB %d, "
1048 				"only 0xFF bytes", pnum);
1049 			if (!read_err)
1050 				return UBI_IO_FF;
1051 			else
1052 				return UBI_IO_FF_BITFLIPS;
1053 		}
1054 
1055 		if (verbose) {
1056 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1057 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1058 			ubi_dbg_dump_vid_hdr(vid_hdr);
1059 		}
1060 		dbg_bld("bad magic number at PEB %d: %08x instead of "
1061 			"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1062 		return UBI_IO_BAD_HDR;
1063 	}
1064 
1065 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1066 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1067 
1068 	if (hdr_crc != crc) {
1069 		if (verbose) {
1070 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1071 				 "read %#08x", pnum, crc, hdr_crc);
1072 			ubi_dbg_dump_vid_hdr(vid_hdr);
1073 		}
1074 		dbg_bld("bad CRC at PEB %d, calculated %#08x, "
1075 			"read %#08x", pnum, crc, hdr_crc);
1076 		if (!read_err)
1077 			return UBI_IO_BAD_HDR;
1078 		else
1079 			return UBI_IO_BAD_HDR_EBADMSG;
1080 	}
1081 
1082 	err = validate_vid_hdr(ubi, vid_hdr);
1083 	if (err) {
1084 		ubi_err("validation failed for PEB %d", pnum);
1085 		return -EINVAL;
1086 	}
1087 
1088 	return read_err ? UBI_IO_BITFLIPS : 0;
1089 }
1090 
1091 /**
1092  * ubi_io_write_vid_hdr - write a volume identifier header.
1093  * @ubi: UBI device description object
1094  * @pnum: the physical eraseblock number to write to
1095  * @vid_hdr: the volume identifier header to write
1096  *
1097  * This function writes the volume identifier header described by @vid_hdr to
1098  * physical eraseblock @pnum. This function automatically fills the
1099  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1100  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1101  *
1102  * This function returns zero in case of success and a negative error code in
1103  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1104  * bad.
1105  */
1106 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1107 			 struct ubi_vid_hdr *vid_hdr)
1108 {
1109 	int err;
1110 	uint32_t crc;
1111 	void *p;
1112 
1113 	dbg_io("write VID header to PEB %d", pnum);
1114 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1115 
1116 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1117 	if (err)
1118 		return err;
1119 
1120 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1121 	vid_hdr->version = UBI_VERSION;
1122 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1123 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1124 
1125 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1126 	if (err)
1127 		return err;
1128 
1129 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1130 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1131 			   ubi->vid_hdr_alsize);
1132 	return err;
1133 }
1134 
1135 #ifdef CONFIG_MTD_UBI_DEBUG
1136 
1137 /**
1138  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1139  * @ubi: UBI device description object
1140  * @pnum: physical eraseblock number to check
1141  *
1142  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1143  * it is bad and a negative error code if an error occurred.
1144  */
1145 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1146 {
1147 	int err;
1148 
1149 	if (!ubi->dbg->chk_io)
1150 		return 0;
1151 
1152 	err = ubi_io_is_bad(ubi, pnum);
1153 	if (!err)
1154 		return err;
1155 
1156 	ubi_err("paranoid check failed for PEB %d", pnum);
1157 	ubi_dbg_dump_stack();
1158 	return err > 0 ? -EINVAL : err;
1159 }
1160 
1161 /**
1162  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1163  * @ubi: UBI device description object
1164  * @pnum: physical eraseblock number the erase counter header belongs to
1165  * @ec_hdr: the erase counter header to check
1166  *
1167  * This function returns zero if the erase counter header contains valid
1168  * values, and %-EINVAL if not.
1169  */
1170 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1171 				 const struct ubi_ec_hdr *ec_hdr)
1172 {
1173 	int err;
1174 	uint32_t magic;
1175 
1176 	if (!ubi->dbg->chk_io)
1177 		return 0;
1178 
1179 	magic = be32_to_cpu(ec_hdr->magic);
1180 	if (magic != UBI_EC_HDR_MAGIC) {
1181 		ubi_err("bad magic %#08x, must be %#08x",
1182 			magic, UBI_EC_HDR_MAGIC);
1183 		goto fail;
1184 	}
1185 
1186 	err = validate_ec_hdr(ubi, ec_hdr);
1187 	if (err) {
1188 		ubi_err("paranoid check failed for PEB %d", pnum);
1189 		goto fail;
1190 	}
1191 
1192 	return 0;
1193 
1194 fail:
1195 	ubi_dbg_dump_ec_hdr(ec_hdr);
1196 	ubi_dbg_dump_stack();
1197 	return -EINVAL;
1198 }
1199 
1200 /**
1201  * paranoid_check_peb_ec_hdr - check erase counter header.
1202  * @ubi: UBI device description object
1203  * @pnum: the physical eraseblock number to check
1204  *
1205  * This function returns zero if the erase counter header is all right and and
1206  * a negative error code if not or if an error occurred.
1207  */
1208 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1209 {
1210 	int err;
1211 	uint32_t crc, hdr_crc;
1212 	struct ubi_ec_hdr *ec_hdr;
1213 
1214 	if (!ubi->dbg->chk_io)
1215 		return 0;
1216 
1217 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1218 	if (!ec_hdr)
1219 		return -ENOMEM;
1220 
1221 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1222 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1223 		goto exit;
1224 
1225 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1226 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1227 	if (hdr_crc != crc) {
1228 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1229 		ubi_err("paranoid check failed for PEB %d", pnum);
1230 		ubi_dbg_dump_ec_hdr(ec_hdr);
1231 		ubi_dbg_dump_stack();
1232 		err = -EINVAL;
1233 		goto exit;
1234 	}
1235 
1236 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1237 
1238 exit:
1239 	kfree(ec_hdr);
1240 	return err;
1241 }
1242 
1243 /**
1244  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1245  * @ubi: UBI device description object
1246  * @pnum: physical eraseblock number the volume identifier header belongs to
1247  * @vid_hdr: the volume identifier header to check
1248  *
1249  * This function returns zero if the volume identifier header is all right, and
1250  * %-EINVAL if not.
1251  */
1252 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1253 				  const struct ubi_vid_hdr *vid_hdr)
1254 {
1255 	int err;
1256 	uint32_t magic;
1257 
1258 	if (!ubi->dbg->chk_io)
1259 		return 0;
1260 
1261 	magic = be32_to_cpu(vid_hdr->magic);
1262 	if (magic != UBI_VID_HDR_MAGIC) {
1263 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1264 			magic, pnum, UBI_VID_HDR_MAGIC);
1265 		goto fail;
1266 	}
1267 
1268 	err = validate_vid_hdr(ubi, vid_hdr);
1269 	if (err) {
1270 		ubi_err("paranoid check failed for PEB %d", pnum);
1271 		goto fail;
1272 	}
1273 
1274 	return err;
1275 
1276 fail:
1277 	ubi_err("paranoid check failed for PEB %d", pnum);
1278 	ubi_dbg_dump_vid_hdr(vid_hdr);
1279 	ubi_dbg_dump_stack();
1280 	return -EINVAL;
1281 
1282 }
1283 
1284 /**
1285  * paranoid_check_peb_vid_hdr - check volume identifier header.
1286  * @ubi: UBI device description object
1287  * @pnum: the physical eraseblock number to check
1288  *
1289  * This function returns zero if the volume identifier header is all right,
1290  * and a negative error code if not or if an error occurred.
1291  */
1292 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1293 {
1294 	int err;
1295 	uint32_t crc, hdr_crc;
1296 	struct ubi_vid_hdr *vid_hdr;
1297 	void *p;
1298 
1299 	if (!ubi->dbg->chk_io)
1300 		return 0;
1301 
1302 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1303 	if (!vid_hdr)
1304 		return -ENOMEM;
1305 
1306 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1307 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1308 			  ubi->vid_hdr_alsize);
1309 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1310 		goto exit;
1311 
1312 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1313 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1314 	if (hdr_crc != crc) {
1315 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1316 			"read %#08x", pnum, crc, hdr_crc);
1317 		ubi_err("paranoid check failed for PEB %d", pnum);
1318 		ubi_dbg_dump_vid_hdr(vid_hdr);
1319 		ubi_dbg_dump_stack();
1320 		err = -EINVAL;
1321 		goto exit;
1322 	}
1323 
1324 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1325 
1326 exit:
1327 	ubi_free_vid_hdr(ubi, vid_hdr);
1328 	return err;
1329 }
1330 
1331 /**
1332  * ubi_dbg_check_write - make sure write succeeded.
1333  * @ubi: UBI device description object
1334  * @buf: buffer with data which were written
1335  * @pnum: physical eraseblock number the data were written to
1336  * @offset: offset within the physical eraseblock the data were written to
1337  * @len: how many bytes were written
1338  *
1339  * This functions reads data which were recently written and compares it with
1340  * the original data buffer - the data have to match. Returns zero if the data
1341  * match and a negative error code if not or in case of failure.
1342  */
1343 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1344 			int offset, int len)
1345 {
1346 	int err, i;
1347 	size_t read;
1348 	void *buf1;
1349 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1350 
1351 	if (!ubi->dbg->chk_io)
1352 		return 0;
1353 
1354 	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1355 	if (!buf1) {
1356 		ubi_err("cannot allocate memory to check writes");
1357 		return 0;
1358 	}
1359 
1360 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1);
1361 	if (err && err != -EUCLEAN)
1362 		goto out_free;
1363 
1364 	for (i = 0; i < len; i++) {
1365 		uint8_t c = ((uint8_t *)buf)[i];
1366 		uint8_t c1 = ((uint8_t *)buf1)[i];
1367 		int dump_len;
1368 
1369 		if (c == c1)
1370 			continue;
1371 
1372 		ubi_err("paranoid check failed for PEB %d:%d, len %d",
1373 			pnum, offset, len);
1374 		ubi_msg("data differ at position %d", i);
1375 		dump_len = max_t(int, 128, len - i);
1376 		ubi_msg("hex dump of the original buffer from %d to %d",
1377 			i, i + dump_len);
1378 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1379 			       buf + i, dump_len, 1);
1380 		ubi_msg("hex dump of the read buffer from %d to %d",
1381 			i, i + dump_len);
1382 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1383 			       buf1 + i, dump_len, 1);
1384 		ubi_dbg_dump_stack();
1385 		err = -EINVAL;
1386 		goto out_free;
1387 	}
1388 
1389 	vfree(buf1);
1390 	return 0;
1391 
1392 out_free:
1393 	vfree(buf1);
1394 	return err;
1395 }
1396 
1397 /**
1398  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1399  * @ubi: UBI device description object
1400  * @pnum: the physical eraseblock number to check
1401  * @offset: the starting offset within the physical eraseblock to check
1402  * @len: the length of the region to check
1403  *
1404  * This function returns zero if only 0xFF bytes are present at offset
1405  * @offset of the physical eraseblock @pnum, and a negative error code if not
1406  * or if an error occurred.
1407  */
1408 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1409 {
1410 	size_t read;
1411 	int err;
1412 	void *buf;
1413 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1414 
1415 	if (!ubi->dbg->chk_io)
1416 		return 0;
1417 
1418 	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1419 	if (!buf) {
1420 		ubi_err("cannot allocate memory to check for 0xFFs");
1421 		return 0;
1422 	}
1423 
1424 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
1425 	if (err && err != -EUCLEAN) {
1426 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1427 			"read %zd bytes", err, len, pnum, offset, read);
1428 		goto error;
1429 	}
1430 
1431 	err = ubi_check_pattern(buf, 0xFF, len);
1432 	if (err == 0) {
1433 		ubi_err("flash region at PEB %d:%d, length %d does not "
1434 			"contain all 0xFF bytes", pnum, offset, len);
1435 		goto fail;
1436 	}
1437 
1438 	vfree(buf);
1439 	return 0;
1440 
1441 fail:
1442 	ubi_err("paranoid check failed for PEB %d", pnum);
1443 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1444 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1445 	err = -EINVAL;
1446 error:
1447 	ubi_dbg_dump_stack();
1448 	vfree(buf);
1449 	return err;
1450 }
1451 
1452 #endif /* CONFIG_MTD_UBI_DEBUG */
1453