1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 #ifdef CONFIG_MTD_UBI_DEBUG 95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); 96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 98 const struct ubi_ec_hdr *ec_hdr); 99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 101 const struct ubi_vid_hdr *vid_hdr); 102 #else 103 #define paranoid_check_not_bad(ubi, pnum) 0 104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 108 #endif 109 110 /** 111 * ubi_io_read - read data from a physical eraseblock. 112 * @ubi: UBI device description object 113 * @buf: buffer where to store the read data 114 * @pnum: physical eraseblock number to read from 115 * @offset: offset within the physical eraseblock from where to read 116 * @len: how many bytes to read 117 * 118 * This function reads data from offset @offset of physical eraseblock @pnum 119 * and stores the read data in the @buf buffer. The following return codes are 120 * possible: 121 * 122 * o %0 if all the requested data were successfully read; 123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 124 * correctable bit-flips were detected; this is harmless but may indicate 125 * that this eraseblock may become bad soon (but do not have to); 126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 127 * example it can be an ECC error in case of NAND; this most probably means 128 * that the data is corrupted; 129 * o %-EIO if some I/O error occurred; 130 * o other negative error codes in case of other errors. 131 */ 132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 133 int len) 134 { 135 int err, retries = 0; 136 size_t read; 137 loff_t addr; 138 139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 140 141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 143 ubi_assert(len > 0); 144 145 err = paranoid_check_not_bad(ubi, pnum); 146 if (err) 147 return err; 148 149 /* 150 * Deliberately corrupt the buffer to improve robustness. Indeed, if we 151 * do not do this, the following may happen: 152 * 1. The buffer contains data from previous operation, e.g., read from 153 * another PEB previously. The data looks like expected, e.g., if we 154 * just do not read anything and return - the caller would not 155 * notice this. E.g., if we are reading a VID header, the buffer may 156 * contain a valid VID header from another PEB. 157 * 2. The driver is buggy and returns us success or -EBADMSG or 158 * -EUCLEAN, but it does not actually put any data to the buffer. 159 * 160 * This may confuse UBI or upper layers - they may think the buffer 161 * contains valid data while in fact it is just old data. This is 162 * especially possible because UBI (and UBIFS) relies on CRC, and 163 * treats data as correct even in case of ECC errors if the CRC is 164 * correct. 165 * 166 * Try to prevent this situation by changing the first byte of the 167 * buffer. 168 */ 169 *((uint8_t *)buf) ^= 0xFF; 170 171 addr = (loff_t)pnum * ubi->peb_size + offset; 172 retry: 173 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 174 if (err) { 175 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : ""; 176 177 if (err == -EUCLEAN) { 178 /* 179 * -EUCLEAN is reported if there was a bit-flip which 180 * was corrected, so this is harmless. 181 * 182 * We do not report about it here unless debugging is 183 * enabled. A corresponding message will be printed 184 * later, when it is has been scrubbed. 185 */ 186 dbg_msg("fixable bit-flip detected at PEB %d", pnum); 187 ubi_assert(len == read); 188 return UBI_IO_BITFLIPS; 189 } 190 191 if (retries++ < UBI_IO_RETRIES) { 192 dbg_io("error %d%s while reading %d bytes from PEB " 193 "%d:%d, read only %zd bytes, retry", 194 err, errstr, len, pnum, offset, read); 195 yield(); 196 goto retry; 197 } 198 199 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " 200 "read %zd bytes", err, errstr, len, pnum, offset, read); 201 ubi_dbg_dump_stack(); 202 203 /* 204 * The driver should never return -EBADMSG if it failed to read 205 * all the requested data. But some buggy drivers might do 206 * this, so we change it to -EIO. 207 */ 208 if (read != len && err == -EBADMSG) { 209 ubi_assert(0); 210 err = -EIO; 211 } 212 } else { 213 ubi_assert(len == read); 214 215 if (ubi_dbg_is_bitflip(ubi)) { 216 dbg_gen("bit-flip (emulated)"); 217 err = UBI_IO_BITFLIPS; 218 } 219 } 220 221 return err; 222 } 223 224 /** 225 * ubi_io_write - write data to a physical eraseblock. 226 * @ubi: UBI device description object 227 * @buf: buffer with the data to write 228 * @pnum: physical eraseblock number to write to 229 * @offset: offset within the physical eraseblock where to write 230 * @len: how many bytes to write 231 * 232 * This function writes @len bytes of data from buffer @buf to offset @offset 233 * of physical eraseblock @pnum. If all the data were successfully written, 234 * zero is returned. If an error occurred, this function returns a negative 235 * error code. If %-EIO is returned, the physical eraseblock most probably went 236 * bad. 237 * 238 * Note, in case of an error, it is possible that something was still written 239 * to the flash media, but may be some garbage. 240 */ 241 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 242 int len) 243 { 244 int err; 245 size_t written; 246 loff_t addr; 247 248 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 249 250 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 251 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 252 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 253 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 254 255 if (ubi->ro_mode) { 256 ubi_err("read-only mode"); 257 return -EROFS; 258 } 259 260 /* The below has to be compiled out if paranoid checks are disabled */ 261 262 err = paranoid_check_not_bad(ubi, pnum); 263 if (err) 264 return err; 265 266 /* The area we are writing to has to contain all 0xFF bytes */ 267 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 268 if (err) 269 return err; 270 271 if (offset >= ubi->leb_start) { 272 /* 273 * We write to the data area of the physical eraseblock. Make 274 * sure it has valid EC and VID headers. 275 */ 276 err = paranoid_check_peb_ec_hdr(ubi, pnum); 277 if (err) 278 return err; 279 err = paranoid_check_peb_vid_hdr(ubi, pnum); 280 if (err) 281 return err; 282 } 283 284 if (ubi_dbg_is_write_failure(ubi)) { 285 dbg_err("cannot write %d bytes to PEB %d:%d " 286 "(emulated)", len, pnum, offset); 287 ubi_dbg_dump_stack(); 288 return -EIO; 289 } 290 291 addr = (loff_t)pnum * ubi->peb_size + offset; 292 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); 293 if (err) { 294 ubi_err("error %d while writing %d bytes to PEB %d:%d, written " 295 "%zd bytes", err, len, pnum, offset, written); 296 ubi_dbg_dump_stack(); 297 ubi_dbg_dump_flash(ubi, pnum, offset, len); 298 } else 299 ubi_assert(written == len); 300 301 if (!err) { 302 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); 303 if (err) 304 return err; 305 306 /* 307 * Since we always write sequentially, the rest of the PEB has 308 * to contain only 0xFF bytes. 309 */ 310 offset += len; 311 len = ubi->peb_size - offset; 312 if (len) 313 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 314 } 315 316 return err; 317 } 318 319 /** 320 * erase_callback - MTD erasure call-back. 321 * @ei: MTD erase information object. 322 * 323 * Note, even though MTD erase interface is asynchronous, all the current 324 * implementations are synchronous anyway. 325 */ 326 static void erase_callback(struct erase_info *ei) 327 { 328 wake_up_interruptible((wait_queue_head_t *)ei->priv); 329 } 330 331 /** 332 * do_sync_erase - synchronously erase a physical eraseblock. 333 * @ubi: UBI device description object 334 * @pnum: the physical eraseblock number to erase 335 * 336 * This function synchronously erases physical eraseblock @pnum and returns 337 * zero in case of success and a negative error code in case of failure. If 338 * %-EIO is returned, the physical eraseblock most probably went bad. 339 */ 340 static int do_sync_erase(struct ubi_device *ubi, int pnum) 341 { 342 int err, retries = 0; 343 struct erase_info ei; 344 wait_queue_head_t wq; 345 346 dbg_io("erase PEB %d", pnum); 347 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 348 349 if (ubi->ro_mode) { 350 ubi_err("read-only mode"); 351 return -EROFS; 352 } 353 354 retry: 355 init_waitqueue_head(&wq); 356 memset(&ei, 0, sizeof(struct erase_info)); 357 358 ei.mtd = ubi->mtd; 359 ei.addr = (loff_t)pnum * ubi->peb_size; 360 ei.len = ubi->peb_size; 361 ei.callback = erase_callback; 362 ei.priv = (unsigned long)&wq; 363 364 err = ubi->mtd->erase(ubi->mtd, &ei); 365 if (err) { 366 if (retries++ < UBI_IO_RETRIES) { 367 dbg_io("error %d while erasing PEB %d, retry", 368 err, pnum); 369 yield(); 370 goto retry; 371 } 372 ubi_err("cannot erase PEB %d, error %d", pnum, err); 373 ubi_dbg_dump_stack(); 374 return err; 375 } 376 377 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 378 ei.state == MTD_ERASE_FAILED); 379 if (err) { 380 ubi_err("interrupted PEB %d erasure", pnum); 381 return -EINTR; 382 } 383 384 if (ei.state == MTD_ERASE_FAILED) { 385 if (retries++ < UBI_IO_RETRIES) { 386 dbg_io("error while erasing PEB %d, retry", pnum); 387 yield(); 388 goto retry; 389 } 390 ubi_err("cannot erase PEB %d", pnum); 391 ubi_dbg_dump_stack(); 392 return -EIO; 393 } 394 395 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); 396 if (err) 397 return err; 398 399 if (ubi_dbg_is_erase_failure(ubi)) { 400 dbg_err("cannot erase PEB %d (emulated)", pnum); 401 return -EIO; 402 } 403 404 return 0; 405 } 406 407 /* Patterns to write to a physical eraseblock when torturing it */ 408 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 409 410 /** 411 * torture_peb - test a supposedly bad physical eraseblock. 412 * @ubi: UBI device description object 413 * @pnum: the physical eraseblock number to test 414 * 415 * This function returns %-EIO if the physical eraseblock did not pass the 416 * test, a positive number of erase operations done if the test was 417 * successfully passed, and other negative error codes in case of other errors. 418 */ 419 static int torture_peb(struct ubi_device *ubi, int pnum) 420 { 421 int err, i, patt_count; 422 423 ubi_msg("run torture test for PEB %d", pnum); 424 patt_count = ARRAY_SIZE(patterns); 425 ubi_assert(patt_count > 0); 426 427 mutex_lock(&ubi->buf_mutex); 428 for (i = 0; i < patt_count; i++) { 429 err = do_sync_erase(ubi, pnum); 430 if (err) 431 goto out; 432 433 /* Make sure the PEB contains only 0xFF bytes */ 434 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 435 if (err) 436 goto out; 437 438 err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); 439 if (err == 0) { 440 ubi_err("erased PEB %d, but a non-0xFF byte found", 441 pnum); 442 err = -EIO; 443 goto out; 444 } 445 446 /* Write a pattern and check it */ 447 memset(ubi->peb_buf1, patterns[i], ubi->peb_size); 448 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 449 if (err) 450 goto out; 451 452 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); 453 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 454 if (err) 455 goto out; 456 457 err = ubi_check_pattern(ubi->peb_buf1, patterns[i], 458 ubi->peb_size); 459 if (err == 0) { 460 ubi_err("pattern %x checking failed for PEB %d", 461 patterns[i], pnum); 462 err = -EIO; 463 goto out; 464 } 465 } 466 467 err = patt_count; 468 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); 469 470 out: 471 mutex_unlock(&ubi->buf_mutex); 472 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { 473 /* 474 * If a bit-flip or data integrity error was detected, the test 475 * has not passed because it happened on a freshly erased 476 * physical eraseblock which means something is wrong with it. 477 */ 478 ubi_err("read problems on freshly erased PEB %d, must be bad", 479 pnum); 480 err = -EIO; 481 } 482 return err; 483 } 484 485 /** 486 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 487 * @ubi: UBI device description object 488 * @pnum: physical eraseblock number to prepare 489 * 490 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 491 * algorithm: the PEB is first filled with zeroes, then it is erased. And 492 * filling with zeroes starts from the end of the PEB. This was observed with 493 * Spansion S29GL512N NOR flash. 494 * 495 * This means that in case of a power cut we may end up with intact data at the 496 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 497 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 498 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 499 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 500 * 501 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 502 * magic numbers in order to invalidate them and prevent the failures. Returns 503 * zero in case of success and a negative error code in case of failure. 504 */ 505 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 506 { 507 int err, err1; 508 size_t written; 509 loff_t addr; 510 uint32_t data = 0; 511 /* 512 * Note, we cannot generally define VID header buffers on stack, 513 * because of the way we deal with these buffers (see the header 514 * comment in this file). But we know this is a NOR-specific piece of 515 * code, so we can do this. But yes, this is error-prone and we should 516 * (pre-)allocate VID header buffer instead. 517 */ 518 struct ubi_vid_hdr vid_hdr; 519 520 /* 521 * It is important to first invalidate the EC header, and then the VID 522 * header. Otherwise a power cut may lead to valid EC header and 523 * invalid VID header, in which case UBI will treat this PEB as 524 * corrupted and will try to preserve it, and print scary warnings (see 525 * the header comment in scan.c for more information). 526 */ 527 addr = (loff_t)pnum * ubi->peb_size; 528 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); 529 if (!err) { 530 addr += ubi->vid_hdr_aloffset; 531 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, 532 (void *)&data); 533 if (!err) 534 return 0; 535 } 536 537 /* 538 * We failed to write to the media. This was observed with Spansion 539 * S29GL512N NOR flash. Most probably the previously eraseblock erasure 540 * was interrupted at a very inappropriate moment, so it became 541 * unwritable. In this case we probably anyway have garbage in this 542 * PEB. 543 */ 544 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 545 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 546 err1 == UBI_IO_FF) { 547 struct ubi_ec_hdr ec_hdr; 548 549 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 550 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || 551 err1 == UBI_IO_FF) 552 /* 553 * Both VID and EC headers are corrupted, so we can 554 * safely erase this PEB and not afraid that it will be 555 * treated as a valid PEB in case of an unclean reboot. 556 */ 557 return 0; 558 } 559 560 /* 561 * The PEB contains a valid VID header, but we cannot invalidate it. 562 * Supposedly the flash media or the driver is screwed up, so return an 563 * error. 564 */ 565 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", 566 pnum, err, err1); 567 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); 568 return -EIO; 569 } 570 571 /** 572 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 573 * @ubi: UBI device description object 574 * @pnum: physical eraseblock number to erase 575 * @torture: if this physical eraseblock has to be tortured 576 * 577 * This function synchronously erases physical eraseblock @pnum. If @torture 578 * flag is not zero, the physical eraseblock is checked by means of writing 579 * different patterns to it and reading them back. If the torturing is enabled, 580 * the physical eraseblock is erased more than once. 581 * 582 * This function returns the number of erasures made in case of success, %-EIO 583 * if the erasure failed or the torturing test failed, and other negative error 584 * codes in case of other errors. Note, %-EIO means that the physical 585 * eraseblock is bad. 586 */ 587 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 588 { 589 int err, ret = 0; 590 591 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 592 593 err = paranoid_check_not_bad(ubi, pnum); 594 if (err != 0) 595 return err; 596 597 if (ubi->ro_mode) { 598 ubi_err("read-only mode"); 599 return -EROFS; 600 } 601 602 if (ubi->nor_flash) { 603 err = nor_erase_prepare(ubi, pnum); 604 if (err) 605 return err; 606 } 607 608 if (torture) { 609 ret = torture_peb(ubi, pnum); 610 if (ret < 0) 611 return ret; 612 } 613 614 err = do_sync_erase(ubi, pnum); 615 if (err) 616 return err; 617 618 return ret + 1; 619 } 620 621 /** 622 * ubi_io_is_bad - check if a physical eraseblock is bad. 623 * @ubi: UBI device description object 624 * @pnum: the physical eraseblock number to check 625 * 626 * This function returns a positive number if the physical eraseblock is bad, 627 * zero if not, and a negative error code if an error occurred. 628 */ 629 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 630 { 631 struct mtd_info *mtd = ubi->mtd; 632 633 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 634 635 if (ubi->bad_allowed) { 636 int ret; 637 638 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 639 if (ret < 0) 640 ubi_err("error %d while checking if PEB %d is bad", 641 ret, pnum); 642 else if (ret) 643 dbg_io("PEB %d is bad", pnum); 644 return ret; 645 } 646 647 return 0; 648 } 649 650 /** 651 * ubi_io_mark_bad - mark a physical eraseblock as bad. 652 * @ubi: UBI device description object 653 * @pnum: the physical eraseblock number to mark 654 * 655 * This function returns zero in case of success and a negative error code in 656 * case of failure. 657 */ 658 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 659 { 660 int err; 661 struct mtd_info *mtd = ubi->mtd; 662 663 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 664 665 if (ubi->ro_mode) { 666 ubi_err("read-only mode"); 667 return -EROFS; 668 } 669 670 if (!ubi->bad_allowed) 671 return 0; 672 673 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 674 if (err) 675 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 676 return err; 677 } 678 679 /** 680 * validate_ec_hdr - validate an erase counter header. 681 * @ubi: UBI device description object 682 * @ec_hdr: the erase counter header to check 683 * 684 * This function returns zero if the erase counter header is OK, and %1 if 685 * not. 686 */ 687 static int validate_ec_hdr(const struct ubi_device *ubi, 688 const struct ubi_ec_hdr *ec_hdr) 689 { 690 long long ec; 691 int vid_hdr_offset, leb_start; 692 693 ec = be64_to_cpu(ec_hdr->ec); 694 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 695 leb_start = be32_to_cpu(ec_hdr->data_offset); 696 697 if (ec_hdr->version != UBI_VERSION) { 698 ubi_err("node with incompatible UBI version found: " 699 "this UBI version is %d, image version is %d", 700 UBI_VERSION, (int)ec_hdr->version); 701 goto bad; 702 } 703 704 if (vid_hdr_offset != ubi->vid_hdr_offset) { 705 ubi_err("bad VID header offset %d, expected %d", 706 vid_hdr_offset, ubi->vid_hdr_offset); 707 goto bad; 708 } 709 710 if (leb_start != ubi->leb_start) { 711 ubi_err("bad data offset %d, expected %d", 712 leb_start, ubi->leb_start); 713 goto bad; 714 } 715 716 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 717 ubi_err("bad erase counter %lld", ec); 718 goto bad; 719 } 720 721 return 0; 722 723 bad: 724 ubi_err("bad EC header"); 725 ubi_dbg_dump_ec_hdr(ec_hdr); 726 ubi_dbg_dump_stack(); 727 return 1; 728 } 729 730 /** 731 * ubi_io_read_ec_hdr - read and check an erase counter header. 732 * @ubi: UBI device description object 733 * @pnum: physical eraseblock to read from 734 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 735 * header 736 * @verbose: be verbose if the header is corrupted or was not found 737 * 738 * This function reads erase counter header from physical eraseblock @pnum and 739 * stores it in @ec_hdr. This function also checks CRC checksum of the read 740 * erase counter header. The following codes may be returned: 741 * 742 * o %0 if the CRC checksum is correct and the header was successfully read; 743 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 744 * and corrected by the flash driver; this is harmless but may indicate that 745 * this eraseblock may become bad soon (but may be not); 746 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 747 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 748 * a data integrity error (uncorrectable ECC error in case of NAND); 749 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 750 * o a negative error code in case of failure. 751 */ 752 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 753 struct ubi_ec_hdr *ec_hdr, int verbose) 754 { 755 int err, read_err; 756 uint32_t crc, magic, hdr_crc; 757 758 dbg_io("read EC header from PEB %d", pnum); 759 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 760 761 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 762 if (read_err) { 763 if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) 764 return read_err; 765 766 /* 767 * We read all the data, but either a correctable bit-flip 768 * occurred, or MTD reported a data integrity error 769 * (uncorrectable ECC error in case of NAND). The former is 770 * harmless, the later may mean that the read data is 771 * corrupted. But we have a CRC check-sum and we will detect 772 * this. If the EC header is still OK, we just report this as 773 * there was a bit-flip, to force scrubbing. 774 */ 775 } 776 777 magic = be32_to_cpu(ec_hdr->magic); 778 if (magic != UBI_EC_HDR_MAGIC) { 779 if (read_err == -EBADMSG) 780 return UBI_IO_BAD_HDR_EBADMSG; 781 782 /* 783 * The magic field is wrong. Let's check if we have read all 784 * 0xFF. If yes, this physical eraseblock is assumed to be 785 * empty. 786 */ 787 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 788 /* The physical eraseblock is supposedly empty */ 789 if (verbose) 790 ubi_warn("no EC header found at PEB %d, " 791 "only 0xFF bytes", pnum); 792 dbg_bld("no EC header found at PEB %d, " 793 "only 0xFF bytes", pnum); 794 if (!read_err) 795 return UBI_IO_FF; 796 else 797 return UBI_IO_FF_BITFLIPS; 798 } 799 800 /* 801 * This is not a valid erase counter header, and these are not 802 * 0xFF bytes. Report that the header is corrupted. 803 */ 804 if (verbose) { 805 ubi_warn("bad magic number at PEB %d: %08x instead of " 806 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 807 ubi_dbg_dump_ec_hdr(ec_hdr); 808 } 809 dbg_bld("bad magic number at PEB %d: %08x instead of " 810 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 811 return UBI_IO_BAD_HDR; 812 } 813 814 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 815 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 816 817 if (hdr_crc != crc) { 818 if (verbose) { 819 ubi_warn("bad EC header CRC at PEB %d, calculated " 820 "%#08x, read %#08x", pnum, crc, hdr_crc); 821 ubi_dbg_dump_ec_hdr(ec_hdr); 822 } 823 dbg_bld("bad EC header CRC at PEB %d, calculated " 824 "%#08x, read %#08x", pnum, crc, hdr_crc); 825 826 if (!read_err) 827 return UBI_IO_BAD_HDR; 828 else 829 return UBI_IO_BAD_HDR_EBADMSG; 830 } 831 832 /* And of course validate what has just been read from the media */ 833 err = validate_ec_hdr(ubi, ec_hdr); 834 if (err) { 835 ubi_err("validation failed for PEB %d", pnum); 836 return -EINVAL; 837 } 838 839 /* 840 * If there was %-EBADMSG, but the header CRC is still OK, report about 841 * a bit-flip to force scrubbing on this PEB. 842 */ 843 return read_err ? UBI_IO_BITFLIPS : 0; 844 } 845 846 /** 847 * ubi_io_write_ec_hdr - write an erase counter header. 848 * @ubi: UBI device description object 849 * @pnum: physical eraseblock to write to 850 * @ec_hdr: the erase counter header to write 851 * 852 * This function writes erase counter header described by @ec_hdr to physical 853 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 854 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 855 * field. 856 * 857 * This function returns zero in case of success and a negative error code in 858 * case of failure. If %-EIO is returned, the physical eraseblock most probably 859 * went bad. 860 */ 861 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 862 struct ubi_ec_hdr *ec_hdr) 863 { 864 int err; 865 uint32_t crc; 866 867 dbg_io("write EC header to PEB %d", pnum); 868 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 869 870 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 871 ec_hdr->version = UBI_VERSION; 872 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 873 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 874 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 875 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 876 ec_hdr->hdr_crc = cpu_to_be32(crc); 877 878 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 879 if (err) 880 return err; 881 882 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 883 return err; 884 } 885 886 /** 887 * validate_vid_hdr - validate a volume identifier header. 888 * @ubi: UBI device description object 889 * @vid_hdr: the volume identifier header to check 890 * 891 * This function checks that data stored in the volume identifier header 892 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 893 */ 894 static int validate_vid_hdr(const struct ubi_device *ubi, 895 const struct ubi_vid_hdr *vid_hdr) 896 { 897 int vol_type = vid_hdr->vol_type; 898 int copy_flag = vid_hdr->copy_flag; 899 int vol_id = be32_to_cpu(vid_hdr->vol_id); 900 int lnum = be32_to_cpu(vid_hdr->lnum); 901 int compat = vid_hdr->compat; 902 int data_size = be32_to_cpu(vid_hdr->data_size); 903 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 904 int data_pad = be32_to_cpu(vid_hdr->data_pad); 905 int data_crc = be32_to_cpu(vid_hdr->data_crc); 906 int usable_leb_size = ubi->leb_size - data_pad; 907 908 if (copy_flag != 0 && copy_flag != 1) { 909 dbg_err("bad copy_flag"); 910 goto bad; 911 } 912 913 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 914 data_pad < 0) { 915 dbg_err("negative values"); 916 goto bad; 917 } 918 919 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 920 dbg_err("bad vol_id"); 921 goto bad; 922 } 923 924 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 925 dbg_err("bad compat"); 926 goto bad; 927 } 928 929 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 930 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 931 compat != UBI_COMPAT_REJECT) { 932 dbg_err("bad compat"); 933 goto bad; 934 } 935 936 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 937 dbg_err("bad vol_type"); 938 goto bad; 939 } 940 941 if (data_pad >= ubi->leb_size / 2) { 942 dbg_err("bad data_pad"); 943 goto bad; 944 } 945 946 if (vol_type == UBI_VID_STATIC) { 947 /* 948 * Although from high-level point of view static volumes may 949 * contain zero bytes of data, but no VID headers can contain 950 * zero at these fields, because they empty volumes do not have 951 * mapped logical eraseblocks. 952 */ 953 if (used_ebs == 0) { 954 dbg_err("zero used_ebs"); 955 goto bad; 956 } 957 if (data_size == 0) { 958 dbg_err("zero data_size"); 959 goto bad; 960 } 961 if (lnum < used_ebs - 1) { 962 if (data_size != usable_leb_size) { 963 dbg_err("bad data_size"); 964 goto bad; 965 } 966 } else if (lnum == used_ebs - 1) { 967 if (data_size == 0) { 968 dbg_err("bad data_size at last LEB"); 969 goto bad; 970 } 971 } else { 972 dbg_err("too high lnum"); 973 goto bad; 974 } 975 } else { 976 if (copy_flag == 0) { 977 if (data_crc != 0) { 978 dbg_err("non-zero data CRC"); 979 goto bad; 980 } 981 if (data_size != 0) { 982 dbg_err("non-zero data_size"); 983 goto bad; 984 } 985 } else { 986 if (data_size == 0) { 987 dbg_err("zero data_size of copy"); 988 goto bad; 989 } 990 } 991 if (used_ebs != 0) { 992 dbg_err("bad used_ebs"); 993 goto bad; 994 } 995 } 996 997 return 0; 998 999 bad: 1000 ubi_err("bad VID header"); 1001 ubi_dbg_dump_vid_hdr(vid_hdr); 1002 ubi_dbg_dump_stack(); 1003 return 1; 1004 } 1005 1006 /** 1007 * ubi_io_read_vid_hdr - read and check a volume identifier header. 1008 * @ubi: UBI device description object 1009 * @pnum: physical eraseblock number to read from 1010 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 1011 * identifier header 1012 * @verbose: be verbose if the header is corrupted or wasn't found 1013 * 1014 * This function reads the volume identifier header from physical eraseblock 1015 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 1016 * volume identifier header. The error codes are the same as in 1017 * 'ubi_io_read_ec_hdr()'. 1018 * 1019 * Note, the implementation of this function is also very similar to 1020 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 1021 */ 1022 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 1023 struct ubi_vid_hdr *vid_hdr, int verbose) 1024 { 1025 int err, read_err; 1026 uint32_t crc, magic, hdr_crc; 1027 void *p; 1028 1029 dbg_io("read VID header from PEB %d", pnum); 1030 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1031 1032 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1033 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1034 ubi->vid_hdr_alsize); 1035 if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) 1036 return read_err; 1037 1038 magic = be32_to_cpu(vid_hdr->magic); 1039 if (magic != UBI_VID_HDR_MAGIC) { 1040 if (read_err == -EBADMSG) 1041 return UBI_IO_BAD_HDR_EBADMSG; 1042 1043 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1044 if (verbose) 1045 ubi_warn("no VID header found at PEB %d, " 1046 "only 0xFF bytes", pnum); 1047 dbg_bld("no VID header found at PEB %d, " 1048 "only 0xFF bytes", pnum); 1049 if (!read_err) 1050 return UBI_IO_FF; 1051 else 1052 return UBI_IO_FF_BITFLIPS; 1053 } 1054 1055 if (verbose) { 1056 ubi_warn("bad magic number at PEB %d: %08x instead of " 1057 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1058 ubi_dbg_dump_vid_hdr(vid_hdr); 1059 } 1060 dbg_bld("bad magic number at PEB %d: %08x instead of " 1061 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1062 return UBI_IO_BAD_HDR; 1063 } 1064 1065 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1066 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1067 1068 if (hdr_crc != crc) { 1069 if (verbose) { 1070 ubi_warn("bad CRC at PEB %d, calculated %#08x, " 1071 "read %#08x", pnum, crc, hdr_crc); 1072 ubi_dbg_dump_vid_hdr(vid_hdr); 1073 } 1074 dbg_bld("bad CRC at PEB %d, calculated %#08x, " 1075 "read %#08x", pnum, crc, hdr_crc); 1076 if (!read_err) 1077 return UBI_IO_BAD_HDR; 1078 else 1079 return UBI_IO_BAD_HDR_EBADMSG; 1080 } 1081 1082 err = validate_vid_hdr(ubi, vid_hdr); 1083 if (err) { 1084 ubi_err("validation failed for PEB %d", pnum); 1085 return -EINVAL; 1086 } 1087 1088 return read_err ? UBI_IO_BITFLIPS : 0; 1089 } 1090 1091 /** 1092 * ubi_io_write_vid_hdr - write a volume identifier header. 1093 * @ubi: UBI device description object 1094 * @pnum: the physical eraseblock number to write to 1095 * @vid_hdr: the volume identifier header to write 1096 * 1097 * This function writes the volume identifier header described by @vid_hdr to 1098 * physical eraseblock @pnum. This function automatically fills the 1099 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1100 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1101 * 1102 * This function returns zero in case of success and a negative error code in 1103 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1104 * bad. 1105 */ 1106 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1107 struct ubi_vid_hdr *vid_hdr) 1108 { 1109 int err; 1110 uint32_t crc; 1111 void *p; 1112 1113 dbg_io("write VID header to PEB %d", pnum); 1114 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1115 1116 err = paranoid_check_peb_ec_hdr(ubi, pnum); 1117 if (err) 1118 return err; 1119 1120 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1121 vid_hdr->version = UBI_VERSION; 1122 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1123 vid_hdr->hdr_crc = cpu_to_be32(crc); 1124 1125 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1126 if (err) 1127 return err; 1128 1129 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1130 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1131 ubi->vid_hdr_alsize); 1132 return err; 1133 } 1134 1135 #ifdef CONFIG_MTD_UBI_DEBUG 1136 1137 /** 1138 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. 1139 * @ubi: UBI device description object 1140 * @pnum: physical eraseblock number to check 1141 * 1142 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1143 * it is bad and a negative error code if an error occurred. 1144 */ 1145 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) 1146 { 1147 int err; 1148 1149 if (!ubi->dbg->chk_io) 1150 return 0; 1151 1152 err = ubi_io_is_bad(ubi, pnum); 1153 if (!err) 1154 return err; 1155 1156 ubi_err("paranoid check failed for PEB %d", pnum); 1157 ubi_dbg_dump_stack(); 1158 return err > 0 ? -EINVAL : err; 1159 } 1160 1161 /** 1162 * paranoid_check_ec_hdr - check if an erase counter header is all right. 1163 * @ubi: UBI device description object 1164 * @pnum: physical eraseblock number the erase counter header belongs to 1165 * @ec_hdr: the erase counter header to check 1166 * 1167 * This function returns zero if the erase counter header contains valid 1168 * values, and %-EINVAL if not. 1169 */ 1170 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1171 const struct ubi_ec_hdr *ec_hdr) 1172 { 1173 int err; 1174 uint32_t magic; 1175 1176 if (!ubi->dbg->chk_io) 1177 return 0; 1178 1179 magic = be32_to_cpu(ec_hdr->magic); 1180 if (magic != UBI_EC_HDR_MAGIC) { 1181 ubi_err("bad magic %#08x, must be %#08x", 1182 magic, UBI_EC_HDR_MAGIC); 1183 goto fail; 1184 } 1185 1186 err = validate_ec_hdr(ubi, ec_hdr); 1187 if (err) { 1188 ubi_err("paranoid check failed for PEB %d", pnum); 1189 goto fail; 1190 } 1191 1192 return 0; 1193 1194 fail: 1195 ubi_dbg_dump_ec_hdr(ec_hdr); 1196 ubi_dbg_dump_stack(); 1197 return -EINVAL; 1198 } 1199 1200 /** 1201 * paranoid_check_peb_ec_hdr - check erase counter header. 1202 * @ubi: UBI device description object 1203 * @pnum: the physical eraseblock number to check 1204 * 1205 * This function returns zero if the erase counter header is all right and and 1206 * a negative error code if not or if an error occurred. 1207 */ 1208 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1209 { 1210 int err; 1211 uint32_t crc, hdr_crc; 1212 struct ubi_ec_hdr *ec_hdr; 1213 1214 if (!ubi->dbg->chk_io) 1215 return 0; 1216 1217 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1218 if (!ec_hdr) 1219 return -ENOMEM; 1220 1221 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1222 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1223 goto exit; 1224 1225 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1226 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1227 if (hdr_crc != crc) { 1228 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1229 ubi_err("paranoid check failed for PEB %d", pnum); 1230 ubi_dbg_dump_ec_hdr(ec_hdr); 1231 ubi_dbg_dump_stack(); 1232 err = -EINVAL; 1233 goto exit; 1234 } 1235 1236 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 1237 1238 exit: 1239 kfree(ec_hdr); 1240 return err; 1241 } 1242 1243 /** 1244 * paranoid_check_vid_hdr - check that a volume identifier header is all right. 1245 * @ubi: UBI device description object 1246 * @pnum: physical eraseblock number the volume identifier header belongs to 1247 * @vid_hdr: the volume identifier header to check 1248 * 1249 * This function returns zero if the volume identifier header is all right, and 1250 * %-EINVAL if not. 1251 */ 1252 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1253 const struct ubi_vid_hdr *vid_hdr) 1254 { 1255 int err; 1256 uint32_t magic; 1257 1258 if (!ubi->dbg->chk_io) 1259 return 0; 1260 1261 magic = be32_to_cpu(vid_hdr->magic); 1262 if (magic != UBI_VID_HDR_MAGIC) { 1263 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1264 magic, pnum, UBI_VID_HDR_MAGIC); 1265 goto fail; 1266 } 1267 1268 err = validate_vid_hdr(ubi, vid_hdr); 1269 if (err) { 1270 ubi_err("paranoid check failed for PEB %d", pnum); 1271 goto fail; 1272 } 1273 1274 return err; 1275 1276 fail: 1277 ubi_err("paranoid check failed for PEB %d", pnum); 1278 ubi_dbg_dump_vid_hdr(vid_hdr); 1279 ubi_dbg_dump_stack(); 1280 return -EINVAL; 1281 1282 } 1283 1284 /** 1285 * paranoid_check_peb_vid_hdr - check volume identifier header. 1286 * @ubi: UBI device description object 1287 * @pnum: the physical eraseblock number to check 1288 * 1289 * This function returns zero if the volume identifier header is all right, 1290 * and a negative error code if not or if an error occurred. 1291 */ 1292 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1293 { 1294 int err; 1295 uint32_t crc, hdr_crc; 1296 struct ubi_vid_hdr *vid_hdr; 1297 void *p; 1298 1299 if (!ubi->dbg->chk_io) 1300 return 0; 1301 1302 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1303 if (!vid_hdr) 1304 return -ENOMEM; 1305 1306 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1307 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1308 ubi->vid_hdr_alsize); 1309 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1310 goto exit; 1311 1312 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1313 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1314 if (hdr_crc != crc) { 1315 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " 1316 "read %#08x", pnum, crc, hdr_crc); 1317 ubi_err("paranoid check failed for PEB %d", pnum); 1318 ubi_dbg_dump_vid_hdr(vid_hdr); 1319 ubi_dbg_dump_stack(); 1320 err = -EINVAL; 1321 goto exit; 1322 } 1323 1324 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1325 1326 exit: 1327 ubi_free_vid_hdr(ubi, vid_hdr); 1328 return err; 1329 } 1330 1331 /** 1332 * ubi_dbg_check_write - make sure write succeeded. 1333 * @ubi: UBI device description object 1334 * @buf: buffer with data which were written 1335 * @pnum: physical eraseblock number the data were written to 1336 * @offset: offset within the physical eraseblock the data were written to 1337 * @len: how many bytes were written 1338 * 1339 * This functions reads data which were recently written and compares it with 1340 * the original data buffer - the data have to match. Returns zero if the data 1341 * match and a negative error code if not or in case of failure. 1342 */ 1343 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1344 int offset, int len) 1345 { 1346 int err, i; 1347 size_t read; 1348 void *buf1; 1349 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1350 1351 if (!ubi->dbg->chk_io) 1352 return 0; 1353 1354 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1355 if (!buf1) { 1356 ubi_err("cannot allocate memory to check writes"); 1357 return 0; 1358 } 1359 1360 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1); 1361 if (err && err != -EUCLEAN) 1362 goto out_free; 1363 1364 for (i = 0; i < len; i++) { 1365 uint8_t c = ((uint8_t *)buf)[i]; 1366 uint8_t c1 = ((uint8_t *)buf1)[i]; 1367 int dump_len; 1368 1369 if (c == c1) 1370 continue; 1371 1372 ubi_err("paranoid check failed for PEB %d:%d, len %d", 1373 pnum, offset, len); 1374 ubi_msg("data differ at position %d", i); 1375 dump_len = max_t(int, 128, len - i); 1376 ubi_msg("hex dump of the original buffer from %d to %d", 1377 i, i + dump_len); 1378 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1379 buf + i, dump_len, 1); 1380 ubi_msg("hex dump of the read buffer from %d to %d", 1381 i, i + dump_len); 1382 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1383 buf1 + i, dump_len, 1); 1384 ubi_dbg_dump_stack(); 1385 err = -EINVAL; 1386 goto out_free; 1387 } 1388 1389 vfree(buf1); 1390 return 0; 1391 1392 out_free: 1393 vfree(buf1); 1394 return err; 1395 } 1396 1397 /** 1398 * ubi_dbg_check_all_ff - check that a region of flash is empty. 1399 * @ubi: UBI device description object 1400 * @pnum: the physical eraseblock number to check 1401 * @offset: the starting offset within the physical eraseblock to check 1402 * @len: the length of the region to check 1403 * 1404 * This function returns zero if only 0xFF bytes are present at offset 1405 * @offset of the physical eraseblock @pnum, and a negative error code if not 1406 * or if an error occurred. 1407 */ 1408 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1409 { 1410 size_t read; 1411 int err; 1412 void *buf; 1413 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1414 1415 if (!ubi->dbg->chk_io) 1416 return 0; 1417 1418 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); 1419 if (!buf) { 1420 ubi_err("cannot allocate memory to check for 0xFFs"); 1421 return 0; 1422 } 1423 1424 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 1425 if (err && err != -EUCLEAN) { 1426 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 1427 "read %zd bytes", err, len, pnum, offset, read); 1428 goto error; 1429 } 1430 1431 err = ubi_check_pattern(buf, 0xFF, len); 1432 if (err == 0) { 1433 ubi_err("flash region at PEB %d:%d, length %d does not " 1434 "contain all 0xFF bytes", pnum, offset, len); 1435 goto fail; 1436 } 1437 1438 vfree(buf); 1439 return 0; 1440 1441 fail: 1442 ubi_err("paranoid check failed for PEB %d", pnum); 1443 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1444 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); 1445 err = -EINVAL; 1446 error: 1447 ubi_dbg_dump_stack(); 1448 vfree(buf); 1449 return err; 1450 } 1451 1452 #endif /* CONFIG_MTD_UBI_DEBUG */ 1453