xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 79c98128)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 				 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 				  const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109 
110 /**
111  * ubi_io_read - read data from a physical eraseblock.
112  * @ubi: UBI device description object
113  * @buf: buffer where to store the read data
114  * @pnum: physical eraseblock number to read from
115  * @offset: offset within the physical eraseblock from where to read
116  * @len: how many bytes to read
117  *
118  * This function reads data from offset @offset of physical eraseblock @pnum
119  * and stores the read data in the @buf buffer. The following return codes are
120  * possible:
121  *
122  * o %0 if all the requested data were successfully read;
123  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124  *   correctable bit-flips were detected; this is harmless but may indicate
125  *   that this eraseblock may become bad soon (but do not have to);
126  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127  *   example it can be an ECC error in case of NAND; this most probably means
128  *   that the data is corrupted;
129  * o %-EIO if some I/O error occurred;
130  * o other negative error codes in case of other errors.
131  */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 		int len)
134 {
135 	int err, retries = 0;
136 	size_t read;
137 	loff_t addr;
138 
139 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 
141 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 	ubi_assert(len > 0);
144 
145 	err = paranoid_check_not_bad(ubi, pnum);
146 	if (err)
147 		return err;
148 
149 	addr = (loff_t)pnum * ubi->peb_size + offset;
150 retry:
151 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 	if (err) {
153 		const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
154 
155 		if (err == -EUCLEAN) {
156 			/*
157 			 * -EUCLEAN is reported if there was a bit-flip which
158 			 * was corrected, so this is harmless.
159 			 *
160 			 * We do not report about it here unless debugging is
161 			 * enabled. A corresponding message will be printed
162 			 * later, when it is has been scrubbed.
163 			 */
164 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
165 			ubi_assert(len == read);
166 			return UBI_IO_BITFLIPS;
167 		}
168 
169 		if (read != len && retries++ < UBI_IO_RETRIES) {
170 			dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
171 			       " read only %zd bytes, retry",
172 			       err, errstr, len, pnum, offset, read);
173 			yield();
174 			goto retry;
175 		}
176 
177 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
178 			"read %zd bytes", err, errstr, len, pnum, offset, read);
179 		ubi_dbg_dump_stack();
180 
181 		/*
182 		 * The driver should never return -EBADMSG if it failed to read
183 		 * all the requested data. But some buggy drivers might do
184 		 * this, so we change it to -EIO.
185 		 */
186 		if (read != len && err == -EBADMSG) {
187 			ubi_assert(0);
188 			err = -EIO;
189 		}
190 	} else {
191 		ubi_assert(len == read);
192 
193 		if (ubi_dbg_is_bitflip()) {
194 			dbg_gen("bit-flip (emulated)");
195 			err = UBI_IO_BITFLIPS;
196 		}
197 	}
198 
199 	return err;
200 }
201 
202 /**
203  * ubi_io_write - write data to a physical eraseblock.
204  * @ubi: UBI device description object
205  * @buf: buffer with the data to write
206  * @pnum: physical eraseblock number to write to
207  * @offset: offset within the physical eraseblock where to write
208  * @len: how many bytes to write
209  *
210  * This function writes @len bytes of data from buffer @buf to offset @offset
211  * of physical eraseblock @pnum. If all the data were successfully written,
212  * zero is returned. If an error occurred, this function returns a negative
213  * error code. If %-EIO is returned, the physical eraseblock most probably went
214  * bad.
215  *
216  * Note, in case of an error, it is possible that something was still written
217  * to the flash media, but may be some garbage.
218  */
219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 		 int len)
221 {
222 	int err;
223 	size_t written;
224 	loff_t addr;
225 
226 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227 
228 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232 
233 	if (ubi->ro_mode) {
234 		ubi_err("read-only mode");
235 		return -EROFS;
236 	}
237 
238 	/* The below has to be compiled out if paranoid checks are disabled */
239 
240 	err = paranoid_check_not_bad(ubi, pnum);
241 	if (err)
242 		return err;
243 
244 	/* The area we are writing to has to contain all 0xFF bytes */
245 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
246 	if (err)
247 		return err;
248 
249 	if (offset >= ubi->leb_start) {
250 		/*
251 		 * We write to the data area of the physical eraseblock. Make
252 		 * sure it has valid EC and VID headers.
253 		 */
254 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 		if (err)
256 			return err;
257 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 		if (err)
259 			return err;
260 	}
261 
262 	if (ubi_dbg_is_write_failure()) {
263 		dbg_err("cannot write %d bytes to PEB %d:%d "
264 			"(emulated)", len, pnum, offset);
265 		ubi_dbg_dump_stack();
266 		return -EIO;
267 	}
268 
269 	addr = (loff_t)pnum * ubi->peb_size + offset;
270 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 	if (err) {
272 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
273 			"%zd bytes", err, len, pnum, offset, written);
274 		ubi_dbg_dump_stack();
275 		ubi_dbg_dump_flash(ubi, pnum, offset, len);
276 	} else
277 		ubi_assert(written == len);
278 
279 	if (!err) {
280 		err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
281 		if (err)
282 			return err;
283 
284 		/*
285 		 * Since we always write sequentially, the rest of the PEB has
286 		 * to contain only 0xFF bytes.
287 		 */
288 		offset += len;
289 		len = ubi->peb_size - offset;
290 		if (len)
291 			err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
292 	}
293 
294 	return err;
295 }
296 
297 /**
298  * erase_callback - MTD erasure call-back.
299  * @ei: MTD erase information object.
300  *
301  * Note, even though MTD erase interface is asynchronous, all the current
302  * implementations are synchronous anyway.
303  */
304 static void erase_callback(struct erase_info *ei)
305 {
306 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
307 }
308 
309 /**
310  * do_sync_erase - synchronously erase a physical eraseblock.
311  * @ubi: UBI device description object
312  * @pnum: the physical eraseblock number to erase
313  *
314  * This function synchronously erases physical eraseblock @pnum and returns
315  * zero in case of success and a negative error code in case of failure. If
316  * %-EIO is returned, the physical eraseblock most probably went bad.
317  */
318 static int do_sync_erase(struct ubi_device *ubi, int pnum)
319 {
320 	int err, retries = 0;
321 	struct erase_info ei;
322 	wait_queue_head_t wq;
323 
324 	dbg_io("erase PEB %d", pnum);
325 
326 retry:
327 	init_waitqueue_head(&wq);
328 	memset(&ei, 0, sizeof(struct erase_info));
329 
330 	ei.mtd      = ubi->mtd;
331 	ei.addr     = (loff_t)pnum * ubi->peb_size;
332 	ei.len      = ubi->peb_size;
333 	ei.callback = erase_callback;
334 	ei.priv     = (unsigned long)&wq;
335 
336 	err = ubi->mtd->erase(ubi->mtd, &ei);
337 	if (err) {
338 		if (retries++ < UBI_IO_RETRIES) {
339 			dbg_io("error %d while erasing PEB %d, retry",
340 			       err, pnum);
341 			yield();
342 			goto retry;
343 		}
344 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
345 		ubi_dbg_dump_stack();
346 		return err;
347 	}
348 
349 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
350 					   ei.state == MTD_ERASE_FAILED);
351 	if (err) {
352 		ubi_err("interrupted PEB %d erasure", pnum);
353 		return -EINTR;
354 	}
355 
356 	if (ei.state == MTD_ERASE_FAILED) {
357 		if (retries++ < UBI_IO_RETRIES) {
358 			dbg_io("error while erasing PEB %d, retry", pnum);
359 			yield();
360 			goto retry;
361 		}
362 		ubi_err("cannot erase PEB %d", pnum);
363 		ubi_dbg_dump_stack();
364 		return -EIO;
365 	}
366 
367 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
368 	if (err)
369 		return err;
370 
371 	if (ubi_dbg_is_erase_failure() && !err) {
372 		dbg_err("cannot erase PEB %d (emulated)", pnum);
373 		return -EIO;
374 	}
375 
376 	return 0;
377 }
378 
379 /* Patterns to write to a physical eraseblock when torturing it */
380 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
381 
382 /**
383  * torture_peb - test a supposedly bad physical eraseblock.
384  * @ubi: UBI device description object
385  * @pnum: the physical eraseblock number to test
386  *
387  * This function returns %-EIO if the physical eraseblock did not pass the
388  * test, a positive number of erase operations done if the test was
389  * successfully passed, and other negative error codes in case of other errors.
390  */
391 static int torture_peb(struct ubi_device *ubi, int pnum)
392 {
393 	int err, i, patt_count;
394 
395 	ubi_msg("run torture test for PEB %d", pnum);
396 	patt_count = ARRAY_SIZE(patterns);
397 	ubi_assert(patt_count > 0);
398 
399 	mutex_lock(&ubi->buf_mutex);
400 	for (i = 0; i < patt_count; i++) {
401 		err = do_sync_erase(ubi, pnum);
402 		if (err)
403 			goto out;
404 
405 		/* Make sure the PEB contains only 0xFF bytes */
406 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
407 		if (err)
408 			goto out;
409 
410 		err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
411 		if (err == 0) {
412 			ubi_err("erased PEB %d, but a non-0xFF byte found",
413 				pnum);
414 			err = -EIO;
415 			goto out;
416 		}
417 
418 		/* Write a pattern and check it */
419 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
420 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
421 		if (err)
422 			goto out;
423 
424 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
425 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
426 		if (err)
427 			goto out;
428 
429 		err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
430 					ubi->peb_size);
431 		if (err == 0) {
432 			ubi_err("pattern %x checking failed for PEB %d",
433 				patterns[i], pnum);
434 			err = -EIO;
435 			goto out;
436 		}
437 	}
438 
439 	err = patt_count;
440 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
441 
442 out:
443 	mutex_unlock(&ubi->buf_mutex);
444 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
445 		/*
446 		 * If a bit-flip or data integrity error was detected, the test
447 		 * has not passed because it happened on a freshly erased
448 		 * physical eraseblock which means something is wrong with it.
449 		 */
450 		ubi_err("read problems on freshly erased PEB %d, must be bad",
451 			pnum);
452 		err = -EIO;
453 	}
454 	return err;
455 }
456 
457 /**
458  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
459  * @ubi: UBI device description object
460  * @pnum: physical eraseblock number to prepare
461  *
462  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
463  * algorithm: the PEB is first filled with zeroes, then it is erased. And
464  * filling with zeroes starts from the end of the PEB. This was observed with
465  * Spansion S29GL512N NOR flash.
466  *
467  * This means that in case of a power cut we may end up with intact data at the
468  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
469  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
470  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
471  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
472  *
473  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
474  * magic numbers in order to invalidate them and prevent the failures. Returns
475  * zero in case of success and a negative error code in case of failure.
476  */
477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
478 {
479 	int err, err1;
480 	size_t written;
481 	loff_t addr;
482 	uint32_t data = 0;
483 	struct ubi_vid_hdr vid_hdr;
484 
485 	addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
486 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
487 	if (!err) {
488 		addr -= ubi->vid_hdr_aloffset;
489 		err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
490 				      (void *)&data);
491 		if (!err)
492 			return 0;
493 	}
494 
495 	/*
496 	 * We failed to write to the media. This was observed with Spansion
497 	 * S29GL512N NOR flash. Most probably the eraseblock erasure was
498 	 * interrupted at a very inappropriate moment, so it became unwritable.
499 	 * In this case we probably anyway have garbage in this PEB.
500 	 */
501 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
502 	if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR)
503 		/*
504 		 * The VID header is corrupted, so we can safely erase this
505 		 * PEB and not afraid that it will be treated as a valid PEB in
506 		 * case of an unclean reboot.
507 		 */
508 		return 0;
509 
510 	/*
511 	 * The PEB contains a valid VID header, but we cannot invalidate it.
512 	 * Supposedly the flash media or the driver is screwed up, so return an
513 	 * error.
514 	 */
515 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
516 		pnum, err, err1);
517 	ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
518 	return -EIO;
519 }
520 
521 /**
522  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
523  * @ubi: UBI device description object
524  * @pnum: physical eraseblock number to erase
525  * @torture: if this physical eraseblock has to be tortured
526  *
527  * This function synchronously erases physical eraseblock @pnum. If @torture
528  * flag is not zero, the physical eraseblock is checked by means of writing
529  * different patterns to it and reading them back. If the torturing is enabled,
530  * the physical eraseblock is erased more than once.
531  *
532  * This function returns the number of erasures made in case of success, %-EIO
533  * if the erasure failed or the torturing test failed, and other negative error
534  * codes in case of other errors. Note, %-EIO means that the physical
535  * eraseblock is bad.
536  */
537 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
538 {
539 	int err, ret = 0;
540 
541 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
542 
543 	err = paranoid_check_not_bad(ubi, pnum);
544 	if (err != 0)
545 		return err;
546 
547 	if (ubi->ro_mode) {
548 		ubi_err("read-only mode");
549 		return -EROFS;
550 	}
551 
552 	if (ubi->nor_flash) {
553 		err = nor_erase_prepare(ubi, pnum);
554 		if (err)
555 			return err;
556 	}
557 
558 	if (torture) {
559 		ret = torture_peb(ubi, pnum);
560 		if (ret < 0)
561 			return ret;
562 	}
563 
564 	err = do_sync_erase(ubi, pnum);
565 	if (err)
566 		return err;
567 
568 	return ret + 1;
569 }
570 
571 /**
572  * ubi_io_is_bad - check if a physical eraseblock is bad.
573  * @ubi: UBI device description object
574  * @pnum: the physical eraseblock number to check
575  *
576  * This function returns a positive number if the physical eraseblock is bad,
577  * zero if not, and a negative error code if an error occurred.
578  */
579 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
580 {
581 	struct mtd_info *mtd = ubi->mtd;
582 
583 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
584 
585 	if (ubi->bad_allowed) {
586 		int ret;
587 
588 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
589 		if (ret < 0)
590 			ubi_err("error %d while checking if PEB %d is bad",
591 				ret, pnum);
592 		else if (ret)
593 			dbg_io("PEB %d is bad", pnum);
594 		return ret;
595 	}
596 
597 	return 0;
598 }
599 
600 /**
601  * ubi_io_mark_bad - mark a physical eraseblock as bad.
602  * @ubi: UBI device description object
603  * @pnum: the physical eraseblock number to mark
604  *
605  * This function returns zero in case of success and a negative error code in
606  * case of failure.
607  */
608 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
609 {
610 	int err;
611 	struct mtd_info *mtd = ubi->mtd;
612 
613 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
614 
615 	if (ubi->ro_mode) {
616 		ubi_err("read-only mode");
617 		return -EROFS;
618 	}
619 
620 	if (!ubi->bad_allowed)
621 		return 0;
622 
623 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
624 	if (err)
625 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
626 	return err;
627 }
628 
629 /**
630  * validate_ec_hdr - validate an erase counter header.
631  * @ubi: UBI device description object
632  * @ec_hdr: the erase counter header to check
633  *
634  * This function returns zero if the erase counter header is OK, and %1 if
635  * not.
636  */
637 static int validate_ec_hdr(const struct ubi_device *ubi,
638 			   const struct ubi_ec_hdr *ec_hdr)
639 {
640 	long long ec;
641 	int vid_hdr_offset, leb_start;
642 
643 	ec = be64_to_cpu(ec_hdr->ec);
644 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
645 	leb_start = be32_to_cpu(ec_hdr->data_offset);
646 
647 	if (ec_hdr->version != UBI_VERSION) {
648 		ubi_err("node with incompatible UBI version found: "
649 			"this UBI version is %d, image version is %d",
650 			UBI_VERSION, (int)ec_hdr->version);
651 		goto bad;
652 	}
653 
654 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
655 		ubi_err("bad VID header offset %d, expected %d",
656 			vid_hdr_offset, ubi->vid_hdr_offset);
657 		goto bad;
658 	}
659 
660 	if (leb_start != ubi->leb_start) {
661 		ubi_err("bad data offset %d, expected %d",
662 			leb_start, ubi->leb_start);
663 		goto bad;
664 	}
665 
666 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
667 		ubi_err("bad erase counter %lld", ec);
668 		goto bad;
669 	}
670 
671 	return 0;
672 
673 bad:
674 	ubi_err("bad EC header");
675 	ubi_dbg_dump_ec_hdr(ec_hdr);
676 	ubi_dbg_dump_stack();
677 	return 1;
678 }
679 
680 /**
681  * ubi_io_read_ec_hdr - read and check an erase counter header.
682  * @ubi: UBI device description object
683  * @pnum: physical eraseblock to read from
684  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
685  * header
686  * @verbose: be verbose if the header is corrupted or was not found
687  *
688  * This function reads erase counter header from physical eraseblock @pnum and
689  * stores it in @ec_hdr. This function also checks CRC checksum of the read
690  * erase counter header. The following codes may be returned:
691  *
692  * o %0 if the CRC checksum is correct and the header was successfully read;
693  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
694  *   and corrected by the flash driver; this is harmless but may indicate that
695  *   this eraseblock may become bad soon (but may be not);
696  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
697  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
698  *   a data integrity error (uncorrectable ECC error in case of NAND);
699  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
700  * o a negative error code in case of failure.
701  */
702 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
703 		       struct ubi_ec_hdr *ec_hdr, int verbose)
704 {
705 	int err, read_err;
706 	uint32_t crc, magic, hdr_crc;
707 
708 	dbg_io("read EC header from PEB %d", pnum);
709 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
710 
711 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
712 	if (read_err) {
713 		if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
714 			return read_err;
715 
716 		/*
717 		 * We read all the data, but either a correctable bit-flip
718 		 * occurred, or MTD reported a data integrity error
719 		 * (uncorrectable ECC error in case of NAND). The former is
720 		 * harmless, the later may mean that the read data is
721 		 * corrupted. But we have a CRC check-sum and we will detect
722 		 * this. If the EC header is still OK, we just report this as
723 		 * there was a bit-flip, to force scrubbing.
724 		 */
725 	}
726 
727 	magic = be32_to_cpu(ec_hdr->magic);
728 	if (magic != UBI_EC_HDR_MAGIC) {
729 		if (read_err == -EBADMSG)
730 			return UBI_IO_BAD_HDR_EBADMSG;
731 
732 		/*
733 		 * The magic field is wrong. Let's check if we have read all
734 		 * 0xFF. If yes, this physical eraseblock is assumed to be
735 		 * empty.
736 		 */
737 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
738 			/* The physical eraseblock is supposedly empty */
739 			if (verbose)
740 				ubi_warn("no EC header found at PEB %d, "
741 					 "only 0xFF bytes", pnum);
742 			else if (UBI_IO_DEBUG)
743 				dbg_msg("no EC header found at PEB %d, "
744 					"only 0xFF bytes", pnum);
745 			if (!read_err)
746 				return UBI_IO_FF;
747 			else
748 				return UBI_IO_FF_BITFLIPS;
749 		}
750 
751 		/*
752 		 * This is not a valid erase counter header, and these are not
753 		 * 0xFF bytes. Report that the header is corrupted.
754 		 */
755 		if (verbose) {
756 			ubi_warn("bad magic number at PEB %d: %08x instead of "
757 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
758 			ubi_dbg_dump_ec_hdr(ec_hdr);
759 		} else if (UBI_IO_DEBUG)
760 			dbg_msg("bad magic number at PEB %d: %08x instead of "
761 				"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
762 		return UBI_IO_BAD_HDR;
763 	}
764 
765 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
766 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
767 
768 	if (hdr_crc != crc) {
769 		if (verbose) {
770 			ubi_warn("bad EC header CRC at PEB %d, calculated "
771 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
772 			ubi_dbg_dump_ec_hdr(ec_hdr);
773 		} else if (UBI_IO_DEBUG)
774 			dbg_msg("bad EC header CRC at PEB %d, calculated "
775 				"%#08x, read %#08x", pnum, crc, hdr_crc);
776 
777 		if (!read_err)
778 			return UBI_IO_BAD_HDR;
779 		else
780 			return UBI_IO_BAD_HDR_EBADMSG;
781 	}
782 
783 	/* And of course validate what has just been read from the media */
784 	err = validate_ec_hdr(ubi, ec_hdr);
785 	if (err) {
786 		ubi_err("validation failed for PEB %d", pnum);
787 		return -EINVAL;
788 	}
789 
790 	/*
791 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
792 	 * a bit-flip to force scrubbing on this PEB.
793 	 */
794 	return read_err ? UBI_IO_BITFLIPS : 0;
795 }
796 
797 /**
798  * ubi_io_write_ec_hdr - write an erase counter header.
799  * @ubi: UBI device description object
800  * @pnum: physical eraseblock to write to
801  * @ec_hdr: the erase counter header to write
802  *
803  * This function writes erase counter header described by @ec_hdr to physical
804  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
805  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
806  * field.
807  *
808  * This function returns zero in case of success and a negative error code in
809  * case of failure. If %-EIO is returned, the physical eraseblock most probably
810  * went bad.
811  */
812 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
813 			struct ubi_ec_hdr *ec_hdr)
814 {
815 	int err;
816 	uint32_t crc;
817 
818 	dbg_io("write EC header to PEB %d", pnum);
819 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
820 
821 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
822 	ec_hdr->version = UBI_VERSION;
823 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
824 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
825 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
826 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
827 	ec_hdr->hdr_crc = cpu_to_be32(crc);
828 
829 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
830 	if (err)
831 		return err;
832 
833 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
834 	return err;
835 }
836 
837 /**
838  * validate_vid_hdr - validate a volume identifier header.
839  * @ubi: UBI device description object
840  * @vid_hdr: the volume identifier header to check
841  *
842  * This function checks that data stored in the volume identifier header
843  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
844  */
845 static int validate_vid_hdr(const struct ubi_device *ubi,
846 			    const struct ubi_vid_hdr *vid_hdr)
847 {
848 	int vol_type = vid_hdr->vol_type;
849 	int copy_flag = vid_hdr->copy_flag;
850 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
851 	int lnum = be32_to_cpu(vid_hdr->lnum);
852 	int compat = vid_hdr->compat;
853 	int data_size = be32_to_cpu(vid_hdr->data_size);
854 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
855 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
856 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
857 	int usable_leb_size = ubi->leb_size - data_pad;
858 
859 	if (copy_flag != 0 && copy_flag != 1) {
860 		dbg_err("bad copy_flag");
861 		goto bad;
862 	}
863 
864 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
865 	    data_pad < 0) {
866 		dbg_err("negative values");
867 		goto bad;
868 	}
869 
870 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
871 		dbg_err("bad vol_id");
872 		goto bad;
873 	}
874 
875 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
876 		dbg_err("bad compat");
877 		goto bad;
878 	}
879 
880 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
881 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
882 	    compat != UBI_COMPAT_REJECT) {
883 		dbg_err("bad compat");
884 		goto bad;
885 	}
886 
887 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
888 		dbg_err("bad vol_type");
889 		goto bad;
890 	}
891 
892 	if (data_pad >= ubi->leb_size / 2) {
893 		dbg_err("bad data_pad");
894 		goto bad;
895 	}
896 
897 	if (vol_type == UBI_VID_STATIC) {
898 		/*
899 		 * Although from high-level point of view static volumes may
900 		 * contain zero bytes of data, but no VID headers can contain
901 		 * zero at these fields, because they empty volumes do not have
902 		 * mapped logical eraseblocks.
903 		 */
904 		if (used_ebs == 0) {
905 			dbg_err("zero used_ebs");
906 			goto bad;
907 		}
908 		if (data_size == 0) {
909 			dbg_err("zero data_size");
910 			goto bad;
911 		}
912 		if (lnum < used_ebs - 1) {
913 			if (data_size != usable_leb_size) {
914 				dbg_err("bad data_size");
915 				goto bad;
916 			}
917 		} else if (lnum == used_ebs - 1) {
918 			if (data_size == 0) {
919 				dbg_err("bad data_size at last LEB");
920 				goto bad;
921 			}
922 		} else {
923 			dbg_err("too high lnum");
924 			goto bad;
925 		}
926 	} else {
927 		if (copy_flag == 0) {
928 			if (data_crc != 0) {
929 				dbg_err("non-zero data CRC");
930 				goto bad;
931 			}
932 			if (data_size != 0) {
933 				dbg_err("non-zero data_size");
934 				goto bad;
935 			}
936 		} else {
937 			if (data_size == 0) {
938 				dbg_err("zero data_size of copy");
939 				goto bad;
940 			}
941 		}
942 		if (used_ebs != 0) {
943 			dbg_err("bad used_ebs");
944 			goto bad;
945 		}
946 	}
947 
948 	return 0;
949 
950 bad:
951 	ubi_err("bad VID header");
952 	ubi_dbg_dump_vid_hdr(vid_hdr);
953 	ubi_dbg_dump_stack();
954 	return 1;
955 }
956 
957 /**
958  * ubi_io_read_vid_hdr - read and check a volume identifier header.
959  * @ubi: UBI device description object
960  * @pnum: physical eraseblock number to read from
961  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
962  * identifier header
963  * @verbose: be verbose if the header is corrupted or wasn't found
964  *
965  * This function reads the volume identifier header from physical eraseblock
966  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
967  * volume identifier header. The error codes are the same as in
968  * 'ubi_io_read_ec_hdr()'.
969  *
970  * Note, the implementation of this function is also very similar to
971  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
972  */
973 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
974 			struct ubi_vid_hdr *vid_hdr, int verbose)
975 {
976 	int err, read_err;
977 	uint32_t crc, magic, hdr_crc;
978 	void *p;
979 
980 	dbg_io("read VID header from PEB %d", pnum);
981 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
982 
983 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
984 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
985 			  ubi->vid_hdr_alsize);
986 	if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
987 		return read_err;
988 
989 	magic = be32_to_cpu(vid_hdr->magic);
990 	if (magic != UBI_VID_HDR_MAGIC) {
991 		if (read_err == -EBADMSG)
992 			return UBI_IO_BAD_HDR_EBADMSG;
993 
994 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
995 			if (verbose)
996 				ubi_warn("no VID header found at PEB %d, "
997 					 "only 0xFF bytes", pnum);
998 			else if (UBI_IO_DEBUG)
999 				dbg_msg("no VID header found at PEB %d, "
1000 					"only 0xFF bytes", pnum);
1001 			if (!read_err)
1002 				return UBI_IO_FF;
1003 			else
1004 				return UBI_IO_FF_BITFLIPS;
1005 		}
1006 
1007 		if (verbose) {
1008 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1009 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1010 			ubi_dbg_dump_vid_hdr(vid_hdr);
1011 		} else if (UBI_IO_DEBUG)
1012 			dbg_msg("bad magic number at PEB %d: %08x instead of "
1013 				"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1014 		return UBI_IO_BAD_HDR;
1015 	}
1016 
1017 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1018 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1019 
1020 	if (hdr_crc != crc) {
1021 		if (verbose) {
1022 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1023 				 "read %#08x", pnum, crc, hdr_crc);
1024 			ubi_dbg_dump_vid_hdr(vid_hdr);
1025 		} else if (UBI_IO_DEBUG)
1026 			dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1027 				"read %#08x", pnum, crc, hdr_crc);
1028 		if (!read_err)
1029 			return UBI_IO_BAD_HDR;
1030 		else
1031 			return UBI_IO_BAD_HDR_EBADMSG;
1032 	}
1033 
1034 	err = validate_vid_hdr(ubi, vid_hdr);
1035 	if (err) {
1036 		ubi_err("validation failed for PEB %d", pnum);
1037 		return -EINVAL;
1038 	}
1039 
1040 	return read_err ? UBI_IO_BITFLIPS : 0;
1041 }
1042 
1043 /**
1044  * ubi_io_write_vid_hdr - write a volume identifier header.
1045  * @ubi: UBI device description object
1046  * @pnum: the physical eraseblock number to write to
1047  * @vid_hdr: the volume identifier header to write
1048  *
1049  * This function writes the volume identifier header described by @vid_hdr to
1050  * physical eraseblock @pnum. This function automatically fills the
1051  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1052  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1053  *
1054  * This function returns zero in case of success and a negative error code in
1055  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1056  * bad.
1057  */
1058 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1059 			 struct ubi_vid_hdr *vid_hdr)
1060 {
1061 	int err;
1062 	uint32_t crc;
1063 	void *p;
1064 
1065 	dbg_io("write VID header to PEB %d", pnum);
1066 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1067 
1068 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1069 	if (err)
1070 		return err;
1071 
1072 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1073 	vid_hdr->version = UBI_VERSION;
1074 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1075 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1076 
1077 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1078 	if (err)
1079 		return err;
1080 
1081 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1082 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1083 			   ubi->vid_hdr_alsize);
1084 	return err;
1085 }
1086 
1087 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1088 
1089 /**
1090  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1091  * @ubi: UBI device description object
1092  * @pnum: physical eraseblock number to check
1093  *
1094  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1095  * it is bad and a negative error code if an error occurred.
1096  */
1097 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1098 {
1099 	int err;
1100 
1101 	err = ubi_io_is_bad(ubi, pnum);
1102 	if (!err)
1103 		return err;
1104 
1105 	ubi_err("paranoid check failed for PEB %d", pnum);
1106 	ubi_dbg_dump_stack();
1107 	return err > 0 ? -EINVAL : err;
1108 }
1109 
1110 /**
1111  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1112  * @ubi: UBI device description object
1113  * @pnum: physical eraseblock number the erase counter header belongs to
1114  * @ec_hdr: the erase counter header to check
1115  *
1116  * This function returns zero if the erase counter header contains valid
1117  * values, and %-EINVAL if not.
1118  */
1119 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1120 				 const struct ubi_ec_hdr *ec_hdr)
1121 {
1122 	int err;
1123 	uint32_t magic;
1124 
1125 	magic = be32_to_cpu(ec_hdr->magic);
1126 	if (magic != UBI_EC_HDR_MAGIC) {
1127 		ubi_err("bad magic %#08x, must be %#08x",
1128 			magic, UBI_EC_HDR_MAGIC);
1129 		goto fail;
1130 	}
1131 
1132 	err = validate_ec_hdr(ubi, ec_hdr);
1133 	if (err) {
1134 		ubi_err("paranoid check failed for PEB %d", pnum);
1135 		goto fail;
1136 	}
1137 
1138 	return 0;
1139 
1140 fail:
1141 	ubi_dbg_dump_ec_hdr(ec_hdr);
1142 	ubi_dbg_dump_stack();
1143 	return -EINVAL;
1144 }
1145 
1146 /**
1147  * paranoid_check_peb_ec_hdr - check erase counter header.
1148  * @ubi: UBI device description object
1149  * @pnum: the physical eraseblock number to check
1150  *
1151  * This function returns zero if the erase counter header is all right and and
1152  * a negative error code if not or if an error occurred.
1153  */
1154 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1155 {
1156 	int err;
1157 	uint32_t crc, hdr_crc;
1158 	struct ubi_ec_hdr *ec_hdr;
1159 
1160 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1161 	if (!ec_hdr)
1162 		return -ENOMEM;
1163 
1164 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1165 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1166 		goto exit;
1167 
1168 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1169 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1170 	if (hdr_crc != crc) {
1171 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1172 		ubi_err("paranoid check failed for PEB %d", pnum);
1173 		ubi_dbg_dump_ec_hdr(ec_hdr);
1174 		ubi_dbg_dump_stack();
1175 		err = -EINVAL;
1176 		goto exit;
1177 	}
1178 
1179 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1180 
1181 exit:
1182 	kfree(ec_hdr);
1183 	return err;
1184 }
1185 
1186 /**
1187  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1188  * @ubi: UBI device description object
1189  * @pnum: physical eraseblock number the volume identifier header belongs to
1190  * @vid_hdr: the volume identifier header to check
1191  *
1192  * This function returns zero if the volume identifier header is all right, and
1193  * %-EINVAL if not.
1194  */
1195 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1196 				  const struct ubi_vid_hdr *vid_hdr)
1197 {
1198 	int err;
1199 	uint32_t magic;
1200 
1201 	magic = be32_to_cpu(vid_hdr->magic);
1202 	if (magic != UBI_VID_HDR_MAGIC) {
1203 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1204 			magic, pnum, UBI_VID_HDR_MAGIC);
1205 		goto fail;
1206 	}
1207 
1208 	err = validate_vid_hdr(ubi, vid_hdr);
1209 	if (err) {
1210 		ubi_err("paranoid check failed for PEB %d", pnum);
1211 		goto fail;
1212 	}
1213 
1214 	return err;
1215 
1216 fail:
1217 	ubi_err("paranoid check failed for PEB %d", pnum);
1218 	ubi_dbg_dump_vid_hdr(vid_hdr);
1219 	ubi_dbg_dump_stack();
1220 	return -EINVAL;
1221 
1222 }
1223 
1224 /**
1225  * paranoid_check_peb_vid_hdr - check volume identifier header.
1226  * @ubi: UBI device description object
1227  * @pnum: the physical eraseblock number to check
1228  *
1229  * This function returns zero if the volume identifier header is all right,
1230  * and a negative error code if not or if an error occurred.
1231  */
1232 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1233 {
1234 	int err;
1235 	uint32_t crc, hdr_crc;
1236 	struct ubi_vid_hdr *vid_hdr;
1237 	void *p;
1238 
1239 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1240 	if (!vid_hdr)
1241 		return -ENOMEM;
1242 
1243 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1244 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1245 			  ubi->vid_hdr_alsize);
1246 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1247 		goto exit;
1248 
1249 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1250 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1251 	if (hdr_crc != crc) {
1252 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1253 			"read %#08x", pnum, crc, hdr_crc);
1254 		ubi_err("paranoid check failed for PEB %d", pnum);
1255 		ubi_dbg_dump_vid_hdr(vid_hdr);
1256 		ubi_dbg_dump_stack();
1257 		err = -EINVAL;
1258 		goto exit;
1259 	}
1260 
1261 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1262 
1263 exit:
1264 	ubi_free_vid_hdr(ubi, vid_hdr);
1265 	return err;
1266 }
1267 
1268 /**
1269  * ubi_dbg_check_write - make sure write succeeded.
1270  * @ubi: UBI device description object
1271  * @buf: buffer with data which were written
1272  * @pnum: physical eraseblock number the data were written to
1273  * @offset: offset within the physical eraseblock the data were written to
1274  * @len: how many bytes were written
1275  *
1276  * This functions reads data which were recently written and compares it with
1277  * the original data buffer - the data have to match. Returns zero if the data
1278  * match and a negative error code if not or in case of failure.
1279  */
1280 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1281 			int offset, int len)
1282 {
1283 	int err, i;
1284 
1285 	mutex_lock(&ubi->dbg_buf_mutex);
1286 	err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1287 	if (err)
1288 		goto out_unlock;
1289 
1290 	for (i = 0; i < len; i++) {
1291 		uint8_t c = ((uint8_t *)buf)[i];
1292 		uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1293 		int dump_len;
1294 
1295 		if (c == c1)
1296 			continue;
1297 
1298 		ubi_err("paranoid check failed for PEB %d:%d, len %d",
1299 			pnum, offset, len);
1300 		ubi_msg("data differ at position %d", i);
1301 		dump_len = max_t(int, 128, len - i);
1302 		ubi_msg("hex dump of the original buffer from %d to %d",
1303 			i, i + dump_len);
1304 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1305 			       buf + i, dump_len, 1);
1306 		ubi_msg("hex dump of the read buffer from %d to %d",
1307 			i, i + dump_len);
1308 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1309 			       ubi->dbg_peb_buf + i, dump_len, 1);
1310 		ubi_dbg_dump_stack();
1311 		err = -EINVAL;
1312 		goto out_unlock;
1313 	}
1314 	mutex_unlock(&ubi->dbg_buf_mutex);
1315 
1316 	return 0;
1317 
1318 out_unlock:
1319 	mutex_unlock(&ubi->dbg_buf_mutex);
1320 	return err;
1321 }
1322 
1323 /**
1324  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1325  * @ubi: UBI device description object
1326  * @pnum: the physical eraseblock number to check
1327  * @offset: the starting offset within the physical eraseblock to check
1328  * @len: the length of the region to check
1329  *
1330  * This function returns zero if only 0xFF bytes are present at offset
1331  * @offset of the physical eraseblock @pnum, and a negative error code if not
1332  * or if an error occurred.
1333  */
1334 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1335 {
1336 	size_t read;
1337 	int err;
1338 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1339 
1340 	mutex_lock(&ubi->dbg_buf_mutex);
1341 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1342 	if (err && err != -EUCLEAN) {
1343 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1344 			"read %zd bytes", err, len, pnum, offset, read);
1345 		goto error;
1346 	}
1347 
1348 	err = ubi_check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1349 	if (err == 0) {
1350 		ubi_err("flash region at PEB %d:%d, length %d does not "
1351 			"contain all 0xFF bytes", pnum, offset, len);
1352 		goto fail;
1353 	}
1354 	mutex_unlock(&ubi->dbg_buf_mutex);
1355 
1356 	return 0;
1357 
1358 fail:
1359 	ubi_err("paranoid check failed for PEB %d", pnum);
1360 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1361 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1362 		       ubi->dbg_peb_buf, len, 1);
1363 	err = -EINVAL;
1364 error:
1365 	ubi_dbg_dump_stack();
1366 	mutex_unlock(&ubi->dbg_buf_mutex);
1367 	return err;
1368 }
1369 
1370 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1371