xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 4800cd83)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 				 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 				  const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109 
110 /**
111  * ubi_io_read - read data from a physical eraseblock.
112  * @ubi: UBI device description object
113  * @buf: buffer where to store the read data
114  * @pnum: physical eraseblock number to read from
115  * @offset: offset within the physical eraseblock from where to read
116  * @len: how many bytes to read
117  *
118  * This function reads data from offset @offset of physical eraseblock @pnum
119  * and stores the read data in the @buf buffer. The following return codes are
120  * possible:
121  *
122  * o %0 if all the requested data were successfully read;
123  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124  *   correctable bit-flips were detected; this is harmless but may indicate
125  *   that this eraseblock may become bad soon (but do not have to);
126  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127  *   example it can be an ECC error in case of NAND; this most probably means
128  *   that the data is corrupted;
129  * o %-EIO if some I/O error occurred;
130  * o other negative error codes in case of other errors.
131  */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 		int len)
134 {
135 	int err, retries = 0;
136 	size_t read;
137 	loff_t addr;
138 
139 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 
141 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 	ubi_assert(len > 0);
144 
145 	err = paranoid_check_not_bad(ubi, pnum);
146 	if (err)
147 		return err;
148 
149 	addr = (loff_t)pnum * ubi->peb_size + offset;
150 retry:
151 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 	if (err) {
153 		const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
154 
155 		if (err == -EUCLEAN) {
156 			/*
157 			 * -EUCLEAN is reported if there was a bit-flip which
158 			 * was corrected, so this is harmless.
159 			 *
160 			 * We do not report about it here unless debugging is
161 			 * enabled. A corresponding message will be printed
162 			 * later, when it is has been scrubbed.
163 			 */
164 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
165 			ubi_assert(len == read);
166 			return UBI_IO_BITFLIPS;
167 		}
168 
169 		if (read != len && retries++ < UBI_IO_RETRIES) {
170 			dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
171 			       " read only %zd bytes, retry",
172 			       err, errstr, len, pnum, offset, read);
173 			yield();
174 			goto retry;
175 		}
176 
177 		ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
178 			"read %zd bytes", err, errstr, len, pnum, offset, read);
179 		ubi_dbg_dump_stack();
180 
181 		/*
182 		 * The driver should never return -EBADMSG if it failed to read
183 		 * all the requested data. But some buggy drivers might do
184 		 * this, so we change it to -EIO.
185 		 */
186 		if (read != len && err == -EBADMSG) {
187 			ubi_assert(0);
188 			err = -EIO;
189 		}
190 	} else {
191 		ubi_assert(len == read);
192 
193 		if (ubi_dbg_is_bitflip()) {
194 			dbg_gen("bit-flip (emulated)");
195 			err = UBI_IO_BITFLIPS;
196 		}
197 	}
198 
199 	return err;
200 }
201 
202 /**
203  * ubi_io_write - write data to a physical eraseblock.
204  * @ubi: UBI device description object
205  * @buf: buffer with the data to write
206  * @pnum: physical eraseblock number to write to
207  * @offset: offset within the physical eraseblock where to write
208  * @len: how many bytes to write
209  *
210  * This function writes @len bytes of data from buffer @buf to offset @offset
211  * of physical eraseblock @pnum. If all the data were successfully written,
212  * zero is returned. If an error occurred, this function returns a negative
213  * error code. If %-EIO is returned, the physical eraseblock most probably went
214  * bad.
215  *
216  * Note, in case of an error, it is possible that something was still written
217  * to the flash media, but may be some garbage.
218  */
219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 		 int len)
221 {
222 	int err;
223 	size_t written;
224 	loff_t addr;
225 
226 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227 
228 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232 
233 	if (ubi->ro_mode) {
234 		ubi_err("read-only mode");
235 		return -EROFS;
236 	}
237 
238 	/* The below has to be compiled out if paranoid checks are disabled */
239 
240 	err = paranoid_check_not_bad(ubi, pnum);
241 	if (err)
242 		return err;
243 
244 	/* The area we are writing to has to contain all 0xFF bytes */
245 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
246 	if (err)
247 		return err;
248 
249 	if (offset >= ubi->leb_start) {
250 		/*
251 		 * We write to the data area of the physical eraseblock. Make
252 		 * sure it has valid EC and VID headers.
253 		 */
254 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 		if (err)
256 			return err;
257 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 		if (err)
259 			return err;
260 	}
261 
262 	if (ubi_dbg_is_write_failure()) {
263 		dbg_err("cannot write %d bytes to PEB %d:%d "
264 			"(emulated)", len, pnum, offset);
265 		ubi_dbg_dump_stack();
266 		return -EIO;
267 	}
268 
269 	addr = (loff_t)pnum * ubi->peb_size + offset;
270 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 	if (err) {
272 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
273 			"%zd bytes", err, len, pnum, offset, written);
274 		ubi_dbg_dump_stack();
275 		ubi_dbg_dump_flash(ubi, pnum, offset, len);
276 	} else
277 		ubi_assert(written == len);
278 
279 	if (!err) {
280 		err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
281 		if (err)
282 			return err;
283 
284 		/*
285 		 * Since we always write sequentially, the rest of the PEB has
286 		 * to contain only 0xFF bytes.
287 		 */
288 		offset += len;
289 		len = ubi->peb_size - offset;
290 		if (len)
291 			err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
292 	}
293 
294 	return err;
295 }
296 
297 /**
298  * erase_callback - MTD erasure call-back.
299  * @ei: MTD erase information object.
300  *
301  * Note, even though MTD erase interface is asynchronous, all the current
302  * implementations are synchronous anyway.
303  */
304 static void erase_callback(struct erase_info *ei)
305 {
306 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
307 }
308 
309 /**
310  * do_sync_erase - synchronously erase a physical eraseblock.
311  * @ubi: UBI device description object
312  * @pnum: the physical eraseblock number to erase
313  *
314  * This function synchronously erases physical eraseblock @pnum and returns
315  * zero in case of success and a negative error code in case of failure. If
316  * %-EIO is returned, the physical eraseblock most probably went bad.
317  */
318 static int do_sync_erase(struct ubi_device *ubi, int pnum)
319 {
320 	int err, retries = 0;
321 	struct erase_info ei;
322 	wait_queue_head_t wq;
323 
324 	dbg_io("erase PEB %d", pnum);
325 
326 retry:
327 	init_waitqueue_head(&wq);
328 	memset(&ei, 0, sizeof(struct erase_info));
329 
330 	ei.mtd      = ubi->mtd;
331 	ei.addr     = (loff_t)pnum * ubi->peb_size;
332 	ei.len      = ubi->peb_size;
333 	ei.callback = erase_callback;
334 	ei.priv     = (unsigned long)&wq;
335 
336 	err = ubi->mtd->erase(ubi->mtd, &ei);
337 	if (err) {
338 		if (retries++ < UBI_IO_RETRIES) {
339 			dbg_io("error %d while erasing PEB %d, retry",
340 			       err, pnum);
341 			yield();
342 			goto retry;
343 		}
344 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
345 		ubi_dbg_dump_stack();
346 		return err;
347 	}
348 
349 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
350 					   ei.state == MTD_ERASE_FAILED);
351 	if (err) {
352 		ubi_err("interrupted PEB %d erasure", pnum);
353 		return -EINTR;
354 	}
355 
356 	if (ei.state == MTD_ERASE_FAILED) {
357 		if (retries++ < UBI_IO_RETRIES) {
358 			dbg_io("error while erasing PEB %d, retry", pnum);
359 			yield();
360 			goto retry;
361 		}
362 		ubi_err("cannot erase PEB %d", pnum);
363 		ubi_dbg_dump_stack();
364 		return -EIO;
365 	}
366 
367 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
368 	if (err)
369 		return err;
370 
371 	if (ubi_dbg_is_erase_failure() && !err) {
372 		dbg_err("cannot erase PEB %d (emulated)", pnum);
373 		return -EIO;
374 	}
375 
376 	return 0;
377 }
378 
379 /* Patterns to write to a physical eraseblock when torturing it */
380 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
381 
382 /**
383  * torture_peb - test a supposedly bad physical eraseblock.
384  * @ubi: UBI device description object
385  * @pnum: the physical eraseblock number to test
386  *
387  * This function returns %-EIO if the physical eraseblock did not pass the
388  * test, a positive number of erase operations done if the test was
389  * successfully passed, and other negative error codes in case of other errors.
390  */
391 static int torture_peb(struct ubi_device *ubi, int pnum)
392 {
393 	int err, i, patt_count;
394 
395 	ubi_msg("run torture test for PEB %d", pnum);
396 	patt_count = ARRAY_SIZE(patterns);
397 	ubi_assert(patt_count > 0);
398 
399 	mutex_lock(&ubi->buf_mutex);
400 	for (i = 0; i < patt_count; i++) {
401 		err = do_sync_erase(ubi, pnum);
402 		if (err)
403 			goto out;
404 
405 		/* Make sure the PEB contains only 0xFF bytes */
406 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
407 		if (err)
408 			goto out;
409 
410 		err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
411 		if (err == 0) {
412 			ubi_err("erased PEB %d, but a non-0xFF byte found",
413 				pnum);
414 			err = -EIO;
415 			goto out;
416 		}
417 
418 		/* Write a pattern and check it */
419 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
420 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
421 		if (err)
422 			goto out;
423 
424 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
425 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
426 		if (err)
427 			goto out;
428 
429 		err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
430 					ubi->peb_size);
431 		if (err == 0) {
432 			ubi_err("pattern %x checking failed for PEB %d",
433 				patterns[i], pnum);
434 			err = -EIO;
435 			goto out;
436 		}
437 	}
438 
439 	err = patt_count;
440 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
441 
442 out:
443 	mutex_unlock(&ubi->buf_mutex);
444 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
445 		/*
446 		 * If a bit-flip or data integrity error was detected, the test
447 		 * has not passed because it happened on a freshly erased
448 		 * physical eraseblock which means something is wrong with it.
449 		 */
450 		ubi_err("read problems on freshly erased PEB %d, must be bad",
451 			pnum);
452 		err = -EIO;
453 	}
454 	return err;
455 }
456 
457 /**
458  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
459  * @ubi: UBI device description object
460  * @pnum: physical eraseblock number to prepare
461  *
462  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
463  * algorithm: the PEB is first filled with zeroes, then it is erased. And
464  * filling with zeroes starts from the end of the PEB. This was observed with
465  * Spansion S29GL512N NOR flash.
466  *
467  * This means that in case of a power cut we may end up with intact data at the
468  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
469  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
470  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
471  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
472  *
473  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
474  * magic numbers in order to invalidate them and prevent the failures. Returns
475  * zero in case of success and a negative error code in case of failure.
476  */
477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
478 {
479 	int err, err1;
480 	size_t written;
481 	loff_t addr;
482 	uint32_t data = 0;
483 	struct ubi_vid_hdr vid_hdr;
484 
485 	/*
486 	 * It is important to first invalidate the EC header, and then the VID
487 	 * header. Otherwise a power cut may lead to valid EC header and
488 	 * invalid VID header, in which case UBI will treat this PEB as
489 	 * corrupted and will try to preserve it, and print scary warnings (see
490 	 * the header comment in scan.c for more information).
491 	 */
492 	addr = (loff_t)pnum * ubi->peb_size;
493 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
494 	if (!err) {
495 		addr += ubi->vid_hdr_aloffset;
496 		err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
497 				      (void *)&data);
498 		if (!err)
499 			return 0;
500 	}
501 
502 	/*
503 	 * We failed to write to the media. This was observed with Spansion
504 	 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
505 	 * was interrupted at a very inappropriate moment, so it became
506 	 * unwritable. In this case we probably anyway have garbage in this
507 	 * PEB.
508 	 */
509 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
510 	if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR) {
511 		struct ubi_ec_hdr ec_hdr;
512 
513 		err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
514 		if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR)
515 			/*
516 			 * Both VID and EC headers are corrupted, so we can
517 			 * safely erase this PEB and not afraid that it will be
518 			 * treated as a valid PEB in case of an unclean reboot.
519 			 */
520 			return 0;
521 	}
522 
523 	/*
524 	 * The PEB contains a valid VID header, but we cannot invalidate it.
525 	 * Supposedly the flash media or the driver is screwed up, so return an
526 	 * error.
527 	 */
528 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
529 		pnum, err, err1);
530 	ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
531 	return -EIO;
532 }
533 
534 /**
535  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
536  * @ubi: UBI device description object
537  * @pnum: physical eraseblock number to erase
538  * @torture: if this physical eraseblock has to be tortured
539  *
540  * This function synchronously erases physical eraseblock @pnum. If @torture
541  * flag is not zero, the physical eraseblock is checked by means of writing
542  * different patterns to it and reading them back. If the torturing is enabled,
543  * the physical eraseblock is erased more than once.
544  *
545  * This function returns the number of erasures made in case of success, %-EIO
546  * if the erasure failed or the torturing test failed, and other negative error
547  * codes in case of other errors. Note, %-EIO means that the physical
548  * eraseblock is bad.
549  */
550 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
551 {
552 	int err, ret = 0;
553 
554 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
555 
556 	err = paranoid_check_not_bad(ubi, pnum);
557 	if (err != 0)
558 		return err;
559 
560 	if (ubi->ro_mode) {
561 		ubi_err("read-only mode");
562 		return -EROFS;
563 	}
564 
565 	if (ubi->nor_flash) {
566 		err = nor_erase_prepare(ubi, pnum);
567 		if (err)
568 			return err;
569 	}
570 
571 	if (torture) {
572 		ret = torture_peb(ubi, pnum);
573 		if (ret < 0)
574 			return ret;
575 	}
576 
577 	err = do_sync_erase(ubi, pnum);
578 	if (err)
579 		return err;
580 
581 	return ret + 1;
582 }
583 
584 /**
585  * ubi_io_is_bad - check if a physical eraseblock is bad.
586  * @ubi: UBI device description object
587  * @pnum: the physical eraseblock number to check
588  *
589  * This function returns a positive number if the physical eraseblock is bad,
590  * zero if not, and a negative error code if an error occurred.
591  */
592 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
593 {
594 	struct mtd_info *mtd = ubi->mtd;
595 
596 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
597 
598 	if (ubi->bad_allowed) {
599 		int ret;
600 
601 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
602 		if (ret < 0)
603 			ubi_err("error %d while checking if PEB %d is bad",
604 				ret, pnum);
605 		else if (ret)
606 			dbg_io("PEB %d is bad", pnum);
607 		return ret;
608 	}
609 
610 	return 0;
611 }
612 
613 /**
614  * ubi_io_mark_bad - mark a physical eraseblock as bad.
615  * @ubi: UBI device description object
616  * @pnum: the physical eraseblock number to mark
617  *
618  * This function returns zero in case of success and a negative error code in
619  * case of failure.
620  */
621 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
622 {
623 	int err;
624 	struct mtd_info *mtd = ubi->mtd;
625 
626 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
627 
628 	if (ubi->ro_mode) {
629 		ubi_err("read-only mode");
630 		return -EROFS;
631 	}
632 
633 	if (!ubi->bad_allowed)
634 		return 0;
635 
636 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
637 	if (err)
638 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
639 	return err;
640 }
641 
642 /**
643  * validate_ec_hdr - validate an erase counter header.
644  * @ubi: UBI device description object
645  * @ec_hdr: the erase counter header to check
646  *
647  * This function returns zero if the erase counter header is OK, and %1 if
648  * not.
649  */
650 static int validate_ec_hdr(const struct ubi_device *ubi,
651 			   const struct ubi_ec_hdr *ec_hdr)
652 {
653 	long long ec;
654 	int vid_hdr_offset, leb_start;
655 
656 	ec = be64_to_cpu(ec_hdr->ec);
657 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
658 	leb_start = be32_to_cpu(ec_hdr->data_offset);
659 
660 	if (ec_hdr->version != UBI_VERSION) {
661 		ubi_err("node with incompatible UBI version found: "
662 			"this UBI version is %d, image version is %d",
663 			UBI_VERSION, (int)ec_hdr->version);
664 		goto bad;
665 	}
666 
667 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
668 		ubi_err("bad VID header offset %d, expected %d",
669 			vid_hdr_offset, ubi->vid_hdr_offset);
670 		goto bad;
671 	}
672 
673 	if (leb_start != ubi->leb_start) {
674 		ubi_err("bad data offset %d, expected %d",
675 			leb_start, ubi->leb_start);
676 		goto bad;
677 	}
678 
679 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
680 		ubi_err("bad erase counter %lld", ec);
681 		goto bad;
682 	}
683 
684 	return 0;
685 
686 bad:
687 	ubi_err("bad EC header");
688 	ubi_dbg_dump_ec_hdr(ec_hdr);
689 	ubi_dbg_dump_stack();
690 	return 1;
691 }
692 
693 /**
694  * ubi_io_read_ec_hdr - read and check an erase counter header.
695  * @ubi: UBI device description object
696  * @pnum: physical eraseblock to read from
697  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
698  * header
699  * @verbose: be verbose if the header is corrupted or was not found
700  *
701  * This function reads erase counter header from physical eraseblock @pnum and
702  * stores it in @ec_hdr. This function also checks CRC checksum of the read
703  * erase counter header. The following codes may be returned:
704  *
705  * o %0 if the CRC checksum is correct and the header was successfully read;
706  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
707  *   and corrected by the flash driver; this is harmless but may indicate that
708  *   this eraseblock may become bad soon (but may be not);
709  * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
710  * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
711  *   a data integrity error (uncorrectable ECC error in case of NAND);
712  * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
713  * o a negative error code in case of failure.
714  */
715 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
716 		       struct ubi_ec_hdr *ec_hdr, int verbose)
717 {
718 	int err, read_err;
719 	uint32_t crc, magic, hdr_crc;
720 
721 	dbg_io("read EC header from PEB %d", pnum);
722 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
723 
724 	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
725 	if (read_err) {
726 		if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
727 			return read_err;
728 
729 		/*
730 		 * We read all the data, but either a correctable bit-flip
731 		 * occurred, or MTD reported a data integrity error
732 		 * (uncorrectable ECC error in case of NAND). The former is
733 		 * harmless, the later may mean that the read data is
734 		 * corrupted. But we have a CRC check-sum and we will detect
735 		 * this. If the EC header is still OK, we just report this as
736 		 * there was a bit-flip, to force scrubbing.
737 		 */
738 	}
739 
740 	magic = be32_to_cpu(ec_hdr->magic);
741 	if (magic != UBI_EC_HDR_MAGIC) {
742 		if (read_err == -EBADMSG)
743 			return UBI_IO_BAD_HDR_EBADMSG;
744 
745 		/*
746 		 * The magic field is wrong. Let's check if we have read all
747 		 * 0xFF. If yes, this physical eraseblock is assumed to be
748 		 * empty.
749 		 */
750 		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
751 			/* The physical eraseblock is supposedly empty */
752 			if (verbose)
753 				ubi_warn("no EC header found at PEB %d, "
754 					 "only 0xFF bytes", pnum);
755 			else if (UBI_IO_DEBUG)
756 				dbg_msg("no EC header found at PEB %d, "
757 					"only 0xFF bytes", pnum);
758 			if (!read_err)
759 				return UBI_IO_FF;
760 			else
761 				return UBI_IO_FF_BITFLIPS;
762 		}
763 
764 		/*
765 		 * This is not a valid erase counter header, and these are not
766 		 * 0xFF bytes. Report that the header is corrupted.
767 		 */
768 		if (verbose) {
769 			ubi_warn("bad magic number at PEB %d: %08x instead of "
770 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
771 			ubi_dbg_dump_ec_hdr(ec_hdr);
772 		} else if (UBI_IO_DEBUG)
773 			dbg_msg("bad magic number at PEB %d: %08x instead of "
774 				"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
775 		return UBI_IO_BAD_HDR;
776 	}
777 
778 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
779 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
780 
781 	if (hdr_crc != crc) {
782 		if (verbose) {
783 			ubi_warn("bad EC header CRC at PEB %d, calculated "
784 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
785 			ubi_dbg_dump_ec_hdr(ec_hdr);
786 		} else if (UBI_IO_DEBUG)
787 			dbg_msg("bad EC header CRC at PEB %d, calculated "
788 				"%#08x, read %#08x", pnum, crc, hdr_crc);
789 
790 		if (!read_err)
791 			return UBI_IO_BAD_HDR;
792 		else
793 			return UBI_IO_BAD_HDR_EBADMSG;
794 	}
795 
796 	/* And of course validate what has just been read from the media */
797 	err = validate_ec_hdr(ubi, ec_hdr);
798 	if (err) {
799 		ubi_err("validation failed for PEB %d", pnum);
800 		return -EINVAL;
801 	}
802 
803 	/*
804 	 * If there was %-EBADMSG, but the header CRC is still OK, report about
805 	 * a bit-flip to force scrubbing on this PEB.
806 	 */
807 	return read_err ? UBI_IO_BITFLIPS : 0;
808 }
809 
810 /**
811  * ubi_io_write_ec_hdr - write an erase counter header.
812  * @ubi: UBI device description object
813  * @pnum: physical eraseblock to write to
814  * @ec_hdr: the erase counter header to write
815  *
816  * This function writes erase counter header described by @ec_hdr to physical
817  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
818  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
819  * field.
820  *
821  * This function returns zero in case of success and a negative error code in
822  * case of failure. If %-EIO is returned, the physical eraseblock most probably
823  * went bad.
824  */
825 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
826 			struct ubi_ec_hdr *ec_hdr)
827 {
828 	int err;
829 	uint32_t crc;
830 
831 	dbg_io("write EC header to PEB %d", pnum);
832 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
833 
834 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
835 	ec_hdr->version = UBI_VERSION;
836 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
837 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
838 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
839 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
840 	ec_hdr->hdr_crc = cpu_to_be32(crc);
841 
842 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
843 	if (err)
844 		return err;
845 
846 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
847 	return err;
848 }
849 
850 /**
851  * validate_vid_hdr - validate a volume identifier header.
852  * @ubi: UBI device description object
853  * @vid_hdr: the volume identifier header to check
854  *
855  * This function checks that data stored in the volume identifier header
856  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
857  */
858 static int validate_vid_hdr(const struct ubi_device *ubi,
859 			    const struct ubi_vid_hdr *vid_hdr)
860 {
861 	int vol_type = vid_hdr->vol_type;
862 	int copy_flag = vid_hdr->copy_flag;
863 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
864 	int lnum = be32_to_cpu(vid_hdr->lnum);
865 	int compat = vid_hdr->compat;
866 	int data_size = be32_to_cpu(vid_hdr->data_size);
867 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
868 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
869 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
870 	int usable_leb_size = ubi->leb_size - data_pad;
871 
872 	if (copy_flag != 0 && copy_flag != 1) {
873 		dbg_err("bad copy_flag");
874 		goto bad;
875 	}
876 
877 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
878 	    data_pad < 0) {
879 		dbg_err("negative values");
880 		goto bad;
881 	}
882 
883 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
884 		dbg_err("bad vol_id");
885 		goto bad;
886 	}
887 
888 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
889 		dbg_err("bad compat");
890 		goto bad;
891 	}
892 
893 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
894 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
895 	    compat != UBI_COMPAT_REJECT) {
896 		dbg_err("bad compat");
897 		goto bad;
898 	}
899 
900 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
901 		dbg_err("bad vol_type");
902 		goto bad;
903 	}
904 
905 	if (data_pad >= ubi->leb_size / 2) {
906 		dbg_err("bad data_pad");
907 		goto bad;
908 	}
909 
910 	if (vol_type == UBI_VID_STATIC) {
911 		/*
912 		 * Although from high-level point of view static volumes may
913 		 * contain zero bytes of data, but no VID headers can contain
914 		 * zero at these fields, because they empty volumes do not have
915 		 * mapped logical eraseblocks.
916 		 */
917 		if (used_ebs == 0) {
918 			dbg_err("zero used_ebs");
919 			goto bad;
920 		}
921 		if (data_size == 0) {
922 			dbg_err("zero data_size");
923 			goto bad;
924 		}
925 		if (lnum < used_ebs - 1) {
926 			if (data_size != usable_leb_size) {
927 				dbg_err("bad data_size");
928 				goto bad;
929 			}
930 		} else if (lnum == used_ebs - 1) {
931 			if (data_size == 0) {
932 				dbg_err("bad data_size at last LEB");
933 				goto bad;
934 			}
935 		} else {
936 			dbg_err("too high lnum");
937 			goto bad;
938 		}
939 	} else {
940 		if (copy_flag == 0) {
941 			if (data_crc != 0) {
942 				dbg_err("non-zero data CRC");
943 				goto bad;
944 			}
945 			if (data_size != 0) {
946 				dbg_err("non-zero data_size");
947 				goto bad;
948 			}
949 		} else {
950 			if (data_size == 0) {
951 				dbg_err("zero data_size of copy");
952 				goto bad;
953 			}
954 		}
955 		if (used_ebs != 0) {
956 			dbg_err("bad used_ebs");
957 			goto bad;
958 		}
959 	}
960 
961 	return 0;
962 
963 bad:
964 	ubi_err("bad VID header");
965 	ubi_dbg_dump_vid_hdr(vid_hdr);
966 	ubi_dbg_dump_stack();
967 	return 1;
968 }
969 
970 /**
971  * ubi_io_read_vid_hdr - read and check a volume identifier header.
972  * @ubi: UBI device description object
973  * @pnum: physical eraseblock number to read from
974  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
975  * identifier header
976  * @verbose: be verbose if the header is corrupted or wasn't found
977  *
978  * This function reads the volume identifier header from physical eraseblock
979  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
980  * volume identifier header. The error codes are the same as in
981  * 'ubi_io_read_ec_hdr()'.
982  *
983  * Note, the implementation of this function is also very similar to
984  * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
985  */
986 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
987 			struct ubi_vid_hdr *vid_hdr, int verbose)
988 {
989 	int err, read_err;
990 	uint32_t crc, magic, hdr_crc;
991 	void *p;
992 
993 	dbg_io("read VID header from PEB %d", pnum);
994 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
995 
996 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
997 	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
998 			  ubi->vid_hdr_alsize);
999 	if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
1000 		return read_err;
1001 
1002 	magic = be32_to_cpu(vid_hdr->magic);
1003 	if (magic != UBI_VID_HDR_MAGIC) {
1004 		if (read_err == -EBADMSG)
1005 			return UBI_IO_BAD_HDR_EBADMSG;
1006 
1007 		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1008 			if (verbose)
1009 				ubi_warn("no VID header found at PEB %d, "
1010 					 "only 0xFF bytes", pnum);
1011 			else if (UBI_IO_DEBUG)
1012 				dbg_msg("no VID header found at PEB %d, "
1013 					"only 0xFF bytes", pnum);
1014 			if (!read_err)
1015 				return UBI_IO_FF;
1016 			else
1017 				return UBI_IO_FF_BITFLIPS;
1018 		}
1019 
1020 		if (verbose) {
1021 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1022 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1023 			ubi_dbg_dump_vid_hdr(vid_hdr);
1024 		} else if (UBI_IO_DEBUG)
1025 			dbg_msg("bad magic number at PEB %d: %08x instead of "
1026 				"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1027 		return UBI_IO_BAD_HDR;
1028 	}
1029 
1030 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1031 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1032 
1033 	if (hdr_crc != crc) {
1034 		if (verbose) {
1035 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1036 				 "read %#08x", pnum, crc, hdr_crc);
1037 			ubi_dbg_dump_vid_hdr(vid_hdr);
1038 		} else if (UBI_IO_DEBUG)
1039 			dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1040 				"read %#08x", pnum, crc, hdr_crc);
1041 		if (!read_err)
1042 			return UBI_IO_BAD_HDR;
1043 		else
1044 			return UBI_IO_BAD_HDR_EBADMSG;
1045 	}
1046 
1047 	err = validate_vid_hdr(ubi, vid_hdr);
1048 	if (err) {
1049 		ubi_err("validation failed for PEB %d", pnum);
1050 		return -EINVAL;
1051 	}
1052 
1053 	return read_err ? UBI_IO_BITFLIPS : 0;
1054 }
1055 
1056 /**
1057  * ubi_io_write_vid_hdr - write a volume identifier header.
1058  * @ubi: UBI device description object
1059  * @pnum: the physical eraseblock number to write to
1060  * @vid_hdr: the volume identifier header to write
1061  *
1062  * This function writes the volume identifier header described by @vid_hdr to
1063  * physical eraseblock @pnum. This function automatically fills the
1064  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1065  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1066  *
1067  * This function returns zero in case of success and a negative error code in
1068  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1069  * bad.
1070  */
1071 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1072 			 struct ubi_vid_hdr *vid_hdr)
1073 {
1074 	int err;
1075 	uint32_t crc;
1076 	void *p;
1077 
1078 	dbg_io("write VID header to PEB %d", pnum);
1079 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1080 
1081 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1082 	if (err)
1083 		return err;
1084 
1085 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1086 	vid_hdr->version = UBI_VERSION;
1087 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1088 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1089 
1090 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1091 	if (err)
1092 		return err;
1093 
1094 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1095 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1096 			   ubi->vid_hdr_alsize);
1097 	return err;
1098 }
1099 
1100 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1101 
1102 /**
1103  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1104  * @ubi: UBI device description object
1105  * @pnum: physical eraseblock number to check
1106  *
1107  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1108  * it is bad and a negative error code if an error occurred.
1109  */
1110 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1111 {
1112 	int err;
1113 
1114 	err = ubi_io_is_bad(ubi, pnum);
1115 	if (!err)
1116 		return err;
1117 
1118 	ubi_err("paranoid check failed for PEB %d", pnum);
1119 	ubi_dbg_dump_stack();
1120 	return err > 0 ? -EINVAL : err;
1121 }
1122 
1123 /**
1124  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1125  * @ubi: UBI device description object
1126  * @pnum: physical eraseblock number the erase counter header belongs to
1127  * @ec_hdr: the erase counter header to check
1128  *
1129  * This function returns zero if the erase counter header contains valid
1130  * values, and %-EINVAL if not.
1131  */
1132 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1133 				 const struct ubi_ec_hdr *ec_hdr)
1134 {
1135 	int err;
1136 	uint32_t magic;
1137 
1138 	magic = be32_to_cpu(ec_hdr->magic);
1139 	if (magic != UBI_EC_HDR_MAGIC) {
1140 		ubi_err("bad magic %#08x, must be %#08x",
1141 			magic, UBI_EC_HDR_MAGIC);
1142 		goto fail;
1143 	}
1144 
1145 	err = validate_ec_hdr(ubi, ec_hdr);
1146 	if (err) {
1147 		ubi_err("paranoid check failed for PEB %d", pnum);
1148 		goto fail;
1149 	}
1150 
1151 	return 0;
1152 
1153 fail:
1154 	ubi_dbg_dump_ec_hdr(ec_hdr);
1155 	ubi_dbg_dump_stack();
1156 	return -EINVAL;
1157 }
1158 
1159 /**
1160  * paranoid_check_peb_ec_hdr - check erase counter header.
1161  * @ubi: UBI device description object
1162  * @pnum: the physical eraseblock number to check
1163  *
1164  * This function returns zero if the erase counter header is all right and and
1165  * a negative error code if not or if an error occurred.
1166  */
1167 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1168 {
1169 	int err;
1170 	uint32_t crc, hdr_crc;
1171 	struct ubi_ec_hdr *ec_hdr;
1172 
1173 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1174 	if (!ec_hdr)
1175 		return -ENOMEM;
1176 
1177 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1178 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1179 		goto exit;
1180 
1181 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1182 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1183 	if (hdr_crc != crc) {
1184 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1185 		ubi_err("paranoid check failed for PEB %d", pnum);
1186 		ubi_dbg_dump_ec_hdr(ec_hdr);
1187 		ubi_dbg_dump_stack();
1188 		err = -EINVAL;
1189 		goto exit;
1190 	}
1191 
1192 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1193 
1194 exit:
1195 	kfree(ec_hdr);
1196 	return err;
1197 }
1198 
1199 /**
1200  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1201  * @ubi: UBI device description object
1202  * @pnum: physical eraseblock number the volume identifier header belongs to
1203  * @vid_hdr: the volume identifier header to check
1204  *
1205  * This function returns zero if the volume identifier header is all right, and
1206  * %-EINVAL if not.
1207  */
1208 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1209 				  const struct ubi_vid_hdr *vid_hdr)
1210 {
1211 	int err;
1212 	uint32_t magic;
1213 
1214 	magic = be32_to_cpu(vid_hdr->magic);
1215 	if (magic != UBI_VID_HDR_MAGIC) {
1216 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1217 			magic, pnum, UBI_VID_HDR_MAGIC);
1218 		goto fail;
1219 	}
1220 
1221 	err = validate_vid_hdr(ubi, vid_hdr);
1222 	if (err) {
1223 		ubi_err("paranoid check failed for PEB %d", pnum);
1224 		goto fail;
1225 	}
1226 
1227 	return err;
1228 
1229 fail:
1230 	ubi_err("paranoid check failed for PEB %d", pnum);
1231 	ubi_dbg_dump_vid_hdr(vid_hdr);
1232 	ubi_dbg_dump_stack();
1233 	return -EINVAL;
1234 
1235 }
1236 
1237 /**
1238  * paranoid_check_peb_vid_hdr - check volume identifier header.
1239  * @ubi: UBI device description object
1240  * @pnum: the physical eraseblock number to check
1241  *
1242  * This function returns zero if the volume identifier header is all right,
1243  * and a negative error code if not or if an error occurred.
1244  */
1245 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1246 {
1247 	int err;
1248 	uint32_t crc, hdr_crc;
1249 	struct ubi_vid_hdr *vid_hdr;
1250 	void *p;
1251 
1252 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1253 	if (!vid_hdr)
1254 		return -ENOMEM;
1255 
1256 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1257 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1258 			  ubi->vid_hdr_alsize);
1259 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1260 		goto exit;
1261 
1262 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1263 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1264 	if (hdr_crc != crc) {
1265 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1266 			"read %#08x", pnum, crc, hdr_crc);
1267 		ubi_err("paranoid check failed for PEB %d", pnum);
1268 		ubi_dbg_dump_vid_hdr(vid_hdr);
1269 		ubi_dbg_dump_stack();
1270 		err = -EINVAL;
1271 		goto exit;
1272 	}
1273 
1274 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1275 
1276 exit:
1277 	ubi_free_vid_hdr(ubi, vid_hdr);
1278 	return err;
1279 }
1280 
1281 /**
1282  * ubi_dbg_check_write - make sure write succeeded.
1283  * @ubi: UBI device description object
1284  * @buf: buffer with data which were written
1285  * @pnum: physical eraseblock number the data were written to
1286  * @offset: offset within the physical eraseblock the data were written to
1287  * @len: how many bytes were written
1288  *
1289  * This functions reads data which were recently written and compares it with
1290  * the original data buffer - the data have to match. Returns zero if the data
1291  * match and a negative error code if not or in case of failure.
1292  */
1293 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1294 			int offset, int len)
1295 {
1296 	int err, i;
1297 
1298 	mutex_lock(&ubi->dbg_buf_mutex);
1299 	err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1300 	if (err)
1301 		goto out_unlock;
1302 
1303 	for (i = 0; i < len; i++) {
1304 		uint8_t c = ((uint8_t *)buf)[i];
1305 		uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1306 		int dump_len;
1307 
1308 		if (c == c1)
1309 			continue;
1310 
1311 		ubi_err("paranoid check failed for PEB %d:%d, len %d",
1312 			pnum, offset, len);
1313 		ubi_msg("data differ at position %d", i);
1314 		dump_len = max_t(int, 128, len - i);
1315 		ubi_msg("hex dump of the original buffer from %d to %d",
1316 			i, i + dump_len);
1317 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1318 			       buf + i, dump_len, 1);
1319 		ubi_msg("hex dump of the read buffer from %d to %d",
1320 			i, i + dump_len);
1321 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1322 			       ubi->dbg_peb_buf + i, dump_len, 1);
1323 		ubi_dbg_dump_stack();
1324 		err = -EINVAL;
1325 		goto out_unlock;
1326 	}
1327 	mutex_unlock(&ubi->dbg_buf_mutex);
1328 
1329 	return 0;
1330 
1331 out_unlock:
1332 	mutex_unlock(&ubi->dbg_buf_mutex);
1333 	return err;
1334 }
1335 
1336 /**
1337  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1338  * @ubi: UBI device description object
1339  * @pnum: the physical eraseblock number to check
1340  * @offset: the starting offset within the physical eraseblock to check
1341  * @len: the length of the region to check
1342  *
1343  * This function returns zero if only 0xFF bytes are present at offset
1344  * @offset of the physical eraseblock @pnum, and a negative error code if not
1345  * or if an error occurred.
1346  */
1347 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1348 {
1349 	size_t read;
1350 	int err;
1351 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1352 
1353 	mutex_lock(&ubi->dbg_buf_mutex);
1354 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1355 	if (err && err != -EUCLEAN) {
1356 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1357 			"read %zd bytes", err, len, pnum, offset, read);
1358 		goto error;
1359 	}
1360 
1361 	err = ubi_check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1362 	if (err == 0) {
1363 		ubi_err("flash region at PEB %d:%d, length %d does not "
1364 			"contain all 0xFF bytes", pnum, offset, len);
1365 		goto fail;
1366 	}
1367 	mutex_unlock(&ubi->dbg_buf_mutex);
1368 
1369 	return 0;
1370 
1371 fail:
1372 	ubi_err("paranoid check failed for PEB %d", pnum);
1373 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1374 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1375 		       ubi->dbg_peb_buf, len, 1);
1376 	err = -EINVAL;
1377 error:
1378 	ubi_dbg_dump_stack();
1379 	mutex_unlock(&ubi->dbg_buf_mutex);
1380 	return err;
1381 }
1382 
1383 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1384