1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2006, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём) 20 */ 21 22 /* 23 * UBI input/output sub-system. 24 * 25 * This sub-system provides a uniform way to work with all kinds of the 26 * underlying MTD devices. It also implements handy functions for reading and 27 * writing UBI headers. 28 * 29 * We are trying to have a paranoid mindset and not to trust to what we read 30 * from the flash media in order to be more secure and robust. So this 31 * sub-system validates every single header it reads from the flash media. 32 * 33 * Some words about how the eraseblock headers are stored. 34 * 35 * The erase counter header is always stored at offset zero. By default, the 36 * VID header is stored after the EC header at the closest aligned offset 37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID 38 * header at the closest aligned offset. But this default layout may be 39 * changed. For example, for different reasons (e.g., optimization) UBI may be 40 * asked to put the VID header at further offset, and even at an unaligned 41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds 42 * proper padding in front of it. Data offset may also be changed but it has to 43 * be aligned. 44 * 45 * About minimal I/O units. In general, UBI assumes flash device model where 46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, 47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the 48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another 49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible 50 * to do different optimizations. 51 * 52 * This is extremely useful in case of NAND flashes which admit of several 53 * write operations to one NAND page. In this case UBI can fit EC and VID 54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal 55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still 56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI 57 * users. 58 * 59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so 60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID 61 * headers. 62 * 63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash 64 * device, e.g., make @ubi->min_io_size = 512 in the example above? 65 * 66 * A: because when writing a sub-page, MTD still writes a full 2K page but the 67 * bytes which are not relevant to the sub-page are 0xFF. So, basically, 68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. 69 * Thus, we prefer to use sub-pages only for EC and VID headers. 70 * 71 * As it was noted above, the VID header may start at a non-aligned offset. 72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, 73 * the VID header may reside at offset 1984 which is the last 64 bytes of the 74 * last sub-page (EC header is always at offset zero). This causes some 75 * difficulties when reading and writing VID headers. 76 * 77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change 78 * the data and want to write this VID header out. As we can only write in 79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header 80 * to offset 448 of this buffer. 81 * 82 * The I/O sub-system does the following trick in order to avoid this extra 83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID 84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. 85 * When the VID header is being written out, it shifts the VID header pointer 86 * back and writes the whole sub-page. 87 */ 88 89 #include <linux/crc32.h> 90 #include <linux/err.h> 91 #include <linux/slab.h> 92 #include "ubi.h" 93 94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); 96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); 97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 98 const struct ubi_ec_hdr *ec_hdr); 99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); 100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 101 const struct ubi_vid_hdr *vid_hdr); 102 #else 103 #define paranoid_check_not_bad(ubi, pnum) 0 104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 108 #endif 109 110 /** 111 * ubi_io_read - read data from a physical eraseblock. 112 * @ubi: UBI device description object 113 * @buf: buffer where to store the read data 114 * @pnum: physical eraseblock number to read from 115 * @offset: offset within the physical eraseblock from where to read 116 * @len: how many bytes to read 117 * 118 * This function reads data from offset @offset of physical eraseblock @pnum 119 * and stores the read data in the @buf buffer. The following return codes are 120 * possible: 121 * 122 * o %0 if all the requested data were successfully read; 123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but 124 * correctable bit-flips were detected; this is harmless but may indicate 125 * that this eraseblock may become bad soon (but do not have to); 126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for 127 * example it can be an ECC error in case of NAND; this most probably means 128 * that the data is corrupted; 129 * o %-EIO if some I/O error occurred; 130 * o other negative error codes in case of other errors. 131 */ 132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, 133 int len) 134 { 135 int err, retries = 0; 136 size_t read; 137 loff_t addr; 138 139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); 140 141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 143 ubi_assert(len > 0); 144 145 err = paranoid_check_not_bad(ubi, pnum); 146 if (err) 147 return err; 148 149 addr = (loff_t)pnum * ubi->peb_size + offset; 150 retry: 151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf); 152 if (err) { 153 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : ""; 154 155 if (err == -EUCLEAN) { 156 /* 157 * -EUCLEAN is reported if there was a bit-flip which 158 * was corrected, so this is harmless. 159 * 160 * We do not report about it here unless debugging is 161 * enabled. A corresponding message will be printed 162 * later, when it is has been scrubbed. 163 */ 164 dbg_msg("fixable bit-flip detected at PEB %d", pnum); 165 ubi_assert(len == read); 166 return UBI_IO_BITFLIPS; 167 } 168 169 if (read != len && retries++ < UBI_IO_RETRIES) { 170 dbg_io("error %d%s while reading %d bytes from PEB %d:%d," 171 " read only %zd bytes, retry", 172 err, errstr, len, pnum, offset, read); 173 yield(); 174 goto retry; 175 } 176 177 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " 178 "read %zd bytes", err, errstr, len, pnum, offset, read); 179 ubi_dbg_dump_stack(); 180 181 /* 182 * The driver should never return -EBADMSG if it failed to read 183 * all the requested data. But some buggy drivers might do 184 * this, so we change it to -EIO. 185 */ 186 if (read != len && err == -EBADMSG) { 187 ubi_assert(0); 188 err = -EIO; 189 } 190 } else { 191 ubi_assert(len == read); 192 193 if (ubi_dbg_is_bitflip()) { 194 dbg_gen("bit-flip (emulated)"); 195 err = UBI_IO_BITFLIPS; 196 } 197 } 198 199 return err; 200 } 201 202 /** 203 * ubi_io_write - write data to a physical eraseblock. 204 * @ubi: UBI device description object 205 * @buf: buffer with the data to write 206 * @pnum: physical eraseblock number to write to 207 * @offset: offset within the physical eraseblock where to write 208 * @len: how many bytes to write 209 * 210 * This function writes @len bytes of data from buffer @buf to offset @offset 211 * of physical eraseblock @pnum. If all the data were successfully written, 212 * zero is returned. If an error occurred, this function returns a negative 213 * error code. If %-EIO is returned, the physical eraseblock most probably went 214 * bad. 215 * 216 * Note, in case of an error, it is possible that something was still written 217 * to the flash media, but may be some garbage. 218 */ 219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, 220 int len) 221 { 222 int err; 223 size_t written; 224 loff_t addr; 225 226 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); 227 228 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 229 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); 230 ubi_assert(offset % ubi->hdrs_min_io_size == 0); 231 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); 232 233 if (ubi->ro_mode) { 234 ubi_err("read-only mode"); 235 return -EROFS; 236 } 237 238 /* The below has to be compiled out if paranoid checks are disabled */ 239 240 err = paranoid_check_not_bad(ubi, pnum); 241 if (err) 242 return err; 243 244 /* The area we are writing to has to contain all 0xFF bytes */ 245 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 246 if (err) 247 return err; 248 249 if (offset >= ubi->leb_start) { 250 /* 251 * We write to the data area of the physical eraseblock. Make 252 * sure it has valid EC and VID headers. 253 */ 254 err = paranoid_check_peb_ec_hdr(ubi, pnum); 255 if (err) 256 return err; 257 err = paranoid_check_peb_vid_hdr(ubi, pnum); 258 if (err) 259 return err; 260 } 261 262 if (ubi_dbg_is_write_failure()) { 263 dbg_err("cannot write %d bytes to PEB %d:%d " 264 "(emulated)", len, pnum, offset); 265 ubi_dbg_dump_stack(); 266 return -EIO; 267 } 268 269 addr = (loff_t)pnum * ubi->peb_size + offset; 270 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf); 271 if (err) { 272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written " 273 "%zd bytes", err, len, pnum, offset, written); 274 ubi_dbg_dump_stack(); 275 ubi_dbg_dump_flash(ubi, pnum, offset, len); 276 } else 277 ubi_assert(written == len); 278 279 if (!err) { 280 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); 281 if (err) 282 return err; 283 284 /* 285 * Since we always write sequentially, the rest of the PEB has 286 * to contain only 0xFF bytes. 287 */ 288 offset += len; 289 len = ubi->peb_size - offset; 290 if (len) 291 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); 292 } 293 294 return err; 295 } 296 297 /** 298 * erase_callback - MTD erasure call-back. 299 * @ei: MTD erase information object. 300 * 301 * Note, even though MTD erase interface is asynchronous, all the current 302 * implementations are synchronous anyway. 303 */ 304 static void erase_callback(struct erase_info *ei) 305 { 306 wake_up_interruptible((wait_queue_head_t *)ei->priv); 307 } 308 309 /** 310 * do_sync_erase - synchronously erase a physical eraseblock. 311 * @ubi: UBI device description object 312 * @pnum: the physical eraseblock number to erase 313 * 314 * This function synchronously erases physical eraseblock @pnum and returns 315 * zero in case of success and a negative error code in case of failure. If 316 * %-EIO is returned, the physical eraseblock most probably went bad. 317 */ 318 static int do_sync_erase(struct ubi_device *ubi, int pnum) 319 { 320 int err, retries = 0; 321 struct erase_info ei; 322 wait_queue_head_t wq; 323 324 dbg_io("erase PEB %d", pnum); 325 326 retry: 327 init_waitqueue_head(&wq); 328 memset(&ei, 0, sizeof(struct erase_info)); 329 330 ei.mtd = ubi->mtd; 331 ei.addr = (loff_t)pnum * ubi->peb_size; 332 ei.len = ubi->peb_size; 333 ei.callback = erase_callback; 334 ei.priv = (unsigned long)&wq; 335 336 err = ubi->mtd->erase(ubi->mtd, &ei); 337 if (err) { 338 if (retries++ < UBI_IO_RETRIES) { 339 dbg_io("error %d while erasing PEB %d, retry", 340 err, pnum); 341 yield(); 342 goto retry; 343 } 344 ubi_err("cannot erase PEB %d, error %d", pnum, err); 345 ubi_dbg_dump_stack(); 346 return err; 347 } 348 349 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || 350 ei.state == MTD_ERASE_FAILED); 351 if (err) { 352 ubi_err("interrupted PEB %d erasure", pnum); 353 return -EINTR; 354 } 355 356 if (ei.state == MTD_ERASE_FAILED) { 357 if (retries++ < UBI_IO_RETRIES) { 358 dbg_io("error while erasing PEB %d, retry", pnum); 359 yield(); 360 goto retry; 361 } 362 ubi_err("cannot erase PEB %d", pnum); 363 ubi_dbg_dump_stack(); 364 return -EIO; 365 } 366 367 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); 368 if (err) 369 return err; 370 371 if (ubi_dbg_is_erase_failure() && !err) { 372 dbg_err("cannot erase PEB %d (emulated)", pnum); 373 return -EIO; 374 } 375 376 return 0; 377 } 378 379 /* Patterns to write to a physical eraseblock when torturing it */ 380 static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; 381 382 /** 383 * torture_peb - test a supposedly bad physical eraseblock. 384 * @ubi: UBI device description object 385 * @pnum: the physical eraseblock number to test 386 * 387 * This function returns %-EIO if the physical eraseblock did not pass the 388 * test, a positive number of erase operations done if the test was 389 * successfully passed, and other negative error codes in case of other errors. 390 */ 391 static int torture_peb(struct ubi_device *ubi, int pnum) 392 { 393 int err, i, patt_count; 394 395 ubi_msg("run torture test for PEB %d", pnum); 396 patt_count = ARRAY_SIZE(patterns); 397 ubi_assert(patt_count > 0); 398 399 mutex_lock(&ubi->buf_mutex); 400 for (i = 0; i < patt_count; i++) { 401 err = do_sync_erase(ubi, pnum); 402 if (err) 403 goto out; 404 405 /* Make sure the PEB contains only 0xFF bytes */ 406 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 407 if (err) 408 goto out; 409 410 err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); 411 if (err == 0) { 412 ubi_err("erased PEB %d, but a non-0xFF byte found", 413 pnum); 414 err = -EIO; 415 goto out; 416 } 417 418 /* Write a pattern and check it */ 419 memset(ubi->peb_buf1, patterns[i], ubi->peb_size); 420 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 421 if (err) 422 goto out; 423 424 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); 425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); 426 if (err) 427 goto out; 428 429 err = ubi_check_pattern(ubi->peb_buf1, patterns[i], 430 ubi->peb_size); 431 if (err == 0) { 432 ubi_err("pattern %x checking failed for PEB %d", 433 patterns[i], pnum); 434 err = -EIO; 435 goto out; 436 } 437 } 438 439 err = patt_count; 440 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum); 441 442 out: 443 mutex_unlock(&ubi->buf_mutex); 444 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) { 445 /* 446 * If a bit-flip or data integrity error was detected, the test 447 * has not passed because it happened on a freshly erased 448 * physical eraseblock which means something is wrong with it. 449 */ 450 ubi_err("read problems on freshly erased PEB %d, must be bad", 451 pnum); 452 err = -EIO; 453 } 454 return err; 455 } 456 457 /** 458 * nor_erase_prepare - prepare a NOR flash PEB for erasure. 459 * @ubi: UBI device description object 460 * @pnum: physical eraseblock number to prepare 461 * 462 * NOR flash, or at least some of them, have peculiar embedded PEB erasure 463 * algorithm: the PEB is first filled with zeroes, then it is erased. And 464 * filling with zeroes starts from the end of the PEB. This was observed with 465 * Spansion S29GL512N NOR flash. 466 * 467 * This means that in case of a power cut we may end up with intact data at the 468 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the 469 * EC and VID headers are OK, but a large chunk of data at the end of PEB is 470 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it 471 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). 472 * 473 * This function is called before erasing NOR PEBs and it zeroes out EC and VID 474 * magic numbers in order to invalidate them and prevent the failures. Returns 475 * zero in case of success and a negative error code in case of failure. 476 */ 477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum) 478 { 479 int err, err1; 480 size_t written; 481 loff_t addr; 482 uint32_t data = 0; 483 struct ubi_vid_hdr vid_hdr; 484 485 /* 486 * It is important to first invalidate the EC header, and then the VID 487 * header. Otherwise a power cut may lead to valid EC header and 488 * invalid VID header, in which case UBI will treat this PEB as 489 * corrupted and will try to preserve it, and print scary warnings (see 490 * the header comment in scan.c for more information). 491 */ 492 addr = (loff_t)pnum * ubi->peb_size; 493 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data); 494 if (!err) { 495 addr += ubi->vid_hdr_aloffset; 496 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, 497 (void *)&data); 498 if (!err) 499 return 0; 500 } 501 502 /* 503 * We failed to write to the media. This was observed with Spansion 504 * S29GL512N NOR flash. Most probably the previously eraseblock erasure 505 * was interrupted at a very inappropriate moment, so it became 506 * unwritable. In this case we probably anyway have garbage in this 507 * PEB. 508 */ 509 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); 510 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR) { 511 struct ubi_ec_hdr ec_hdr; 512 513 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); 514 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR) 515 /* 516 * Both VID and EC headers are corrupted, so we can 517 * safely erase this PEB and not afraid that it will be 518 * treated as a valid PEB in case of an unclean reboot. 519 */ 520 return 0; 521 } 522 523 /* 524 * The PEB contains a valid VID header, but we cannot invalidate it. 525 * Supposedly the flash media or the driver is screwed up, so return an 526 * error. 527 */ 528 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", 529 pnum, err, err1); 530 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); 531 return -EIO; 532 } 533 534 /** 535 * ubi_io_sync_erase - synchronously erase a physical eraseblock. 536 * @ubi: UBI device description object 537 * @pnum: physical eraseblock number to erase 538 * @torture: if this physical eraseblock has to be tortured 539 * 540 * This function synchronously erases physical eraseblock @pnum. If @torture 541 * flag is not zero, the physical eraseblock is checked by means of writing 542 * different patterns to it and reading them back. If the torturing is enabled, 543 * the physical eraseblock is erased more than once. 544 * 545 * This function returns the number of erasures made in case of success, %-EIO 546 * if the erasure failed or the torturing test failed, and other negative error 547 * codes in case of other errors. Note, %-EIO means that the physical 548 * eraseblock is bad. 549 */ 550 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) 551 { 552 int err, ret = 0; 553 554 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 555 556 err = paranoid_check_not_bad(ubi, pnum); 557 if (err != 0) 558 return err; 559 560 if (ubi->ro_mode) { 561 ubi_err("read-only mode"); 562 return -EROFS; 563 } 564 565 if (ubi->nor_flash) { 566 err = nor_erase_prepare(ubi, pnum); 567 if (err) 568 return err; 569 } 570 571 if (torture) { 572 ret = torture_peb(ubi, pnum); 573 if (ret < 0) 574 return ret; 575 } 576 577 err = do_sync_erase(ubi, pnum); 578 if (err) 579 return err; 580 581 return ret + 1; 582 } 583 584 /** 585 * ubi_io_is_bad - check if a physical eraseblock is bad. 586 * @ubi: UBI device description object 587 * @pnum: the physical eraseblock number to check 588 * 589 * This function returns a positive number if the physical eraseblock is bad, 590 * zero if not, and a negative error code if an error occurred. 591 */ 592 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) 593 { 594 struct mtd_info *mtd = ubi->mtd; 595 596 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 597 598 if (ubi->bad_allowed) { 599 int ret; 600 601 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size); 602 if (ret < 0) 603 ubi_err("error %d while checking if PEB %d is bad", 604 ret, pnum); 605 else if (ret) 606 dbg_io("PEB %d is bad", pnum); 607 return ret; 608 } 609 610 return 0; 611 } 612 613 /** 614 * ubi_io_mark_bad - mark a physical eraseblock as bad. 615 * @ubi: UBI device description object 616 * @pnum: the physical eraseblock number to mark 617 * 618 * This function returns zero in case of success and a negative error code in 619 * case of failure. 620 */ 621 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) 622 { 623 int err; 624 struct mtd_info *mtd = ubi->mtd; 625 626 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 627 628 if (ubi->ro_mode) { 629 ubi_err("read-only mode"); 630 return -EROFS; 631 } 632 633 if (!ubi->bad_allowed) 634 return 0; 635 636 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size); 637 if (err) 638 ubi_err("cannot mark PEB %d bad, error %d", pnum, err); 639 return err; 640 } 641 642 /** 643 * validate_ec_hdr - validate an erase counter header. 644 * @ubi: UBI device description object 645 * @ec_hdr: the erase counter header to check 646 * 647 * This function returns zero if the erase counter header is OK, and %1 if 648 * not. 649 */ 650 static int validate_ec_hdr(const struct ubi_device *ubi, 651 const struct ubi_ec_hdr *ec_hdr) 652 { 653 long long ec; 654 int vid_hdr_offset, leb_start; 655 656 ec = be64_to_cpu(ec_hdr->ec); 657 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); 658 leb_start = be32_to_cpu(ec_hdr->data_offset); 659 660 if (ec_hdr->version != UBI_VERSION) { 661 ubi_err("node with incompatible UBI version found: " 662 "this UBI version is %d, image version is %d", 663 UBI_VERSION, (int)ec_hdr->version); 664 goto bad; 665 } 666 667 if (vid_hdr_offset != ubi->vid_hdr_offset) { 668 ubi_err("bad VID header offset %d, expected %d", 669 vid_hdr_offset, ubi->vid_hdr_offset); 670 goto bad; 671 } 672 673 if (leb_start != ubi->leb_start) { 674 ubi_err("bad data offset %d, expected %d", 675 leb_start, ubi->leb_start); 676 goto bad; 677 } 678 679 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { 680 ubi_err("bad erase counter %lld", ec); 681 goto bad; 682 } 683 684 return 0; 685 686 bad: 687 ubi_err("bad EC header"); 688 ubi_dbg_dump_ec_hdr(ec_hdr); 689 ubi_dbg_dump_stack(); 690 return 1; 691 } 692 693 /** 694 * ubi_io_read_ec_hdr - read and check an erase counter header. 695 * @ubi: UBI device description object 696 * @pnum: physical eraseblock to read from 697 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter 698 * header 699 * @verbose: be verbose if the header is corrupted or was not found 700 * 701 * This function reads erase counter header from physical eraseblock @pnum and 702 * stores it in @ec_hdr. This function also checks CRC checksum of the read 703 * erase counter header. The following codes may be returned: 704 * 705 * o %0 if the CRC checksum is correct and the header was successfully read; 706 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected 707 * and corrected by the flash driver; this is harmless but may indicate that 708 * this eraseblock may become bad soon (but may be not); 709 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); 710 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was 711 * a data integrity error (uncorrectable ECC error in case of NAND); 712 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) 713 * o a negative error code in case of failure. 714 */ 715 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, 716 struct ubi_ec_hdr *ec_hdr, int verbose) 717 { 718 int err, read_err; 719 uint32_t crc, magic, hdr_crc; 720 721 dbg_io("read EC header from PEB %d", pnum); 722 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 723 724 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 725 if (read_err) { 726 if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) 727 return read_err; 728 729 /* 730 * We read all the data, but either a correctable bit-flip 731 * occurred, or MTD reported a data integrity error 732 * (uncorrectable ECC error in case of NAND). The former is 733 * harmless, the later may mean that the read data is 734 * corrupted. But we have a CRC check-sum and we will detect 735 * this. If the EC header is still OK, we just report this as 736 * there was a bit-flip, to force scrubbing. 737 */ 738 } 739 740 magic = be32_to_cpu(ec_hdr->magic); 741 if (magic != UBI_EC_HDR_MAGIC) { 742 if (read_err == -EBADMSG) 743 return UBI_IO_BAD_HDR_EBADMSG; 744 745 /* 746 * The magic field is wrong. Let's check if we have read all 747 * 0xFF. If yes, this physical eraseblock is assumed to be 748 * empty. 749 */ 750 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { 751 /* The physical eraseblock is supposedly empty */ 752 if (verbose) 753 ubi_warn("no EC header found at PEB %d, " 754 "only 0xFF bytes", pnum); 755 else if (UBI_IO_DEBUG) 756 dbg_msg("no EC header found at PEB %d, " 757 "only 0xFF bytes", pnum); 758 if (!read_err) 759 return UBI_IO_FF; 760 else 761 return UBI_IO_FF_BITFLIPS; 762 } 763 764 /* 765 * This is not a valid erase counter header, and these are not 766 * 0xFF bytes. Report that the header is corrupted. 767 */ 768 if (verbose) { 769 ubi_warn("bad magic number at PEB %d: %08x instead of " 770 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 771 ubi_dbg_dump_ec_hdr(ec_hdr); 772 } else if (UBI_IO_DEBUG) 773 dbg_msg("bad magic number at PEB %d: %08x instead of " 774 "%08x", pnum, magic, UBI_EC_HDR_MAGIC); 775 return UBI_IO_BAD_HDR; 776 } 777 778 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 779 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 780 781 if (hdr_crc != crc) { 782 if (verbose) { 783 ubi_warn("bad EC header CRC at PEB %d, calculated " 784 "%#08x, read %#08x", pnum, crc, hdr_crc); 785 ubi_dbg_dump_ec_hdr(ec_hdr); 786 } else if (UBI_IO_DEBUG) 787 dbg_msg("bad EC header CRC at PEB %d, calculated " 788 "%#08x, read %#08x", pnum, crc, hdr_crc); 789 790 if (!read_err) 791 return UBI_IO_BAD_HDR; 792 else 793 return UBI_IO_BAD_HDR_EBADMSG; 794 } 795 796 /* And of course validate what has just been read from the media */ 797 err = validate_ec_hdr(ubi, ec_hdr); 798 if (err) { 799 ubi_err("validation failed for PEB %d", pnum); 800 return -EINVAL; 801 } 802 803 /* 804 * If there was %-EBADMSG, but the header CRC is still OK, report about 805 * a bit-flip to force scrubbing on this PEB. 806 */ 807 return read_err ? UBI_IO_BITFLIPS : 0; 808 } 809 810 /** 811 * ubi_io_write_ec_hdr - write an erase counter header. 812 * @ubi: UBI device description object 813 * @pnum: physical eraseblock to write to 814 * @ec_hdr: the erase counter header to write 815 * 816 * This function writes erase counter header described by @ec_hdr to physical 817 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so 818 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec 819 * field. 820 * 821 * This function returns zero in case of success and a negative error code in 822 * case of failure. If %-EIO is returned, the physical eraseblock most probably 823 * went bad. 824 */ 825 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, 826 struct ubi_ec_hdr *ec_hdr) 827 { 828 int err; 829 uint32_t crc; 830 831 dbg_io("write EC header to PEB %d", pnum); 832 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 833 834 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); 835 ec_hdr->version = UBI_VERSION; 836 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); 837 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); 838 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); 839 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 840 ec_hdr->hdr_crc = cpu_to_be32(crc); 841 842 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 843 if (err) 844 return err; 845 846 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); 847 return err; 848 } 849 850 /** 851 * validate_vid_hdr - validate a volume identifier header. 852 * @ubi: UBI device description object 853 * @vid_hdr: the volume identifier header to check 854 * 855 * This function checks that data stored in the volume identifier header 856 * @vid_hdr. Returns zero if the VID header is OK and %1 if not. 857 */ 858 static int validate_vid_hdr(const struct ubi_device *ubi, 859 const struct ubi_vid_hdr *vid_hdr) 860 { 861 int vol_type = vid_hdr->vol_type; 862 int copy_flag = vid_hdr->copy_flag; 863 int vol_id = be32_to_cpu(vid_hdr->vol_id); 864 int lnum = be32_to_cpu(vid_hdr->lnum); 865 int compat = vid_hdr->compat; 866 int data_size = be32_to_cpu(vid_hdr->data_size); 867 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 868 int data_pad = be32_to_cpu(vid_hdr->data_pad); 869 int data_crc = be32_to_cpu(vid_hdr->data_crc); 870 int usable_leb_size = ubi->leb_size - data_pad; 871 872 if (copy_flag != 0 && copy_flag != 1) { 873 dbg_err("bad copy_flag"); 874 goto bad; 875 } 876 877 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || 878 data_pad < 0) { 879 dbg_err("negative values"); 880 goto bad; 881 } 882 883 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { 884 dbg_err("bad vol_id"); 885 goto bad; 886 } 887 888 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { 889 dbg_err("bad compat"); 890 goto bad; 891 } 892 893 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && 894 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && 895 compat != UBI_COMPAT_REJECT) { 896 dbg_err("bad compat"); 897 goto bad; 898 } 899 900 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { 901 dbg_err("bad vol_type"); 902 goto bad; 903 } 904 905 if (data_pad >= ubi->leb_size / 2) { 906 dbg_err("bad data_pad"); 907 goto bad; 908 } 909 910 if (vol_type == UBI_VID_STATIC) { 911 /* 912 * Although from high-level point of view static volumes may 913 * contain zero bytes of data, but no VID headers can contain 914 * zero at these fields, because they empty volumes do not have 915 * mapped logical eraseblocks. 916 */ 917 if (used_ebs == 0) { 918 dbg_err("zero used_ebs"); 919 goto bad; 920 } 921 if (data_size == 0) { 922 dbg_err("zero data_size"); 923 goto bad; 924 } 925 if (lnum < used_ebs - 1) { 926 if (data_size != usable_leb_size) { 927 dbg_err("bad data_size"); 928 goto bad; 929 } 930 } else if (lnum == used_ebs - 1) { 931 if (data_size == 0) { 932 dbg_err("bad data_size at last LEB"); 933 goto bad; 934 } 935 } else { 936 dbg_err("too high lnum"); 937 goto bad; 938 } 939 } else { 940 if (copy_flag == 0) { 941 if (data_crc != 0) { 942 dbg_err("non-zero data CRC"); 943 goto bad; 944 } 945 if (data_size != 0) { 946 dbg_err("non-zero data_size"); 947 goto bad; 948 } 949 } else { 950 if (data_size == 0) { 951 dbg_err("zero data_size of copy"); 952 goto bad; 953 } 954 } 955 if (used_ebs != 0) { 956 dbg_err("bad used_ebs"); 957 goto bad; 958 } 959 } 960 961 return 0; 962 963 bad: 964 ubi_err("bad VID header"); 965 ubi_dbg_dump_vid_hdr(vid_hdr); 966 ubi_dbg_dump_stack(); 967 return 1; 968 } 969 970 /** 971 * ubi_io_read_vid_hdr - read and check a volume identifier header. 972 * @ubi: UBI device description object 973 * @pnum: physical eraseblock number to read from 974 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume 975 * identifier header 976 * @verbose: be verbose if the header is corrupted or wasn't found 977 * 978 * This function reads the volume identifier header from physical eraseblock 979 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read 980 * volume identifier header. The error codes are the same as in 981 * 'ubi_io_read_ec_hdr()'. 982 * 983 * Note, the implementation of this function is also very similar to 984 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. 985 */ 986 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, 987 struct ubi_vid_hdr *vid_hdr, int verbose) 988 { 989 int err, read_err; 990 uint32_t crc, magic, hdr_crc; 991 void *p; 992 993 dbg_io("read VID header from PEB %d", pnum); 994 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 995 996 p = (char *)vid_hdr - ubi->vid_hdr_shift; 997 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 998 ubi->vid_hdr_alsize); 999 if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG) 1000 return read_err; 1001 1002 magic = be32_to_cpu(vid_hdr->magic); 1003 if (magic != UBI_VID_HDR_MAGIC) { 1004 if (read_err == -EBADMSG) 1005 return UBI_IO_BAD_HDR_EBADMSG; 1006 1007 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { 1008 if (verbose) 1009 ubi_warn("no VID header found at PEB %d, " 1010 "only 0xFF bytes", pnum); 1011 else if (UBI_IO_DEBUG) 1012 dbg_msg("no VID header found at PEB %d, " 1013 "only 0xFF bytes", pnum); 1014 if (!read_err) 1015 return UBI_IO_FF; 1016 else 1017 return UBI_IO_FF_BITFLIPS; 1018 } 1019 1020 if (verbose) { 1021 ubi_warn("bad magic number at PEB %d: %08x instead of " 1022 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1023 ubi_dbg_dump_vid_hdr(vid_hdr); 1024 } else if (UBI_IO_DEBUG) 1025 dbg_msg("bad magic number at PEB %d: %08x instead of " 1026 "%08x", pnum, magic, UBI_VID_HDR_MAGIC); 1027 return UBI_IO_BAD_HDR; 1028 } 1029 1030 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1031 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1032 1033 if (hdr_crc != crc) { 1034 if (verbose) { 1035 ubi_warn("bad CRC at PEB %d, calculated %#08x, " 1036 "read %#08x", pnum, crc, hdr_crc); 1037 ubi_dbg_dump_vid_hdr(vid_hdr); 1038 } else if (UBI_IO_DEBUG) 1039 dbg_msg("bad CRC at PEB %d, calculated %#08x, " 1040 "read %#08x", pnum, crc, hdr_crc); 1041 if (!read_err) 1042 return UBI_IO_BAD_HDR; 1043 else 1044 return UBI_IO_BAD_HDR_EBADMSG; 1045 } 1046 1047 err = validate_vid_hdr(ubi, vid_hdr); 1048 if (err) { 1049 ubi_err("validation failed for PEB %d", pnum); 1050 return -EINVAL; 1051 } 1052 1053 return read_err ? UBI_IO_BITFLIPS : 0; 1054 } 1055 1056 /** 1057 * ubi_io_write_vid_hdr - write a volume identifier header. 1058 * @ubi: UBI device description object 1059 * @pnum: the physical eraseblock number to write to 1060 * @vid_hdr: the volume identifier header to write 1061 * 1062 * This function writes the volume identifier header described by @vid_hdr to 1063 * physical eraseblock @pnum. This function automatically fills the 1064 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates 1065 * header CRC checksum and stores it at vid_hdr->hdr_crc. 1066 * 1067 * This function returns zero in case of success and a negative error code in 1068 * case of failure. If %-EIO is returned, the physical eraseblock probably went 1069 * bad. 1070 */ 1071 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, 1072 struct ubi_vid_hdr *vid_hdr) 1073 { 1074 int err; 1075 uint32_t crc; 1076 void *p; 1077 1078 dbg_io("write VID header to PEB %d", pnum); 1079 ubi_assert(pnum >= 0 && pnum < ubi->peb_count); 1080 1081 err = paranoid_check_peb_ec_hdr(ubi, pnum); 1082 if (err) 1083 return err; 1084 1085 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); 1086 vid_hdr->version = UBI_VERSION; 1087 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); 1088 vid_hdr->hdr_crc = cpu_to_be32(crc); 1089 1090 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1091 if (err) 1092 return err; 1093 1094 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1095 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, 1096 ubi->vid_hdr_alsize); 1097 return err; 1098 } 1099 1100 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1101 1102 /** 1103 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. 1104 * @ubi: UBI device description object 1105 * @pnum: physical eraseblock number to check 1106 * 1107 * This function returns zero if the physical eraseblock is good, %-EINVAL if 1108 * it is bad and a negative error code if an error occurred. 1109 */ 1110 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) 1111 { 1112 int err; 1113 1114 err = ubi_io_is_bad(ubi, pnum); 1115 if (!err) 1116 return err; 1117 1118 ubi_err("paranoid check failed for PEB %d", pnum); 1119 ubi_dbg_dump_stack(); 1120 return err > 0 ? -EINVAL : err; 1121 } 1122 1123 /** 1124 * paranoid_check_ec_hdr - check if an erase counter header is all right. 1125 * @ubi: UBI device description object 1126 * @pnum: physical eraseblock number the erase counter header belongs to 1127 * @ec_hdr: the erase counter header to check 1128 * 1129 * This function returns zero if the erase counter header contains valid 1130 * values, and %-EINVAL if not. 1131 */ 1132 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, 1133 const struct ubi_ec_hdr *ec_hdr) 1134 { 1135 int err; 1136 uint32_t magic; 1137 1138 magic = be32_to_cpu(ec_hdr->magic); 1139 if (magic != UBI_EC_HDR_MAGIC) { 1140 ubi_err("bad magic %#08x, must be %#08x", 1141 magic, UBI_EC_HDR_MAGIC); 1142 goto fail; 1143 } 1144 1145 err = validate_ec_hdr(ubi, ec_hdr); 1146 if (err) { 1147 ubi_err("paranoid check failed for PEB %d", pnum); 1148 goto fail; 1149 } 1150 1151 return 0; 1152 1153 fail: 1154 ubi_dbg_dump_ec_hdr(ec_hdr); 1155 ubi_dbg_dump_stack(); 1156 return -EINVAL; 1157 } 1158 1159 /** 1160 * paranoid_check_peb_ec_hdr - check erase counter header. 1161 * @ubi: UBI device description object 1162 * @pnum: the physical eraseblock number to check 1163 * 1164 * This function returns zero if the erase counter header is all right and and 1165 * a negative error code if not or if an error occurred. 1166 */ 1167 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) 1168 { 1169 int err; 1170 uint32_t crc, hdr_crc; 1171 struct ubi_ec_hdr *ec_hdr; 1172 1173 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1174 if (!ec_hdr) 1175 return -ENOMEM; 1176 1177 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); 1178 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1179 goto exit; 1180 1181 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); 1182 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); 1183 if (hdr_crc != crc) { 1184 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); 1185 ubi_err("paranoid check failed for PEB %d", pnum); 1186 ubi_dbg_dump_ec_hdr(ec_hdr); 1187 ubi_dbg_dump_stack(); 1188 err = -EINVAL; 1189 goto exit; 1190 } 1191 1192 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); 1193 1194 exit: 1195 kfree(ec_hdr); 1196 return err; 1197 } 1198 1199 /** 1200 * paranoid_check_vid_hdr - check that a volume identifier header is all right. 1201 * @ubi: UBI device description object 1202 * @pnum: physical eraseblock number the volume identifier header belongs to 1203 * @vid_hdr: the volume identifier header to check 1204 * 1205 * This function returns zero if the volume identifier header is all right, and 1206 * %-EINVAL if not. 1207 */ 1208 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, 1209 const struct ubi_vid_hdr *vid_hdr) 1210 { 1211 int err; 1212 uint32_t magic; 1213 1214 magic = be32_to_cpu(vid_hdr->magic); 1215 if (magic != UBI_VID_HDR_MAGIC) { 1216 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", 1217 magic, pnum, UBI_VID_HDR_MAGIC); 1218 goto fail; 1219 } 1220 1221 err = validate_vid_hdr(ubi, vid_hdr); 1222 if (err) { 1223 ubi_err("paranoid check failed for PEB %d", pnum); 1224 goto fail; 1225 } 1226 1227 return err; 1228 1229 fail: 1230 ubi_err("paranoid check failed for PEB %d", pnum); 1231 ubi_dbg_dump_vid_hdr(vid_hdr); 1232 ubi_dbg_dump_stack(); 1233 return -EINVAL; 1234 1235 } 1236 1237 /** 1238 * paranoid_check_peb_vid_hdr - check volume identifier header. 1239 * @ubi: UBI device description object 1240 * @pnum: the physical eraseblock number to check 1241 * 1242 * This function returns zero if the volume identifier header is all right, 1243 * and a negative error code if not or if an error occurred. 1244 */ 1245 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) 1246 { 1247 int err; 1248 uint32_t crc, hdr_crc; 1249 struct ubi_vid_hdr *vid_hdr; 1250 void *p; 1251 1252 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1253 if (!vid_hdr) 1254 return -ENOMEM; 1255 1256 p = (char *)vid_hdr - ubi->vid_hdr_shift; 1257 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, 1258 ubi->vid_hdr_alsize); 1259 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 1260 goto exit; 1261 1262 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); 1263 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); 1264 if (hdr_crc != crc) { 1265 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " 1266 "read %#08x", pnum, crc, hdr_crc); 1267 ubi_err("paranoid check failed for PEB %d", pnum); 1268 ubi_dbg_dump_vid_hdr(vid_hdr); 1269 ubi_dbg_dump_stack(); 1270 err = -EINVAL; 1271 goto exit; 1272 } 1273 1274 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); 1275 1276 exit: 1277 ubi_free_vid_hdr(ubi, vid_hdr); 1278 return err; 1279 } 1280 1281 /** 1282 * ubi_dbg_check_write - make sure write succeeded. 1283 * @ubi: UBI device description object 1284 * @buf: buffer with data which were written 1285 * @pnum: physical eraseblock number the data were written to 1286 * @offset: offset within the physical eraseblock the data were written to 1287 * @len: how many bytes were written 1288 * 1289 * This functions reads data which were recently written and compares it with 1290 * the original data buffer - the data have to match. Returns zero if the data 1291 * match and a negative error code if not or in case of failure. 1292 */ 1293 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, 1294 int offset, int len) 1295 { 1296 int err, i; 1297 1298 mutex_lock(&ubi->dbg_buf_mutex); 1299 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len); 1300 if (err) 1301 goto out_unlock; 1302 1303 for (i = 0; i < len; i++) { 1304 uint8_t c = ((uint8_t *)buf)[i]; 1305 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i]; 1306 int dump_len; 1307 1308 if (c == c1) 1309 continue; 1310 1311 ubi_err("paranoid check failed for PEB %d:%d, len %d", 1312 pnum, offset, len); 1313 ubi_msg("data differ at position %d", i); 1314 dump_len = max_t(int, 128, len - i); 1315 ubi_msg("hex dump of the original buffer from %d to %d", 1316 i, i + dump_len); 1317 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1318 buf + i, dump_len, 1); 1319 ubi_msg("hex dump of the read buffer from %d to %d", 1320 i, i + dump_len); 1321 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1322 ubi->dbg_peb_buf + i, dump_len, 1); 1323 ubi_dbg_dump_stack(); 1324 err = -EINVAL; 1325 goto out_unlock; 1326 } 1327 mutex_unlock(&ubi->dbg_buf_mutex); 1328 1329 return 0; 1330 1331 out_unlock: 1332 mutex_unlock(&ubi->dbg_buf_mutex); 1333 return err; 1334 } 1335 1336 /** 1337 * ubi_dbg_check_all_ff - check that a region of flash is empty. 1338 * @ubi: UBI device description object 1339 * @pnum: the physical eraseblock number to check 1340 * @offset: the starting offset within the physical eraseblock to check 1341 * @len: the length of the region to check 1342 * 1343 * This function returns zero if only 0xFF bytes are present at offset 1344 * @offset of the physical eraseblock @pnum, and a negative error code if not 1345 * or if an error occurred. 1346 */ 1347 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) 1348 { 1349 size_t read; 1350 int err; 1351 loff_t addr = (loff_t)pnum * ubi->peb_size + offset; 1352 1353 mutex_lock(&ubi->dbg_buf_mutex); 1354 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf); 1355 if (err && err != -EUCLEAN) { 1356 ubi_err("error %d while reading %d bytes from PEB %d:%d, " 1357 "read %zd bytes", err, len, pnum, offset, read); 1358 goto error; 1359 } 1360 1361 err = ubi_check_pattern(ubi->dbg_peb_buf, 0xFF, len); 1362 if (err == 0) { 1363 ubi_err("flash region at PEB %d:%d, length %d does not " 1364 "contain all 0xFF bytes", pnum, offset, len); 1365 goto fail; 1366 } 1367 mutex_unlock(&ubi->dbg_buf_mutex); 1368 1369 return 0; 1370 1371 fail: 1372 ubi_err("paranoid check failed for PEB %d", pnum); 1373 ubi_msg("hex dump of the %d-%d region", offset, offset + len); 1374 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 1375 ubi->dbg_peb_buf, len, 1); 1376 err = -EINVAL; 1377 error: 1378 ubi_dbg_dump_stack(); 1379 mutex_unlock(&ubi->dbg_buf_mutex); 1380 return err; 1381 } 1382 1383 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1384