xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 367b8112)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69  * prefer to use sub-pages only for EV and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
92 
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 				 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 				  const struct ubi_vid_hdr *vid_hdr);
101 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
102 				 int len);
103 #else
104 #define paranoid_check_not_bad(ubi, pnum) 0
105 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
106 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
107 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
110 #endif
111 
112 /**
113  * ubi_io_read - read data from a physical eraseblock.
114  * @ubi: UBI device description object
115  * @buf: buffer where to store the read data
116  * @pnum: physical eraseblock number to read from
117  * @offset: offset within the physical eraseblock from where to read
118  * @len: how many bytes to read
119  *
120  * This function reads data from offset @offset of physical eraseblock @pnum
121  * and stores the read data in the @buf buffer. The following return codes are
122  * possible:
123  *
124  * o %0 if all the requested data were successfully read;
125  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126  *   correctable bit-flips were detected; this is harmless but may indicate
127  *   that this eraseblock may become bad soon (but do not have to);
128  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129  *   example it can be an ECC error in case of NAND; this most probably means
130  *   that the data is corrupted;
131  * o %-EIO if some I/O error occurred;
132  * o other negative error codes in case of other errors.
133  */
134 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
135 		int len)
136 {
137 	int err, retries = 0;
138 	size_t read;
139 	loff_t addr;
140 
141 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
142 
143 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
144 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
145 	ubi_assert(len > 0);
146 
147 	err = paranoid_check_not_bad(ubi, pnum);
148 	if (err)
149 		return err > 0 ? -EINVAL : err;
150 
151 	addr = (loff_t)pnum * ubi->peb_size + offset;
152 retry:
153 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
154 	if (err) {
155 		if (err == -EUCLEAN) {
156 			/*
157 			 * -EUCLEAN is reported if there was a bit-flip which
158 			 * was corrected, so this is harmless.
159 			 *
160 			 * We do not report about it here unless debugging is
161 			 * enabled. A corresponding message will be printed
162 			 * later, when it is has been scrubbed.
163 			 */
164 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
165 			ubi_assert(len == read);
166 			return UBI_IO_BITFLIPS;
167 		}
168 
169 		if (read != len && retries++ < UBI_IO_RETRIES) {
170 			dbg_io("error %d while reading %d bytes from PEB %d:%d,"
171 			       " read only %zd bytes, retry",
172 			       err, len, pnum, offset, read);
173 			yield();
174 			goto retry;
175 		}
176 
177 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
178 			"read %zd bytes", err, len, pnum, offset, read);
179 		ubi_dbg_dump_stack();
180 
181 		/*
182 		 * The driver should never return -EBADMSG if it failed to read
183 		 * all the requested data. But some buggy drivers might do
184 		 * this, so we change it to -EIO.
185 		 */
186 		if (read != len && err == -EBADMSG) {
187 			ubi_assert(0);
188 			err = -EIO;
189 		}
190 	} else {
191 		ubi_assert(len == read);
192 
193 		if (ubi_dbg_is_bitflip()) {
194 			dbg_gen("bit-flip (emulated)");
195 			err = UBI_IO_BITFLIPS;
196 		}
197 	}
198 
199 	return err;
200 }
201 
202 /**
203  * ubi_io_write - write data to a physical eraseblock.
204  * @ubi: UBI device description object
205  * @buf: buffer with the data to write
206  * @pnum: physical eraseblock number to write to
207  * @offset: offset within the physical eraseblock where to write
208  * @len: how many bytes to write
209  *
210  * This function writes @len bytes of data from buffer @buf to offset @offset
211  * of physical eraseblock @pnum. If all the data were successfully written,
212  * zero is returned. If an error occurred, this function returns a negative
213  * error code. If %-EIO is returned, the physical eraseblock most probably went
214  * bad.
215  *
216  * Note, in case of an error, it is possible that something was still written
217  * to the flash media, but may be some garbage.
218  */
219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 		 int len)
221 {
222 	int err;
223 	size_t written;
224 	loff_t addr;
225 
226 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227 
228 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232 
233 	if (ubi->ro_mode) {
234 		ubi_err("read-only mode");
235 		return -EROFS;
236 	}
237 
238 	/* The below has to be compiled out if paranoid checks are disabled */
239 
240 	err = paranoid_check_not_bad(ubi, pnum);
241 	if (err)
242 		return err > 0 ? -EINVAL : err;
243 
244 	/* The area we are writing to has to contain all 0xFF bytes */
245 	err = paranoid_check_all_ff(ubi, pnum, offset, len);
246 	if (err)
247 		return err > 0 ? -EINVAL : err;
248 
249 	if (offset >= ubi->leb_start) {
250 		/*
251 		 * We write to the data area of the physical eraseblock. Make
252 		 * sure it has valid EC and VID headers.
253 		 */
254 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 		if (err)
256 			return err > 0 ? -EINVAL : err;
257 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 		if (err)
259 			return err > 0 ? -EINVAL : err;
260 	}
261 
262 	if (ubi_dbg_is_write_failure()) {
263 		dbg_err("cannot write %d bytes to PEB %d:%d "
264 			"(emulated)", len, pnum, offset);
265 		ubi_dbg_dump_stack();
266 		return -EIO;
267 	}
268 
269 	addr = (loff_t)pnum * ubi->peb_size + offset;
270 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 	if (err) {
272 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
273 			" %zd bytes", err, len, pnum, offset, written);
274 		ubi_dbg_dump_stack();
275 	} else
276 		ubi_assert(written == len);
277 
278 	return err;
279 }
280 
281 /**
282  * erase_callback - MTD erasure call-back.
283  * @ei: MTD erase information object.
284  *
285  * Note, even though MTD erase interface is asynchronous, all the current
286  * implementations are synchronous anyway.
287  */
288 static void erase_callback(struct erase_info *ei)
289 {
290 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
291 }
292 
293 /**
294  * do_sync_erase - synchronously erase a physical eraseblock.
295  * @ubi: UBI device description object
296  * @pnum: the physical eraseblock number to erase
297  *
298  * This function synchronously erases physical eraseblock @pnum and returns
299  * zero in case of success and a negative error code in case of failure. If
300  * %-EIO is returned, the physical eraseblock most probably went bad.
301  */
302 static int do_sync_erase(struct ubi_device *ubi, int pnum)
303 {
304 	int err, retries = 0;
305 	struct erase_info ei;
306 	wait_queue_head_t wq;
307 
308 	dbg_io("erase PEB %d", pnum);
309 
310 retry:
311 	init_waitqueue_head(&wq);
312 	memset(&ei, 0, sizeof(struct erase_info));
313 
314 	ei.mtd      = ubi->mtd;
315 	ei.addr     = (loff_t)pnum * ubi->peb_size;
316 	ei.len      = ubi->peb_size;
317 	ei.callback = erase_callback;
318 	ei.priv     = (unsigned long)&wq;
319 
320 	err = ubi->mtd->erase(ubi->mtd, &ei);
321 	if (err) {
322 		if (retries++ < UBI_IO_RETRIES) {
323 			dbg_io("error %d while erasing PEB %d, retry",
324 			       err, pnum);
325 			yield();
326 			goto retry;
327 		}
328 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
329 		ubi_dbg_dump_stack();
330 		return err;
331 	}
332 
333 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
334 					   ei.state == MTD_ERASE_FAILED);
335 	if (err) {
336 		ubi_err("interrupted PEB %d erasure", pnum);
337 		return -EINTR;
338 	}
339 
340 	if (ei.state == MTD_ERASE_FAILED) {
341 		if (retries++ < UBI_IO_RETRIES) {
342 			dbg_io("error while erasing PEB %d, retry", pnum);
343 			yield();
344 			goto retry;
345 		}
346 		ubi_err("cannot erase PEB %d", pnum);
347 		ubi_dbg_dump_stack();
348 		return -EIO;
349 	}
350 
351 	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
352 	if (err)
353 		return err > 0 ? -EINVAL : err;
354 
355 	if (ubi_dbg_is_erase_failure() && !err) {
356 		dbg_err("cannot erase PEB %d (emulated)", pnum);
357 		return -EIO;
358 	}
359 
360 	return 0;
361 }
362 
363 /**
364  * check_pattern - check if buffer contains only a certain byte pattern.
365  * @buf: buffer to check
366  * @patt: the pattern to check
367  * @size: buffer size in bytes
368  *
369  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
370  * something else was also found.
371  */
372 static int check_pattern(const void *buf, uint8_t patt, int size)
373 {
374 	int i;
375 
376 	for (i = 0; i < size; i++)
377 		if (((const uint8_t *)buf)[i] != patt)
378 			return 0;
379 	return 1;
380 }
381 
382 /* Patterns to write to a physical eraseblock when torturing it */
383 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
384 
385 /**
386  * torture_peb - test a supposedly bad physical eraseblock.
387  * @ubi: UBI device description object
388  * @pnum: the physical eraseblock number to test
389  *
390  * This function returns %-EIO if the physical eraseblock did not pass the
391  * test, a positive number of erase operations done if the test was
392  * successfully passed, and other negative error codes in case of other errors.
393  */
394 static int torture_peb(struct ubi_device *ubi, int pnum)
395 {
396 	int err, i, patt_count;
397 
398 	ubi_msg("run torture test for PEB %d", pnum);
399 	patt_count = ARRAY_SIZE(patterns);
400 	ubi_assert(patt_count > 0);
401 
402 	mutex_lock(&ubi->buf_mutex);
403 	for (i = 0; i < patt_count; i++) {
404 		err = do_sync_erase(ubi, pnum);
405 		if (err)
406 			goto out;
407 
408 		/* Make sure the PEB contains only 0xFF bytes */
409 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
410 		if (err)
411 			goto out;
412 
413 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
414 		if (err == 0) {
415 			ubi_err("erased PEB %d, but a non-0xFF byte found",
416 				pnum);
417 			err = -EIO;
418 			goto out;
419 		}
420 
421 		/* Write a pattern and check it */
422 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
423 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
424 		if (err)
425 			goto out;
426 
427 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
428 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
429 		if (err)
430 			goto out;
431 
432 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
433 		if (err == 0) {
434 			ubi_err("pattern %x checking failed for PEB %d",
435 				patterns[i], pnum);
436 			err = -EIO;
437 			goto out;
438 		}
439 	}
440 
441 	err = patt_count;
442 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
443 
444 out:
445 	mutex_unlock(&ubi->buf_mutex);
446 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
447 		/*
448 		 * If a bit-flip or data integrity error was detected, the test
449 		 * has not passed because it happened on a freshly erased
450 		 * physical eraseblock which means something is wrong with it.
451 		 */
452 		ubi_err("read problems on freshly erased PEB %d, must be bad",
453 			pnum);
454 		err = -EIO;
455 	}
456 	return err;
457 }
458 
459 /**
460  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
461  * @ubi: UBI device description object
462  * @pnum: physical eraseblock number to erase
463  * @torture: if this physical eraseblock has to be tortured
464  *
465  * This function synchronously erases physical eraseblock @pnum. If @torture
466  * flag is not zero, the physical eraseblock is checked by means of writing
467  * different patterns to it and reading them back. If the torturing is enabled,
468  * the physical eraseblock is erased more then once.
469  *
470  * This function returns the number of erasures made in case of success, %-EIO
471  * if the erasure failed or the torturing test failed, and other negative error
472  * codes in case of other errors. Note, %-EIO means that the physical
473  * eraseblock is bad.
474  */
475 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
476 {
477 	int err, ret = 0;
478 
479 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
480 
481 	err = paranoid_check_not_bad(ubi, pnum);
482 	if (err != 0)
483 		return err > 0 ? -EINVAL : err;
484 
485 	if (ubi->ro_mode) {
486 		ubi_err("read-only mode");
487 		return -EROFS;
488 	}
489 
490 	if (torture) {
491 		ret = torture_peb(ubi, pnum);
492 		if (ret < 0)
493 			return ret;
494 	}
495 
496 	err = do_sync_erase(ubi, pnum);
497 	if (err)
498 		return err;
499 
500 	return ret + 1;
501 }
502 
503 /**
504  * ubi_io_is_bad - check if a physical eraseblock is bad.
505  * @ubi: UBI device description object
506  * @pnum: the physical eraseblock number to check
507  *
508  * This function returns a positive number if the physical eraseblock is bad,
509  * zero if not, and a negative error code if an error occurred.
510  */
511 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
512 {
513 	struct mtd_info *mtd = ubi->mtd;
514 
515 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
516 
517 	if (ubi->bad_allowed) {
518 		int ret;
519 
520 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
521 		if (ret < 0)
522 			ubi_err("error %d while checking if PEB %d is bad",
523 				ret, pnum);
524 		else if (ret)
525 			dbg_io("PEB %d is bad", pnum);
526 		return ret;
527 	}
528 
529 	return 0;
530 }
531 
532 /**
533  * ubi_io_mark_bad - mark a physical eraseblock as bad.
534  * @ubi: UBI device description object
535  * @pnum: the physical eraseblock number to mark
536  *
537  * This function returns zero in case of success and a negative error code in
538  * case of failure.
539  */
540 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
541 {
542 	int err;
543 	struct mtd_info *mtd = ubi->mtd;
544 
545 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
546 
547 	if (ubi->ro_mode) {
548 		ubi_err("read-only mode");
549 		return -EROFS;
550 	}
551 
552 	if (!ubi->bad_allowed)
553 		return 0;
554 
555 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
556 	if (err)
557 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
558 	return err;
559 }
560 
561 /**
562  * validate_ec_hdr - validate an erase counter header.
563  * @ubi: UBI device description object
564  * @ec_hdr: the erase counter header to check
565  *
566  * This function returns zero if the erase counter header is OK, and %1 if
567  * not.
568  */
569 static int validate_ec_hdr(const struct ubi_device *ubi,
570 			   const struct ubi_ec_hdr *ec_hdr)
571 {
572 	long long ec;
573 	int vid_hdr_offset, leb_start;
574 
575 	ec = be64_to_cpu(ec_hdr->ec);
576 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
577 	leb_start = be32_to_cpu(ec_hdr->data_offset);
578 
579 	if (ec_hdr->version != UBI_VERSION) {
580 		ubi_err("node with incompatible UBI version found: "
581 			"this UBI version is %d, image version is %d",
582 			UBI_VERSION, (int)ec_hdr->version);
583 		goto bad;
584 	}
585 
586 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
587 		ubi_err("bad VID header offset %d, expected %d",
588 			vid_hdr_offset, ubi->vid_hdr_offset);
589 		goto bad;
590 	}
591 
592 	if (leb_start != ubi->leb_start) {
593 		ubi_err("bad data offset %d, expected %d",
594 			leb_start, ubi->leb_start);
595 		goto bad;
596 	}
597 
598 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
599 		ubi_err("bad erase counter %lld", ec);
600 		goto bad;
601 	}
602 
603 	return 0;
604 
605 bad:
606 	ubi_err("bad EC header");
607 	ubi_dbg_dump_ec_hdr(ec_hdr);
608 	ubi_dbg_dump_stack();
609 	return 1;
610 }
611 
612 /**
613  * ubi_io_read_ec_hdr - read and check an erase counter header.
614  * @ubi: UBI device description object
615  * @pnum: physical eraseblock to read from
616  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
617  * header
618  * @verbose: be verbose if the header is corrupted or was not found
619  *
620  * This function reads erase counter header from physical eraseblock @pnum and
621  * stores it in @ec_hdr. This function also checks CRC checksum of the read
622  * erase counter header. The following codes may be returned:
623  *
624  * o %0 if the CRC checksum is correct and the header was successfully read;
625  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
626  *   and corrected by the flash driver; this is harmless but may indicate that
627  *   this eraseblock may become bad soon (but may be not);
628  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
629  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
630  * o a negative error code in case of failure.
631  */
632 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
633 		       struct ubi_ec_hdr *ec_hdr, int verbose)
634 {
635 	int err, read_err = 0;
636 	uint32_t crc, magic, hdr_crc;
637 
638 	dbg_io("read EC header from PEB %d", pnum);
639 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
640 	if (UBI_IO_DEBUG)
641 		verbose = 1;
642 
643 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
644 	if (err) {
645 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
646 			return err;
647 
648 		/*
649 		 * We read all the data, but either a correctable bit-flip
650 		 * occurred, or MTD reported about some data integrity error,
651 		 * like an ECC error in case of NAND. The former is harmless,
652 		 * the later may mean that the read data is corrupted. But we
653 		 * have a CRC check-sum and we will detect this. If the EC
654 		 * header is still OK, we just report this as there was a
655 		 * bit-flip.
656 		 */
657 		read_err = err;
658 	}
659 
660 	magic = be32_to_cpu(ec_hdr->magic);
661 	if (magic != UBI_EC_HDR_MAGIC) {
662 		/*
663 		 * The magic field is wrong. Let's check if we have read all
664 		 * 0xFF. If yes, this physical eraseblock is assumed to be
665 		 * empty.
666 		 *
667 		 * But if there was a read error, we do not test it for all
668 		 * 0xFFs. Even if it does contain all 0xFFs, this error
669 		 * indicates that something is still wrong with this physical
670 		 * eraseblock and we anyway cannot treat it as empty.
671 		 */
672 		if (read_err != -EBADMSG &&
673 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
674 			/* The physical eraseblock is supposedly empty */
675 
676 			/*
677 			 * The below is just a paranoid check, it has to be
678 			 * compiled out if paranoid checks are disabled.
679 			 */
680 			err = paranoid_check_all_ff(ubi, pnum, 0,
681 						    ubi->peb_size);
682 			if (err)
683 				return err > 0 ? UBI_IO_BAD_EC_HDR : err;
684 
685 			if (verbose)
686 				ubi_warn("no EC header found at PEB %d, "
687 					 "only 0xFF bytes", pnum);
688 			return UBI_IO_PEB_EMPTY;
689 		}
690 
691 		/*
692 		 * This is not a valid erase counter header, and these are not
693 		 * 0xFF bytes. Report that the header is corrupted.
694 		 */
695 		if (verbose) {
696 			ubi_warn("bad magic number at PEB %d: %08x instead of "
697 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
698 			ubi_dbg_dump_ec_hdr(ec_hdr);
699 		}
700 		return UBI_IO_BAD_EC_HDR;
701 	}
702 
703 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
704 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
705 
706 	if (hdr_crc != crc) {
707 		if (verbose) {
708 			ubi_warn("bad EC header CRC at PEB %d, calculated "
709 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
710 			ubi_dbg_dump_ec_hdr(ec_hdr);
711 		}
712 		return UBI_IO_BAD_EC_HDR;
713 	}
714 
715 	/* And of course validate what has just been read from the media */
716 	err = validate_ec_hdr(ubi, ec_hdr);
717 	if (err) {
718 		ubi_err("validation failed for PEB %d", pnum);
719 		return -EINVAL;
720 	}
721 
722 	return read_err ? UBI_IO_BITFLIPS : 0;
723 }
724 
725 /**
726  * ubi_io_write_ec_hdr - write an erase counter header.
727  * @ubi: UBI device description object
728  * @pnum: physical eraseblock to write to
729  * @ec_hdr: the erase counter header to write
730  *
731  * This function writes erase counter header described by @ec_hdr to physical
732  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
733  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
734  * field.
735  *
736  * This function returns zero in case of success and a negative error code in
737  * case of failure. If %-EIO is returned, the physical eraseblock most probably
738  * went bad.
739  */
740 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
741 			struct ubi_ec_hdr *ec_hdr)
742 {
743 	int err;
744 	uint32_t crc;
745 
746 	dbg_io("write EC header to PEB %d", pnum);
747 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
748 
749 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
750 	ec_hdr->version = UBI_VERSION;
751 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
752 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
753 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
754 	ec_hdr->hdr_crc = cpu_to_be32(crc);
755 
756 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
757 	if (err)
758 		return -EINVAL;
759 
760 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
761 	return err;
762 }
763 
764 /**
765  * validate_vid_hdr - validate a volume identifier header.
766  * @ubi: UBI device description object
767  * @vid_hdr: the volume identifier header to check
768  *
769  * This function checks that data stored in the volume identifier header
770  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
771  */
772 static int validate_vid_hdr(const struct ubi_device *ubi,
773 			    const struct ubi_vid_hdr *vid_hdr)
774 {
775 	int vol_type = vid_hdr->vol_type;
776 	int copy_flag = vid_hdr->copy_flag;
777 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
778 	int lnum = be32_to_cpu(vid_hdr->lnum);
779 	int compat = vid_hdr->compat;
780 	int data_size = be32_to_cpu(vid_hdr->data_size);
781 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
782 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
783 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
784 	int usable_leb_size = ubi->leb_size - data_pad;
785 
786 	if (copy_flag != 0 && copy_flag != 1) {
787 		dbg_err("bad copy_flag");
788 		goto bad;
789 	}
790 
791 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
792 	    data_pad < 0) {
793 		dbg_err("negative values");
794 		goto bad;
795 	}
796 
797 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
798 		dbg_err("bad vol_id");
799 		goto bad;
800 	}
801 
802 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
803 		dbg_err("bad compat");
804 		goto bad;
805 	}
806 
807 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
808 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
809 	    compat != UBI_COMPAT_REJECT) {
810 		dbg_err("bad compat");
811 		goto bad;
812 	}
813 
814 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
815 		dbg_err("bad vol_type");
816 		goto bad;
817 	}
818 
819 	if (data_pad >= ubi->leb_size / 2) {
820 		dbg_err("bad data_pad");
821 		goto bad;
822 	}
823 
824 	if (vol_type == UBI_VID_STATIC) {
825 		/*
826 		 * Although from high-level point of view static volumes may
827 		 * contain zero bytes of data, but no VID headers can contain
828 		 * zero at these fields, because they empty volumes do not have
829 		 * mapped logical eraseblocks.
830 		 */
831 		if (used_ebs == 0) {
832 			dbg_err("zero used_ebs");
833 			goto bad;
834 		}
835 		if (data_size == 0) {
836 			dbg_err("zero data_size");
837 			goto bad;
838 		}
839 		if (lnum < used_ebs - 1) {
840 			if (data_size != usable_leb_size) {
841 				dbg_err("bad data_size");
842 				goto bad;
843 			}
844 		} else if (lnum == used_ebs - 1) {
845 			if (data_size == 0) {
846 				dbg_err("bad data_size at last LEB");
847 				goto bad;
848 			}
849 		} else {
850 			dbg_err("too high lnum");
851 			goto bad;
852 		}
853 	} else {
854 		if (copy_flag == 0) {
855 			if (data_crc != 0) {
856 				dbg_err("non-zero data CRC");
857 				goto bad;
858 			}
859 			if (data_size != 0) {
860 				dbg_err("non-zero data_size");
861 				goto bad;
862 			}
863 		} else {
864 			if (data_size == 0) {
865 				dbg_err("zero data_size of copy");
866 				goto bad;
867 			}
868 		}
869 		if (used_ebs != 0) {
870 			dbg_err("bad used_ebs");
871 			goto bad;
872 		}
873 	}
874 
875 	return 0;
876 
877 bad:
878 	ubi_err("bad VID header");
879 	ubi_dbg_dump_vid_hdr(vid_hdr);
880 	ubi_dbg_dump_stack();
881 	return 1;
882 }
883 
884 /**
885  * ubi_io_read_vid_hdr - read and check a volume identifier header.
886  * @ubi: UBI device description object
887  * @pnum: physical eraseblock number to read from
888  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
889  * identifier header
890  * @verbose: be verbose if the header is corrupted or wasn't found
891  *
892  * This function reads the volume identifier header from physical eraseblock
893  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
894  * volume identifier header. The following codes may be returned:
895  *
896  * o %0 if the CRC checksum is correct and the header was successfully read;
897  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
898  *   and corrected by the flash driver; this is harmless but may indicate that
899  *   this eraseblock may become bad soon;
900  * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
901  *   error detected);
902  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
903  *   header there);
904  * o a negative error code in case of failure.
905  */
906 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
907 			struct ubi_vid_hdr *vid_hdr, int verbose)
908 {
909 	int err, read_err = 0;
910 	uint32_t crc, magic, hdr_crc;
911 	void *p;
912 
913 	dbg_io("read VID header from PEB %d", pnum);
914 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
915 	if (UBI_IO_DEBUG)
916 		verbose = 1;
917 
918 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
919 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
920 			  ubi->vid_hdr_alsize);
921 	if (err) {
922 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
923 			return err;
924 
925 		/*
926 		 * We read all the data, but either a correctable bit-flip
927 		 * occurred, or MTD reported about some data integrity error,
928 		 * like an ECC error in case of NAND. The former is harmless,
929 		 * the later may mean the read data is corrupted. But we have a
930 		 * CRC check-sum and we will identify this. If the VID header is
931 		 * still OK, we just report this as there was a bit-flip.
932 		 */
933 		read_err = err;
934 	}
935 
936 	magic = be32_to_cpu(vid_hdr->magic);
937 	if (magic != UBI_VID_HDR_MAGIC) {
938 		/*
939 		 * If we have read all 0xFF bytes, the VID header probably does
940 		 * not exist and the physical eraseblock is assumed to be free.
941 		 *
942 		 * But if there was a read error, we do not test the data for
943 		 * 0xFFs. Even if it does contain all 0xFFs, this error
944 		 * indicates that something is still wrong with this physical
945 		 * eraseblock and it cannot be regarded as free.
946 		 */
947 		if (read_err != -EBADMSG &&
948 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
949 			/* The physical eraseblock is supposedly free */
950 
951 			/*
952 			 * The below is just a paranoid check, it has to be
953 			 * compiled out if paranoid checks are disabled.
954 			 */
955 			err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
956 						    ubi->leb_size);
957 			if (err)
958 				return err > 0 ? UBI_IO_BAD_VID_HDR : err;
959 
960 			if (verbose)
961 				ubi_warn("no VID header found at PEB %d, "
962 					 "only 0xFF bytes", pnum);
963 			return UBI_IO_PEB_FREE;
964 		}
965 
966 		/*
967 		 * This is not a valid VID header, and these are not 0xFF
968 		 * bytes. Report that the header is corrupted.
969 		 */
970 		if (verbose) {
971 			ubi_warn("bad magic number at PEB %d: %08x instead of "
972 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
973 			ubi_dbg_dump_vid_hdr(vid_hdr);
974 		}
975 		return UBI_IO_BAD_VID_HDR;
976 	}
977 
978 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
979 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
980 
981 	if (hdr_crc != crc) {
982 		if (verbose) {
983 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
984 				 "read %#08x", pnum, crc, hdr_crc);
985 			ubi_dbg_dump_vid_hdr(vid_hdr);
986 		}
987 		return UBI_IO_BAD_VID_HDR;
988 	}
989 
990 	/* Validate the VID header that we have just read */
991 	err = validate_vid_hdr(ubi, vid_hdr);
992 	if (err) {
993 		ubi_err("validation failed for PEB %d", pnum);
994 		return -EINVAL;
995 	}
996 
997 	return read_err ? UBI_IO_BITFLIPS : 0;
998 }
999 
1000 /**
1001  * ubi_io_write_vid_hdr - write a volume identifier header.
1002  * @ubi: UBI device description object
1003  * @pnum: the physical eraseblock number to write to
1004  * @vid_hdr: the volume identifier header to write
1005  *
1006  * This function writes the volume identifier header described by @vid_hdr to
1007  * physical eraseblock @pnum. This function automatically fills the
1008  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1009  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1010  *
1011  * This function returns zero in case of success and a negative error code in
1012  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1013  * bad.
1014  */
1015 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1016 			 struct ubi_vid_hdr *vid_hdr)
1017 {
1018 	int err;
1019 	uint32_t crc;
1020 	void *p;
1021 
1022 	dbg_io("write VID header to PEB %d", pnum);
1023 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1024 
1025 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1026 	if (err)
1027 		return err > 0 ? -EINVAL: err;
1028 
1029 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1030 	vid_hdr->version = UBI_VERSION;
1031 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1032 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1033 
1034 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1035 	if (err)
1036 		return -EINVAL;
1037 
1038 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1039 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1040 			   ubi->vid_hdr_alsize);
1041 	return err;
1042 }
1043 
1044 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1045 
1046 /**
1047  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1048  * @ubi: UBI device description object
1049  * @pnum: physical eraseblock number to check
1050  *
1051  * This function returns zero if the physical eraseblock is good, a positive
1052  * number if it is bad and a negative error code if an error occurred.
1053  */
1054 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1055 {
1056 	int err;
1057 
1058 	err = ubi_io_is_bad(ubi, pnum);
1059 	if (!err)
1060 		return err;
1061 
1062 	ubi_err("paranoid check failed for PEB %d", pnum);
1063 	ubi_dbg_dump_stack();
1064 	return err;
1065 }
1066 
1067 /**
1068  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1069  * @ubi: UBI device description object
1070  * @pnum: physical eraseblock number the erase counter header belongs to
1071  * @ec_hdr: the erase counter header to check
1072  *
1073  * This function returns zero if the erase counter header contains valid
1074  * values, and %1 if not.
1075  */
1076 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1077 				 const struct ubi_ec_hdr *ec_hdr)
1078 {
1079 	int err;
1080 	uint32_t magic;
1081 
1082 	magic = be32_to_cpu(ec_hdr->magic);
1083 	if (magic != UBI_EC_HDR_MAGIC) {
1084 		ubi_err("bad magic %#08x, must be %#08x",
1085 			magic, UBI_EC_HDR_MAGIC);
1086 		goto fail;
1087 	}
1088 
1089 	err = validate_ec_hdr(ubi, ec_hdr);
1090 	if (err) {
1091 		ubi_err("paranoid check failed for PEB %d", pnum);
1092 		goto fail;
1093 	}
1094 
1095 	return 0;
1096 
1097 fail:
1098 	ubi_dbg_dump_ec_hdr(ec_hdr);
1099 	ubi_dbg_dump_stack();
1100 	return 1;
1101 }
1102 
1103 /**
1104  * paranoid_check_peb_ec_hdr - check erase counter header.
1105  * @ubi: UBI device description object
1106  * @pnum: the physical eraseblock number to check
1107  *
1108  * This function returns zero if the erase counter header is all right, %1 if
1109  * not, and a negative error code if an error occurred.
1110  */
1111 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1112 {
1113 	int err;
1114 	uint32_t crc, hdr_crc;
1115 	struct ubi_ec_hdr *ec_hdr;
1116 
1117 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1118 	if (!ec_hdr)
1119 		return -ENOMEM;
1120 
1121 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1122 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1123 		goto exit;
1124 
1125 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1126 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1127 	if (hdr_crc != crc) {
1128 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1129 		ubi_err("paranoid check failed for PEB %d", pnum);
1130 		ubi_dbg_dump_ec_hdr(ec_hdr);
1131 		ubi_dbg_dump_stack();
1132 		err = 1;
1133 		goto exit;
1134 	}
1135 
1136 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1137 
1138 exit:
1139 	kfree(ec_hdr);
1140 	return err;
1141 }
1142 
1143 /**
1144  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1145  * @ubi: UBI device description object
1146  * @pnum: physical eraseblock number the volume identifier header belongs to
1147  * @vid_hdr: the volume identifier header to check
1148  *
1149  * This function returns zero if the volume identifier header is all right, and
1150  * %1 if not.
1151  */
1152 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1153 				  const struct ubi_vid_hdr *vid_hdr)
1154 {
1155 	int err;
1156 	uint32_t magic;
1157 
1158 	magic = be32_to_cpu(vid_hdr->magic);
1159 	if (magic != UBI_VID_HDR_MAGIC) {
1160 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1161 			magic, pnum, UBI_VID_HDR_MAGIC);
1162 		goto fail;
1163 	}
1164 
1165 	err = validate_vid_hdr(ubi, vid_hdr);
1166 	if (err) {
1167 		ubi_err("paranoid check failed for PEB %d", pnum);
1168 		goto fail;
1169 	}
1170 
1171 	return err;
1172 
1173 fail:
1174 	ubi_err("paranoid check failed for PEB %d", pnum);
1175 	ubi_dbg_dump_vid_hdr(vid_hdr);
1176 	ubi_dbg_dump_stack();
1177 	return 1;
1178 
1179 }
1180 
1181 /**
1182  * paranoid_check_peb_vid_hdr - check volume identifier header.
1183  * @ubi: UBI device description object
1184  * @pnum: the physical eraseblock number to check
1185  *
1186  * This function returns zero if the volume identifier header is all right,
1187  * %1 if not, and a negative error code if an error occurred.
1188  */
1189 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1190 {
1191 	int err;
1192 	uint32_t crc, hdr_crc;
1193 	struct ubi_vid_hdr *vid_hdr;
1194 	void *p;
1195 
1196 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1197 	if (!vid_hdr)
1198 		return -ENOMEM;
1199 
1200 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1201 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1202 			  ubi->vid_hdr_alsize);
1203 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1204 		goto exit;
1205 
1206 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1207 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1208 	if (hdr_crc != crc) {
1209 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1210 			"read %#08x", pnum, crc, hdr_crc);
1211 		ubi_err("paranoid check failed for PEB %d", pnum);
1212 		ubi_dbg_dump_vid_hdr(vid_hdr);
1213 		ubi_dbg_dump_stack();
1214 		err = 1;
1215 		goto exit;
1216 	}
1217 
1218 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1219 
1220 exit:
1221 	ubi_free_vid_hdr(ubi, vid_hdr);
1222 	return err;
1223 }
1224 
1225 /**
1226  * paranoid_check_all_ff - check that a region of flash is empty.
1227  * @ubi: UBI device description object
1228  * @pnum: the physical eraseblock number to check
1229  * @offset: the starting offset within the physical eraseblock to check
1230  * @len: the length of the region to check
1231  *
1232  * This function returns zero if only 0xFF bytes are present at offset
1233  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1234  * code if an error occurred.
1235  */
1236 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1237 				 int len)
1238 {
1239 	size_t read;
1240 	int err;
1241 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1242 
1243 	mutex_lock(&ubi->dbg_buf_mutex);
1244 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1245 	if (err && err != -EUCLEAN) {
1246 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1247 			"read %zd bytes", err, len, pnum, offset, read);
1248 		goto error;
1249 	}
1250 
1251 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1252 	if (err == 0) {
1253 		ubi_err("flash region at PEB %d:%d, length %d does not "
1254 			"contain all 0xFF bytes", pnum, offset, len);
1255 		goto fail;
1256 	}
1257 	mutex_unlock(&ubi->dbg_buf_mutex);
1258 
1259 	return 0;
1260 
1261 fail:
1262 	ubi_err("paranoid check failed for PEB %d", pnum);
1263 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1264 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1265 		       ubi->dbg_peb_buf, len, 1);
1266 	err = 1;
1267 error:
1268 	ubi_dbg_dump_stack();
1269 	mutex_unlock(&ubi->dbg_buf_mutex);
1270 	return err;
1271 }
1272 
1273 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1274