xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 1fa6ac37)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output sub-system.
24  *
25  * This sub-system provides a uniform way to work with all kinds of the
26  * underlying MTD devices. It also implements handy functions for reading and
27  * writing UBI headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this
31  * sub-system validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68  * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69  * Thus, we prefer to use sub-pages only for EC and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O sub-system does the following trick in order to avoid this extra
83  * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84  * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85  * When the VID header is being written out, it shifts the VID header pointer
86  * back and writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93 
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 				 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 				  const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109 
110 /**
111  * ubi_io_read - read data from a physical eraseblock.
112  * @ubi: UBI device description object
113  * @buf: buffer where to store the read data
114  * @pnum: physical eraseblock number to read from
115  * @offset: offset within the physical eraseblock from where to read
116  * @len: how many bytes to read
117  *
118  * This function reads data from offset @offset of physical eraseblock @pnum
119  * and stores the read data in the @buf buffer. The following return codes are
120  * possible:
121  *
122  * o %0 if all the requested data were successfully read;
123  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124  *   correctable bit-flips were detected; this is harmless but may indicate
125  *   that this eraseblock may become bad soon (but do not have to);
126  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127  *   example it can be an ECC error in case of NAND; this most probably means
128  *   that the data is corrupted;
129  * o %-EIO if some I/O error occurred;
130  * o other negative error codes in case of other errors.
131  */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 		int len)
134 {
135 	int err, retries = 0;
136 	size_t read;
137 	loff_t addr;
138 
139 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 
141 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 	ubi_assert(len > 0);
144 
145 	err = paranoid_check_not_bad(ubi, pnum);
146 	if (err)
147 		return err;
148 
149 	addr = (loff_t)pnum * ubi->peb_size + offset;
150 retry:
151 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 	if (err) {
153 		if (err == -EUCLEAN) {
154 			/*
155 			 * -EUCLEAN is reported if there was a bit-flip which
156 			 * was corrected, so this is harmless.
157 			 *
158 			 * We do not report about it here unless debugging is
159 			 * enabled. A corresponding message will be printed
160 			 * later, when it is has been scrubbed.
161 			 */
162 			dbg_msg("fixable bit-flip detected at PEB %d", pnum);
163 			ubi_assert(len == read);
164 			return UBI_IO_BITFLIPS;
165 		}
166 
167 		if (read != len && retries++ < UBI_IO_RETRIES) {
168 			dbg_io("error %d while reading %d bytes from PEB %d:%d,"
169 			       " read only %zd bytes, retry",
170 			       err, len, pnum, offset, read);
171 			yield();
172 			goto retry;
173 		}
174 
175 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
176 			"read %zd bytes", err, len, pnum, offset, read);
177 		ubi_dbg_dump_stack();
178 
179 		/*
180 		 * The driver should never return -EBADMSG if it failed to read
181 		 * all the requested data. But some buggy drivers might do
182 		 * this, so we change it to -EIO.
183 		 */
184 		if (read != len && err == -EBADMSG) {
185 			ubi_assert(0);
186 			err = -EIO;
187 		}
188 	} else {
189 		ubi_assert(len == read);
190 
191 		if (ubi_dbg_is_bitflip()) {
192 			dbg_gen("bit-flip (emulated)");
193 			err = UBI_IO_BITFLIPS;
194 		}
195 	}
196 
197 	return err;
198 }
199 
200 /**
201  * ubi_io_write - write data to a physical eraseblock.
202  * @ubi: UBI device description object
203  * @buf: buffer with the data to write
204  * @pnum: physical eraseblock number to write to
205  * @offset: offset within the physical eraseblock where to write
206  * @len: how many bytes to write
207  *
208  * This function writes @len bytes of data from buffer @buf to offset @offset
209  * of physical eraseblock @pnum. If all the data were successfully written,
210  * zero is returned. If an error occurred, this function returns a negative
211  * error code. If %-EIO is returned, the physical eraseblock most probably went
212  * bad.
213  *
214  * Note, in case of an error, it is possible that something was still written
215  * to the flash media, but may be some garbage.
216  */
217 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
218 		 int len)
219 {
220 	int err;
221 	size_t written;
222 	loff_t addr;
223 
224 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
225 
226 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
227 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
228 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
229 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
230 
231 	if (ubi->ro_mode) {
232 		ubi_err("read-only mode");
233 		return -EROFS;
234 	}
235 
236 	/* The below has to be compiled out if paranoid checks are disabled */
237 
238 	err = paranoid_check_not_bad(ubi, pnum);
239 	if (err)
240 		return err;
241 
242 	/* The area we are writing to has to contain all 0xFF bytes */
243 	err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
244 	if (err)
245 		return err;
246 
247 	if (offset >= ubi->leb_start) {
248 		/*
249 		 * We write to the data area of the physical eraseblock. Make
250 		 * sure it has valid EC and VID headers.
251 		 */
252 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
253 		if (err)
254 			return err;
255 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
256 		if (err)
257 			return err;
258 	}
259 
260 	if (ubi_dbg_is_write_failure()) {
261 		dbg_err("cannot write %d bytes to PEB %d:%d "
262 			"(emulated)", len, pnum, offset);
263 		ubi_dbg_dump_stack();
264 		return -EIO;
265 	}
266 
267 	addr = (loff_t)pnum * ubi->peb_size + offset;
268 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
269 	if (err) {
270 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
271 			"%zd bytes", err, len, pnum, offset, written);
272 		ubi_dbg_dump_stack();
273 		ubi_dbg_dump_flash(ubi, pnum, offset, len);
274 	} else
275 		ubi_assert(written == len);
276 
277 	if (!err) {
278 		err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
279 		if (err)
280 			return err;
281 
282 		/*
283 		 * Since we always write sequentially, the rest of the PEB has
284 		 * to contain only 0xFF bytes.
285 		 */
286 		offset += len;
287 		len = ubi->peb_size - offset;
288 		if (len)
289 			err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
290 	}
291 
292 	return err;
293 }
294 
295 /**
296  * erase_callback - MTD erasure call-back.
297  * @ei: MTD erase information object.
298  *
299  * Note, even though MTD erase interface is asynchronous, all the current
300  * implementations are synchronous anyway.
301  */
302 static void erase_callback(struct erase_info *ei)
303 {
304 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
305 }
306 
307 /**
308  * do_sync_erase - synchronously erase a physical eraseblock.
309  * @ubi: UBI device description object
310  * @pnum: the physical eraseblock number to erase
311  *
312  * This function synchronously erases physical eraseblock @pnum and returns
313  * zero in case of success and a negative error code in case of failure. If
314  * %-EIO is returned, the physical eraseblock most probably went bad.
315  */
316 static int do_sync_erase(struct ubi_device *ubi, int pnum)
317 {
318 	int err, retries = 0;
319 	struct erase_info ei;
320 	wait_queue_head_t wq;
321 
322 	dbg_io("erase PEB %d", pnum);
323 
324 retry:
325 	init_waitqueue_head(&wq);
326 	memset(&ei, 0, sizeof(struct erase_info));
327 
328 	ei.mtd      = ubi->mtd;
329 	ei.addr     = (loff_t)pnum * ubi->peb_size;
330 	ei.len      = ubi->peb_size;
331 	ei.callback = erase_callback;
332 	ei.priv     = (unsigned long)&wq;
333 
334 	err = ubi->mtd->erase(ubi->mtd, &ei);
335 	if (err) {
336 		if (retries++ < UBI_IO_RETRIES) {
337 			dbg_io("error %d while erasing PEB %d, retry",
338 			       err, pnum);
339 			yield();
340 			goto retry;
341 		}
342 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
343 		ubi_dbg_dump_stack();
344 		return err;
345 	}
346 
347 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
348 					   ei.state == MTD_ERASE_FAILED);
349 	if (err) {
350 		ubi_err("interrupted PEB %d erasure", pnum);
351 		return -EINTR;
352 	}
353 
354 	if (ei.state == MTD_ERASE_FAILED) {
355 		if (retries++ < UBI_IO_RETRIES) {
356 			dbg_io("error while erasing PEB %d, retry", pnum);
357 			yield();
358 			goto retry;
359 		}
360 		ubi_err("cannot erase PEB %d", pnum);
361 		ubi_dbg_dump_stack();
362 		return -EIO;
363 	}
364 
365 	err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
366 	if (err)
367 		return err;
368 
369 	if (ubi_dbg_is_erase_failure() && !err) {
370 		dbg_err("cannot erase PEB %d (emulated)", pnum);
371 		return -EIO;
372 	}
373 
374 	return 0;
375 }
376 
377 /**
378  * check_pattern - check if buffer contains only a certain byte pattern.
379  * @buf: buffer to check
380  * @patt: the pattern to check
381  * @size: buffer size in bytes
382  *
383  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
384  * something else was also found.
385  */
386 static int check_pattern(const void *buf, uint8_t patt, int size)
387 {
388 	int i;
389 
390 	for (i = 0; i < size; i++)
391 		if (((const uint8_t *)buf)[i] != patt)
392 			return 0;
393 	return 1;
394 }
395 
396 /* Patterns to write to a physical eraseblock when torturing it */
397 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
398 
399 /**
400  * torture_peb - test a supposedly bad physical eraseblock.
401  * @ubi: UBI device description object
402  * @pnum: the physical eraseblock number to test
403  *
404  * This function returns %-EIO if the physical eraseblock did not pass the
405  * test, a positive number of erase operations done if the test was
406  * successfully passed, and other negative error codes in case of other errors.
407  */
408 static int torture_peb(struct ubi_device *ubi, int pnum)
409 {
410 	int err, i, patt_count;
411 
412 	ubi_msg("run torture test for PEB %d", pnum);
413 	patt_count = ARRAY_SIZE(patterns);
414 	ubi_assert(patt_count > 0);
415 
416 	mutex_lock(&ubi->buf_mutex);
417 	for (i = 0; i < patt_count; i++) {
418 		err = do_sync_erase(ubi, pnum);
419 		if (err)
420 			goto out;
421 
422 		/* Make sure the PEB contains only 0xFF bytes */
423 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
424 		if (err)
425 			goto out;
426 
427 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
428 		if (err == 0) {
429 			ubi_err("erased PEB %d, but a non-0xFF byte found",
430 				pnum);
431 			err = -EIO;
432 			goto out;
433 		}
434 
435 		/* Write a pattern and check it */
436 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
437 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
438 		if (err)
439 			goto out;
440 
441 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
442 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
443 		if (err)
444 			goto out;
445 
446 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
447 		if (err == 0) {
448 			ubi_err("pattern %x checking failed for PEB %d",
449 				patterns[i], pnum);
450 			err = -EIO;
451 			goto out;
452 		}
453 	}
454 
455 	err = patt_count;
456 	ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
457 
458 out:
459 	mutex_unlock(&ubi->buf_mutex);
460 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
461 		/*
462 		 * If a bit-flip or data integrity error was detected, the test
463 		 * has not passed because it happened on a freshly erased
464 		 * physical eraseblock which means something is wrong with it.
465 		 */
466 		ubi_err("read problems on freshly erased PEB %d, must be bad",
467 			pnum);
468 		err = -EIO;
469 	}
470 	return err;
471 }
472 
473 /**
474  * nor_erase_prepare - prepare a NOR flash PEB for erasure.
475  * @ubi: UBI device description object
476  * @pnum: physical eraseblock number to prepare
477  *
478  * NOR flash, or at least some of them, have peculiar embedded PEB erasure
479  * algorithm: the PEB is first filled with zeroes, then it is erased. And
480  * filling with zeroes starts from the end of the PEB. This was observed with
481  * Spansion S29GL512N NOR flash.
482  *
483  * This means that in case of a power cut we may end up with intact data at the
484  * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
485  * EC and VID headers are OK, but a large chunk of data at the end of PEB is
486  * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
487  * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
488  *
489  * This function is called before erasing NOR PEBs and it zeroes out EC and VID
490  * magic numbers in order to invalidate them and prevent the failures. Returns
491  * zero in case of success and a negative error code in case of failure.
492  */
493 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
494 {
495 	int err, err1;
496 	size_t written;
497 	loff_t addr;
498 	uint32_t data = 0;
499 	struct ubi_vid_hdr vid_hdr;
500 
501 	addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
502 	err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
503 	if (!err) {
504 		addr -= ubi->vid_hdr_aloffset;
505 		err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
506 				      (void *)&data);
507 		if (!err)
508 			return 0;
509 	}
510 
511 	/*
512 	 * We failed to write to the media. This was observed with Spansion
513 	 * S29GL512N NOR flash. Most probably the eraseblock erasure was
514 	 * interrupted at a very inappropriate moment, so it became unwritable.
515 	 * In this case we probably anyway have garbage in this PEB.
516 	 */
517 	err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
518 	if (err1 == UBI_IO_BAD_VID_HDR)
519 		/*
520 		 * The VID header is corrupted, so we can safely erase this
521 		 * PEB and not afraid that it will be treated as a valid PEB in
522 		 * case of an unclean reboot.
523 		 */
524 		return 0;
525 
526 	/*
527 	 * The PEB contains a valid VID header, but we cannot invalidate it.
528 	 * Supposedly the flash media or the driver is screwed up, so return an
529 	 * error.
530 	 */
531 	ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
532 		pnum, err, err1);
533 	ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
534 	return -EIO;
535 }
536 
537 /**
538  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
539  * @ubi: UBI device description object
540  * @pnum: physical eraseblock number to erase
541  * @torture: if this physical eraseblock has to be tortured
542  *
543  * This function synchronously erases physical eraseblock @pnum. If @torture
544  * flag is not zero, the physical eraseblock is checked by means of writing
545  * different patterns to it and reading them back. If the torturing is enabled,
546  * the physical eraseblock is erased more than once.
547  *
548  * This function returns the number of erasures made in case of success, %-EIO
549  * if the erasure failed or the torturing test failed, and other negative error
550  * codes in case of other errors. Note, %-EIO means that the physical
551  * eraseblock is bad.
552  */
553 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
554 {
555 	int err, ret = 0;
556 
557 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
558 
559 	err = paranoid_check_not_bad(ubi, pnum);
560 	if (err != 0)
561 		return err;
562 
563 	if (ubi->ro_mode) {
564 		ubi_err("read-only mode");
565 		return -EROFS;
566 	}
567 
568 	if (ubi->nor_flash) {
569 		err = nor_erase_prepare(ubi, pnum);
570 		if (err)
571 			return err;
572 	}
573 
574 	if (torture) {
575 		ret = torture_peb(ubi, pnum);
576 		if (ret < 0)
577 			return ret;
578 	}
579 
580 	err = do_sync_erase(ubi, pnum);
581 	if (err)
582 		return err;
583 
584 	return ret + 1;
585 }
586 
587 /**
588  * ubi_io_is_bad - check if a physical eraseblock is bad.
589  * @ubi: UBI device description object
590  * @pnum: the physical eraseblock number to check
591  *
592  * This function returns a positive number if the physical eraseblock is bad,
593  * zero if not, and a negative error code if an error occurred.
594  */
595 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
596 {
597 	struct mtd_info *mtd = ubi->mtd;
598 
599 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
600 
601 	if (ubi->bad_allowed) {
602 		int ret;
603 
604 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
605 		if (ret < 0)
606 			ubi_err("error %d while checking if PEB %d is bad",
607 				ret, pnum);
608 		else if (ret)
609 			dbg_io("PEB %d is bad", pnum);
610 		return ret;
611 	}
612 
613 	return 0;
614 }
615 
616 /**
617  * ubi_io_mark_bad - mark a physical eraseblock as bad.
618  * @ubi: UBI device description object
619  * @pnum: the physical eraseblock number to mark
620  *
621  * This function returns zero in case of success and a negative error code in
622  * case of failure.
623  */
624 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
625 {
626 	int err;
627 	struct mtd_info *mtd = ubi->mtd;
628 
629 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
630 
631 	if (ubi->ro_mode) {
632 		ubi_err("read-only mode");
633 		return -EROFS;
634 	}
635 
636 	if (!ubi->bad_allowed)
637 		return 0;
638 
639 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
640 	if (err)
641 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
642 	return err;
643 }
644 
645 /**
646  * validate_ec_hdr - validate an erase counter header.
647  * @ubi: UBI device description object
648  * @ec_hdr: the erase counter header to check
649  *
650  * This function returns zero if the erase counter header is OK, and %1 if
651  * not.
652  */
653 static int validate_ec_hdr(const struct ubi_device *ubi,
654 			   const struct ubi_ec_hdr *ec_hdr)
655 {
656 	long long ec;
657 	int vid_hdr_offset, leb_start;
658 
659 	ec = be64_to_cpu(ec_hdr->ec);
660 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
661 	leb_start = be32_to_cpu(ec_hdr->data_offset);
662 
663 	if (ec_hdr->version != UBI_VERSION) {
664 		ubi_err("node with incompatible UBI version found: "
665 			"this UBI version is %d, image version is %d",
666 			UBI_VERSION, (int)ec_hdr->version);
667 		goto bad;
668 	}
669 
670 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
671 		ubi_err("bad VID header offset %d, expected %d",
672 			vid_hdr_offset, ubi->vid_hdr_offset);
673 		goto bad;
674 	}
675 
676 	if (leb_start != ubi->leb_start) {
677 		ubi_err("bad data offset %d, expected %d",
678 			leb_start, ubi->leb_start);
679 		goto bad;
680 	}
681 
682 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
683 		ubi_err("bad erase counter %lld", ec);
684 		goto bad;
685 	}
686 
687 	return 0;
688 
689 bad:
690 	ubi_err("bad EC header");
691 	ubi_dbg_dump_ec_hdr(ec_hdr);
692 	ubi_dbg_dump_stack();
693 	return 1;
694 }
695 
696 /**
697  * ubi_io_read_ec_hdr - read and check an erase counter header.
698  * @ubi: UBI device description object
699  * @pnum: physical eraseblock to read from
700  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
701  * header
702  * @verbose: be verbose if the header is corrupted or was not found
703  *
704  * This function reads erase counter header from physical eraseblock @pnum and
705  * stores it in @ec_hdr. This function also checks CRC checksum of the read
706  * erase counter header. The following codes may be returned:
707  *
708  * o %0 if the CRC checksum is correct and the header was successfully read;
709  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
710  *   and corrected by the flash driver; this is harmless but may indicate that
711  *   this eraseblock may become bad soon (but may be not);
712  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
713  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
714  * o a negative error code in case of failure.
715  */
716 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
717 		       struct ubi_ec_hdr *ec_hdr, int verbose)
718 {
719 	int err, read_err = 0;
720 	uint32_t crc, magic, hdr_crc;
721 
722 	dbg_io("read EC header from PEB %d", pnum);
723 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
724 
725 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
726 	if (err) {
727 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
728 			return err;
729 
730 		/*
731 		 * We read all the data, but either a correctable bit-flip
732 		 * occurred, or MTD reported about some data integrity error,
733 		 * like an ECC error in case of NAND. The former is harmless,
734 		 * the later may mean that the read data is corrupted. But we
735 		 * have a CRC check-sum and we will detect this. If the EC
736 		 * header is still OK, we just report this as there was a
737 		 * bit-flip.
738 		 */
739 		read_err = err;
740 	}
741 
742 	magic = be32_to_cpu(ec_hdr->magic);
743 	if (magic != UBI_EC_HDR_MAGIC) {
744 		/*
745 		 * The magic field is wrong. Let's check if we have read all
746 		 * 0xFF. If yes, this physical eraseblock is assumed to be
747 		 * empty.
748 		 *
749 		 * But if there was a read error, we do not test it for all
750 		 * 0xFFs. Even if it does contain all 0xFFs, this error
751 		 * indicates that something is still wrong with this physical
752 		 * eraseblock and we anyway cannot treat it as empty.
753 		 */
754 		if (read_err != -EBADMSG &&
755 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
756 			/* The physical eraseblock is supposedly empty */
757 			if (verbose)
758 				ubi_warn("no EC header found at PEB %d, "
759 					 "only 0xFF bytes", pnum);
760 			else if (UBI_IO_DEBUG)
761 				dbg_msg("no EC header found at PEB %d, "
762 					"only 0xFF bytes", pnum);
763 			return UBI_IO_PEB_EMPTY;
764 		}
765 
766 		/*
767 		 * This is not a valid erase counter header, and these are not
768 		 * 0xFF bytes. Report that the header is corrupted.
769 		 */
770 		if (verbose) {
771 			ubi_warn("bad magic number at PEB %d: %08x instead of "
772 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
773 			ubi_dbg_dump_ec_hdr(ec_hdr);
774 		} else if (UBI_IO_DEBUG)
775 			dbg_msg("bad magic number at PEB %d: %08x instead of "
776 				"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
777 		return UBI_IO_BAD_EC_HDR;
778 	}
779 
780 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
781 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
782 
783 	if (hdr_crc != crc) {
784 		if (verbose) {
785 			ubi_warn("bad EC header CRC at PEB %d, calculated "
786 				 "%#08x, read %#08x", pnum, crc, hdr_crc);
787 			ubi_dbg_dump_ec_hdr(ec_hdr);
788 		} else if (UBI_IO_DEBUG)
789 			dbg_msg("bad EC header CRC at PEB %d, calculated "
790 				"%#08x, read %#08x", pnum, crc, hdr_crc);
791 		return UBI_IO_BAD_EC_HDR;
792 	}
793 
794 	/* And of course validate what has just been read from the media */
795 	err = validate_ec_hdr(ubi, ec_hdr);
796 	if (err) {
797 		ubi_err("validation failed for PEB %d", pnum);
798 		return -EINVAL;
799 	}
800 
801 	return read_err ? UBI_IO_BITFLIPS : 0;
802 }
803 
804 /**
805  * ubi_io_write_ec_hdr - write an erase counter header.
806  * @ubi: UBI device description object
807  * @pnum: physical eraseblock to write to
808  * @ec_hdr: the erase counter header to write
809  *
810  * This function writes erase counter header described by @ec_hdr to physical
811  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
812  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
813  * field.
814  *
815  * This function returns zero in case of success and a negative error code in
816  * case of failure. If %-EIO is returned, the physical eraseblock most probably
817  * went bad.
818  */
819 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
820 			struct ubi_ec_hdr *ec_hdr)
821 {
822 	int err;
823 	uint32_t crc;
824 
825 	dbg_io("write EC header to PEB %d", pnum);
826 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
827 
828 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
829 	ec_hdr->version = UBI_VERSION;
830 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
831 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
832 	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
833 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
834 	ec_hdr->hdr_crc = cpu_to_be32(crc);
835 
836 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
837 	if (err)
838 		return err;
839 
840 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
841 	return err;
842 }
843 
844 /**
845  * validate_vid_hdr - validate a volume identifier header.
846  * @ubi: UBI device description object
847  * @vid_hdr: the volume identifier header to check
848  *
849  * This function checks that data stored in the volume identifier header
850  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
851  */
852 static int validate_vid_hdr(const struct ubi_device *ubi,
853 			    const struct ubi_vid_hdr *vid_hdr)
854 {
855 	int vol_type = vid_hdr->vol_type;
856 	int copy_flag = vid_hdr->copy_flag;
857 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
858 	int lnum = be32_to_cpu(vid_hdr->lnum);
859 	int compat = vid_hdr->compat;
860 	int data_size = be32_to_cpu(vid_hdr->data_size);
861 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
862 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
863 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
864 	int usable_leb_size = ubi->leb_size - data_pad;
865 
866 	if (copy_flag != 0 && copy_flag != 1) {
867 		dbg_err("bad copy_flag");
868 		goto bad;
869 	}
870 
871 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
872 	    data_pad < 0) {
873 		dbg_err("negative values");
874 		goto bad;
875 	}
876 
877 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
878 		dbg_err("bad vol_id");
879 		goto bad;
880 	}
881 
882 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
883 		dbg_err("bad compat");
884 		goto bad;
885 	}
886 
887 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
888 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
889 	    compat != UBI_COMPAT_REJECT) {
890 		dbg_err("bad compat");
891 		goto bad;
892 	}
893 
894 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
895 		dbg_err("bad vol_type");
896 		goto bad;
897 	}
898 
899 	if (data_pad >= ubi->leb_size / 2) {
900 		dbg_err("bad data_pad");
901 		goto bad;
902 	}
903 
904 	if (vol_type == UBI_VID_STATIC) {
905 		/*
906 		 * Although from high-level point of view static volumes may
907 		 * contain zero bytes of data, but no VID headers can contain
908 		 * zero at these fields, because they empty volumes do not have
909 		 * mapped logical eraseblocks.
910 		 */
911 		if (used_ebs == 0) {
912 			dbg_err("zero used_ebs");
913 			goto bad;
914 		}
915 		if (data_size == 0) {
916 			dbg_err("zero data_size");
917 			goto bad;
918 		}
919 		if (lnum < used_ebs - 1) {
920 			if (data_size != usable_leb_size) {
921 				dbg_err("bad data_size");
922 				goto bad;
923 			}
924 		} else if (lnum == used_ebs - 1) {
925 			if (data_size == 0) {
926 				dbg_err("bad data_size at last LEB");
927 				goto bad;
928 			}
929 		} else {
930 			dbg_err("too high lnum");
931 			goto bad;
932 		}
933 	} else {
934 		if (copy_flag == 0) {
935 			if (data_crc != 0) {
936 				dbg_err("non-zero data CRC");
937 				goto bad;
938 			}
939 			if (data_size != 0) {
940 				dbg_err("non-zero data_size");
941 				goto bad;
942 			}
943 		} else {
944 			if (data_size == 0) {
945 				dbg_err("zero data_size of copy");
946 				goto bad;
947 			}
948 		}
949 		if (used_ebs != 0) {
950 			dbg_err("bad used_ebs");
951 			goto bad;
952 		}
953 	}
954 
955 	return 0;
956 
957 bad:
958 	ubi_err("bad VID header");
959 	ubi_dbg_dump_vid_hdr(vid_hdr);
960 	ubi_dbg_dump_stack();
961 	return 1;
962 }
963 
964 /**
965  * ubi_io_read_vid_hdr - read and check a volume identifier header.
966  * @ubi: UBI device description object
967  * @pnum: physical eraseblock number to read from
968  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
969  * identifier header
970  * @verbose: be verbose if the header is corrupted or wasn't found
971  *
972  * This function reads the volume identifier header from physical eraseblock
973  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
974  * volume identifier header. The following codes may be returned:
975  *
976  * o %0 if the CRC checksum is correct and the header was successfully read;
977  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
978  *   and corrected by the flash driver; this is harmless but may indicate that
979  *   this eraseblock may become bad soon;
980  * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
981  *   error detected);
982  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
983  *   header there);
984  * o a negative error code in case of failure.
985  */
986 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
987 			struct ubi_vid_hdr *vid_hdr, int verbose)
988 {
989 	int err, read_err = 0;
990 	uint32_t crc, magic, hdr_crc;
991 	void *p;
992 
993 	dbg_io("read VID header from PEB %d", pnum);
994 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
995 
996 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
997 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
998 			  ubi->vid_hdr_alsize);
999 	if (err) {
1000 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
1001 			return err;
1002 
1003 		/*
1004 		 * We read all the data, but either a correctable bit-flip
1005 		 * occurred, or MTD reported about some data integrity error,
1006 		 * like an ECC error in case of NAND. The former is harmless,
1007 		 * the later may mean the read data is corrupted. But we have a
1008 		 * CRC check-sum and we will identify this. If the VID header is
1009 		 * still OK, we just report this as there was a bit-flip.
1010 		 */
1011 		read_err = err;
1012 	}
1013 
1014 	magic = be32_to_cpu(vid_hdr->magic);
1015 	if (magic != UBI_VID_HDR_MAGIC) {
1016 		/*
1017 		 * If we have read all 0xFF bytes, the VID header probably does
1018 		 * not exist and the physical eraseblock is assumed to be free.
1019 		 *
1020 		 * But if there was a read error, we do not test the data for
1021 		 * 0xFFs. Even if it does contain all 0xFFs, this error
1022 		 * indicates that something is still wrong with this physical
1023 		 * eraseblock and it cannot be regarded as free.
1024 		 */
1025 		if (read_err != -EBADMSG &&
1026 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1027 			/* The physical eraseblock is supposedly free */
1028 			if (verbose)
1029 				ubi_warn("no VID header found at PEB %d, "
1030 					 "only 0xFF bytes", pnum);
1031 			else if (UBI_IO_DEBUG)
1032 				dbg_msg("no VID header found at PEB %d, "
1033 					"only 0xFF bytes", pnum);
1034 			return UBI_IO_PEB_FREE;
1035 		}
1036 
1037 		/*
1038 		 * This is not a valid VID header, and these are not 0xFF
1039 		 * bytes. Report that the header is corrupted.
1040 		 */
1041 		if (verbose) {
1042 			ubi_warn("bad magic number at PEB %d: %08x instead of "
1043 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1044 			ubi_dbg_dump_vid_hdr(vid_hdr);
1045 		} else if (UBI_IO_DEBUG)
1046 			dbg_msg("bad magic number at PEB %d: %08x instead of "
1047 				"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1048 		return UBI_IO_BAD_VID_HDR;
1049 	}
1050 
1051 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1052 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1053 
1054 	if (hdr_crc != crc) {
1055 		if (verbose) {
1056 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1057 				 "read %#08x", pnum, crc, hdr_crc);
1058 			ubi_dbg_dump_vid_hdr(vid_hdr);
1059 		} else if (UBI_IO_DEBUG)
1060 			dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1061 				"read %#08x", pnum, crc, hdr_crc);
1062 		return UBI_IO_BAD_VID_HDR;
1063 	}
1064 
1065 	/* Validate the VID header that we have just read */
1066 	err = validate_vid_hdr(ubi, vid_hdr);
1067 	if (err) {
1068 		ubi_err("validation failed for PEB %d", pnum);
1069 		return -EINVAL;
1070 	}
1071 
1072 	return read_err ? UBI_IO_BITFLIPS : 0;
1073 }
1074 
1075 /**
1076  * ubi_io_write_vid_hdr - write a volume identifier header.
1077  * @ubi: UBI device description object
1078  * @pnum: the physical eraseblock number to write to
1079  * @vid_hdr: the volume identifier header to write
1080  *
1081  * This function writes the volume identifier header described by @vid_hdr to
1082  * physical eraseblock @pnum. This function automatically fills the
1083  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1084  * header CRC checksum and stores it at vid_hdr->hdr_crc.
1085  *
1086  * This function returns zero in case of success and a negative error code in
1087  * case of failure. If %-EIO is returned, the physical eraseblock probably went
1088  * bad.
1089  */
1090 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1091 			 struct ubi_vid_hdr *vid_hdr)
1092 {
1093 	int err;
1094 	uint32_t crc;
1095 	void *p;
1096 
1097 	dbg_io("write VID header to PEB %d", pnum);
1098 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1099 
1100 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1101 	if (err)
1102 		return err;
1103 
1104 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1105 	vid_hdr->version = UBI_VERSION;
1106 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1107 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1108 
1109 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1110 	if (err)
1111 		return err;
1112 
1113 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1114 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1115 			   ubi->vid_hdr_alsize);
1116 	return err;
1117 }
1118 
1119 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1120 
1121 /**
1122  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1123  * @ubi: UBI device description object
1124  * @pnum: physical eraseblock number to check
1125  *
1126  * This function returns zero if the physical eraseblock is good, %-EINVAL if
1127  * it is bad and a negative error code if an error occurred.
1128  */
1129 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1130 {
1131 	int err;
1132 
1133 	err = ubi_io_is_bad(ubi, pnum);
1134 	if (!err)
1135 		return err;
1136 
1137 	ubi_err("paranoid check failed for PEB %d", pnum);
1138 	ubi_dbg_dump_stack();
1139 	return err > 0 ? -EINVAL : err;
1140 }
1141 
1142 /**
1143  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1144  * @ubi: UBI device description object
1145  * @pnum: physical eraseblock number the erase counter header belongs to
1146  * @ec_hdr: the erase counter header to check
1147  *
1148  * This function returns zero if the erase counter header contains valid
1149  * values, and %-EINVAL if not.
1150  */
1151 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1152 				 const struct ubi_ec_hdr *ec_hdr)
1153 {
1154 	int err;
1155 	uint32_t magic;
1156 
1157 	magic = be32_to_cpu(ec_hdr->magic);
1158 	if (magic != UBI_EC_HDR_MAGIC) {
1159 		ubi_err("bad magic %#08x, must be %#08x",
1160 			magic, UBI_EC_HDR_MAGIC);
1161 		goto fail;
1162 	}
1163 
1164 	err = validate_ec_hdr(ubi, ec_hdr);
1165 	if (err) {
1166 		ubi_err("paranoid check failed for PEB %d", pnum);
1167 		goto fail;
1168 	}
1169 
1170 	return 0;
1171 
1172 fail:
1173 	ubi_dbg_dump_ec_hdr(ec_hdr);
1174 	ubi_dbg_dump_stack();
1175 	return -EINVAL;
1176 }
1177 
1178 /**
1179  * paranoid_check_peb_ec_hdr - check erase counter header.
1180  * @ubi: UBI device description object
1181  * @pnum: the physical eraseblock number to check
1182  *
1183  * This function returns zero if the erase counter header is all right and and
1184  * a negative error code if not or if an error occurred.
1185  */
1186 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1187 {
1188 	int err;
1189 	uint32_t crc, hdr_crc;
1190 	struct ubi_ec_hdr *ec_hdr;
1191 
1192 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1193 	if (!ec_hdr)
1194 		return -ENOMEM;
1195 
1196 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1197 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1198 		goto exit;
1199 
1200 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1201 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1202 	if (hdr_crc != crc) {
1203 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1204 		ubi_err("paranoid check failed for PEB %d", pnum);
1205 		ubi_dbg_dump_ec_hdr(ec_hdr);
1206 		ubi_dbg_dump_stack();
1207 		err = -EINVAL;
1208 		goto exit;
1209 	}
1210 
1211 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1212 
1213 exit:
1214 	kfree(ec_hdr);
1215 	return err;
1216 }
1217 
1218 /**
1219  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1220  * @ubi: UBI device description object
1221  * @pnum: physical eraseblock number the volume identifier header belongs to
1222  * @vid_hdr: the volume identifier header to check
1223  *
1224  * This function returns zero if the volume identifier header is all right, and
1225  * %-EINVAL if not.
1226  */
1227 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1228 				  const struct ubi_vid_hdr *vid_hdr)
1229 {
1230 	int err;
1231 	uint32_t magic;
1232 
1233 	magic = be32_to_cpu(vid_hdr->magic);
1234 	if (magic != UBI_VID_HDR_MAGIC) {
1235 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1236 			magic, pnum, UBI_VID_HDR_MAGIC);
1237 		goto fail;
1238 	}
1239 
1240 	err = validate_vid_hdr(ubi, vid_hdr);
1241 	if (err) {
1242 		ubi_err("paranoid check failed for PEB %d", pnum);
1243 		goto fail;
1244 	}
1245 
1246 	return err;
1247 
1248 fail:
1249 	ubi_err("paranoid check failed for PEB %d", pnum);
1250 	ubi_dbg_dump_vid_hdr(vid_hdr);
1251 	ubi_dbg_dump_stack();
1252 	return -EINVAL;
1253 
1254 }
1255 
1256 /**
1257  * paranoid_check_peb_vid_hdr - check volume identifier header.
1258  * @ubi: UBI device description object
1259  * @pnum: the physical eraseblock number to check
1260  *
1261  * This function returns zero if the volume identifier header is all right,
1262  * and a negative error code if not or if an error occurred.
1263  */
1264 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1265 {
1266 	int err;
1267 	uint32_t crc, hdr_crc;
1268 	struct ubi_vid_hdr *vid_hdr;
1269 	void *p;
1270 
1271 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1272 	if (!vid_hdr)
1273 		return -ENOMEM;
1274 
1275 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1276 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1277 			  ubi->vid_hdr_alsize);
1278 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1279 		goto exit;
1280 
1281 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1282 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1283 	if (hdr_crc != crc) {
1284 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1285 			"read %#08x", pnum, crc, hdr_crc);
1286 		ubi_err("paranoid check failed for PEB %d", pnum);
1287 		ubi_dbg_dump_vid_hdr(vid_hdr);
1288 		ubi_dbg_dump_stack();
1289 		err = -EINVAL;
1290 		goto exit;
1291 	}
1292 
1293 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1294 
1295 exit:
1296 	ubi_free_vid_hdr(ubi, vid_hdr);
1297 	return err;
1298 }
1299 
1300 /**
1301  * ubi_dbg_check_write - make sure write succeeded.
1302  * @ubi: UBI device description object
1303  * @buf: buffer with data which were written
1304  * @pnum: physical eraseblock number the data were written to
1305  * @offset: offset within the physical eraseblock the data were written to
1306  * @len: how many bytes were written
1307  *
1308  * This functions reads data which were recently written and compares it with
1309  * the original data buffer - the data have to match. Returns zero if the data
1310  * match and a negative error code if not or in case of failure.
1311  */
1312 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1313 			int offset, int len)
1314 {
1315 	int err, i;
1316 
1317 	mutex_lock(&ubi->dbg_buf_mutex);
1318 	err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1319 	if (err)
1320 		goto out_unlock;
1321 
1322 	for (i = 0; i < len; i++) {
1323 		uint8_t c = ((uint8_t *)buf)[i];
1324 		uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1325 		int dump_len;
1326 
1327 		if (c == c1)
1328 			continue;
1329 
1330 		ubi_err("paranoid check failed for PEB %d:%d, len %d",
1331 			pnum, offset, len);
1332 		ubi_msg("data differ at position %d", i);
1333 		dump_len = max_t(int, 128, len - i);
1334 		ubi_msg("hex dump of the original buffer from %d to %d",
1335 			i, i + dump_len);
1336 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1337 			       buf + i, dump_len, 1);
1338 		ubi_msg("hex dump of the read buffer from %d to %d",
1339 			i, i + dump_len);
1340 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1341 			       ubi->dbg_peb_buf + i, dump_len, 1);
1342 		ubi_dbg_dump_stack();
1343 		err = -EINVAL;
1344 		goto out_unlock;
1345 	}
1346 	mutex_unlock(&ubi->dbg_buf_mutex);
1347 
1348 	return 0;
1349 
1350 out_unlock:
1351 	mutex_unlock(&ubi->dbg_buf_mutex);
1352 	return err;
1353 }
1354 
1355 /**
1356  * ubi_dbg_check_all_ff - check that a region of flash is empty.
1357  * @ubi: UBI device description object
1358  * @pnum: the physical eraseblock number to check
1359  * @offset: the starting offset within the physical eraseblock to check
1360  * @len: the length of the region to check
1361  *
1362  * This function returns zero if only 0xFF bytes are present at offset
1363  * @offset of the physical eraseblock @pnum, and a negative error code if not
1364  * or if an error occurred.
1365  */
1366 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1367 {
1368 	size_t read;
1369 	int err;
1370 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1371 
1372 	mutex_lock(&ubi->dbg_buf_mutex);
1373 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1374 	if (err && err != -EUCLEAN) {
1375 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1376 			"read %zd bytes", err, len, pnum, offset, read);
1377 		goto error;
1378 	}
1379 
1380 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1381 	if (err == 0) {
1382 		ubi_err("flash region at PEB %d:%d, length %d does not "
1383 			"contain all 0xFF bytes", pnum, offset, len);
1384 		goto fail;
1385 	}
1386 	mutex_unlock(&ubi->dbg_buf_mutex);
1387 
1388 	return 0;
1389 
1390 fail:
1391 	ubi_err("paranoid check failed for PEB %d", pnum);
1392 	ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1393 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1394 		       ubi->dbg_peb_buf, len, 1);
1395 	err = -EINVAL;
1396 error:
1397 	ubi_dbg_dump_stack();
1398 	mutex_unlock(&ubi->dbg_buf_mutex);
1399 	return err;
1400 }
1401 
1402 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1403