xref: /openbmc/linux/drivers/mtd/ubi/io.c (revision 04c71976)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2006, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём)
20  */
21 
22 /*
23  * UBI input/output unit.
24  *
25  * This unit provides a uniform way to work with all kinds of the underlying
26  * MTD devices. It also implements handy functions for reading and writing UBI
27  * headers.
28  *
29  * We are trying to have a paranoid mindset and not to trust to what we read
30  * from the flash media in order to be more secure and robust. So this unit
31  * validates every single header it reads from the flash media.
32  *
33  * Some words about how the eraseblock headers are stored.
34  *
35  * The erase counter header is always stored at offset zero. By default, the
36  * VID header is stored after the EC header at the closest aligned offset
37  * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38  * header at the closest aligned offset. But this default layout may be
39  * changed. For example, for different reasons (e.g., optimization) UBI may be
40  * asked to put the VID header at further offset, and even at an unaligned
41  * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42  * proper padding in front of it. Data offset may also be changed but it has to
43  * be aligned.
44  *
45  * About minimal I/O units. In general, UBI assumes flash device model where
46  * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47  * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48  * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49  * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50  * to do different optimizations.
51  *
52  * This is extremely useful in case of NAND flashes which admit of several
53  * write operations to one NAND page. In this case UBI can fit EC and VID
54  * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55  * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56  * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57  * users.
58  *
59  * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60  * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61  * headers.
62  *
63  * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64  * device, e.g., make @ubi->min_io_size = 512 in the example above?
65  *
66  * A: because when writing a sub-page, MTD still writes a full 2K page but the
67  * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68  * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69  * prefer to use sub-pages only for EV and VID headers.
70  *
71  * As it was noted above, the VID header may start at a non-aligned offset.
72  * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73  * the VID header may reside at offset 1984 which is the last 64 bytes of the
74  * last sub-page (EC header is always at offset zero). This causes some
75  * difficulties when reading and writing VID headers.
76  *
77  * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78  * the data and want to write this VID header out. As we can only write in
79  * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80  * to offset 448 of this buffer.
81  *
82  * The I/O unit does the following trick in order to avoid this extra copy.
83  * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84  * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85  * VID header is being written out, it shifts the VID header pointer back and
86  * writes the whole sub-page.
87  */
88 
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
92 
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 				 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 				  const struct ubi_vid_hdr *vid_hdr);
101 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
102 				 int len);
103 #else
104 #define paranoid_check_not_bad(ubi, pnum) 0
105 #define paranoid_check_peb_ec_hdr(ubi, pnum)  0
106 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr)  0
107 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
108 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
109 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
110 #endif
111 
112 /**
113  * ubi_io_read - read data from a physical eraseblock.
114  * @ubi: UBI device description object
115  * @buf: buffer where to store the read data
116  * @pnum: physical eraseblock number to read from
117  * @offset: offset within the physical eraseblock from where to read
118  * @len: how many bytes to read
119  *
120  * This function reads data from offset @offset of physical eraseblock @pnum
121  * and stores the read data in the @buf buffer. The following return codes are
122  * possible:
123  *
124  * o %0 if all the requested data were successfully read;
125  * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
126  *   correctable bit-flips were detected; this is harmless but may indicate
127  *   that this eraseblock may become bad soon (but do not have to);
128  * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
129  *   example it can be an ECC error in case of NAND; this most probably means
130  *   that the data is corrupted;
131  * o %-EIO if some I/O error occurred;
132  * o other negative error codes in case of other errors.
133  */
134 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
135 		int len)
136 {
137 	int err, retries = 0;
138 	size_t read;
139 	loff_t addr;
140 
141 	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
142 
143 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
144 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
145 	ubi_assert(len > 0);
146 
147 	err = paranoid_check_not_bad(ubi, pnum);
148 	if (err)
149 		return err > 0 ? -EINVAL : err;
150 
151 	addr = (loff_t)pnum * ubi->peb_size + offset;
152 retry:
153 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
154 	if (err) {
155 		if (err == -EUCLEAN) {
156 			/*
157 			 * -EUCLEAN is reported if there was a bit-flip which
158 			 * was corrected, so this is harmless.
159 			 */
160 			ubi_msg("fixable bit-flip detected at PEB %d", pnum);
161 			ubi_assert(len == read);
162 			return UBI_IO_BITFLIPS;
163 		}
164 
165 		if (read != len && retries++ < UBI_IO_RETRIES) {
166 			dbg_io("error %d while reading %d bytes from PEB %d:%d, "
167 			       "read only %zd bytes, retry",
168 			       err, len, pnum, offset, read);
169 			yield();
170 			goto retry;
171 		}
172 
173 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
174 			"read %zd bytes", err, len, pnum, offset, read);
175 		ubi_dbg_dump_stack();
176 	} else {
177 		ubi_assert(len == read);
178 
179 		if (ubi_dbg_is_bitflip()) {
180 			dbg_msg("bit-flip (emulated)");
181 			err = UBI_IO_BITFLIPS;
182 		}
183 	}
184 
185 	return err;
186 }
187 
188 /**
189  * ubi_io_write - write data to a physical eraseblock.
190  * @ubi: UBI device description object
191  * @buf: buffer with the data to write
192  * @pnum: physical eraseblock number to write to
193  * @offset: offset within the physical eraseblock where to write
194  * @len: how many bytes to write
195  *
196  * This function writes @len bytes of data from buffer @buf to offset @offset
197  * of physical eraseblock @pnum. If all the data were successfully written,
198  * zero is returned. If an error occurred, this function returns a negative
199  * error code. If %-EIO is returned, the physical eraseblock most probably went
200  * bad.
201  *
202  * Note, in case of an error, it is possible that something was still written
203  * to the flash media, but may be some garbage.
204  */
205 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
206 		 int len)
207 {
208 	int err;
209 	size_t written;
210 	loff_t addr;
211 
212 	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
213 
214 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
215 	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
216 	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
217 	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
218 
219 	if (ubi->ro_mode) {
220 		ubi_err("read-only mode");
221 		return -EROFS;
222 	}
223 
224 	/* The below has to be compiled out if paranoid checks are disabled */
225 
226 	err = paranoid_check_not_bad(ubi, pnum);
227 	if (err)
228 		return err > 0 ? -EINVAL : err;
229 
230 	/* The area we are writing to has to contain all 0xFF bytes */
231 	err = paranoid_check_all_ff(ubi, pnum, offset, len);
232 	if (err)
233 		return err > 0 ? -EINVAL : err;
234 
235 	if (offset >= ubi->leb_start) {
236 		/*
237 		 * We write to the data area of the physical eraseblock. Make
238 		 * sure it has valid EC and VID headers.
239 		 */
240 		err = paranoid_check_peb_ec_hdr(ubi, pnum);
241 		if (err)
242 			return err > 0 ? -EINVAL : err;
243 		err = paranoid_check_peb_vid_hdr(ubi, pnum);
244 		if (err)
245 			return err > 0 ? -EINVAL : err;
246 	}
247 
248 	if (ubi_dbg_is_write_failure()) {
249 		dbg_err("cannot write %d bytes to PEB %d:%d "
250 			"(emulated)", len, pnum, offset);
251 		ubi_dbg_dump_stack();
252 		return -EIO;
253 	}
254 
255 	addr = (loff_t)pnum * ubi->peb_size + offset;
256 	err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
257 	if (err) {
258 		ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
259 			" %zd bytes", err, len, pnum, offset, written);
260 		ubi_dbg_dump_stack();
261 	} else
262 		ubi_assert(written == len);
263 
264 	return err;
265 }
266 
267 /**
268  * erase_callback - MTD erasure call-back.
269  * @ei: MTD erase information object.
270  *
271  * Note, even though MTD erase interface is asynchronous, all the current
272  * implementations are synchronous anyway.
273  */
274 static void erase_callback(struct erase_info *ei)
275 {
276 	wake_up_interruptible((wait_queue_head_t *)ei->priv);
277 }
278 
279 /**
280  * do_sync_erase - synchronously erase a physical eraseblock.
281  * @ubi: UBI device description object
282  * @pnum: the physical eraseblock number to erase
283  *
284  * This function synchronously erases physical eraseblock @pnum and returns
285  * zero in case of success and a negative error code in case of failure. If
286  * %-EIO is returned, the physical eraseblock most probably went bad.
287  */
288 static int do_sync_erase(struct ubi_device *ubi, int pnum)
289 {
290 	int err, retries = 0;
291 	struct erase_info ei;
292 	wait_queue_head_t wq;
293 
294 	dbg_io("erase PEB %d", pnum);
295 
296 retry:
297 	init_waitqueue_head(&wq);
298 	memset(&ei, 0, sizeof(struct erase_info));
299 
300 	ei.mtd      = ubi->mtd;
301 	ei.addr     = (loff_t)pnum * ubi->peb_size;
302 	ei.len      = ubi->peb_size;
303 	ei.callback = erase_callback;
304 	ei.priv     = (unsigned long)&wq;
305 
306 	err = ubi->mtd->erase(ubi->mtd, &ei);
307 	if (err) {
308 		if (retries++ < UBI_IO_RETRIES) {
309 			dbg_io("error %d while erasing PEB %d, retry",
310 			       err, pnum);
311 			yield();
312 			goto retry;
313 		}
314 		ubi_err("cannot erase PEB %d, error %d", pnum, err);
315 		ubi_dbg_dump_stack();
316 		return err;
317 	}
318 
319 	err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
320 					   ei.state == MTD_ERASE_FAILED);
321 	if (err) {
322 		ubi_err("interrupted PEB %d erasure", pnum);
323 		return -EINTR;
324 	}
325 
326 	if (ei.state == MTD_ERASE_FAILED) {
327 		if (retries++ < UBI_IO_RETRIES) {
328 			dbg_io("error while erasing PEB %d, retry", pnum);
329 			yield();
330 			goto retry;
331 		}
332 		ubi_err("cannot erase PEB %d", pnum);
333 		ubi_dbg_dump_stack();
334 		return -EIO;
335 	}
336 
337 	err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
338 	if (err)
339 		return err > 0 ? -EINVAL : err;
340 
341 	if (ubi_dbg_is_erase_failure() && !err) {
342 		dbg_err("cannot erase PEB %d (emulated)", pnum);
343 		return -EIO;
344 	}
345 
346 	return 0;
347 }
348 
349 /**
350  * check_pattern - check if buffer contains only a certain byte pattern.
351  * @buf: buffer to check
352  * @patt: the pattern to check
353  * @size: buffer size in bytes
354  *
355  * This function returns %1 in there are only @patt bytes in @buf, and %0 if
356  * something else was also found.
357  */
358 static int check_pattern(const void *buf, uint8_t patt, int size)
359 {
360 	int i;
361 
362 	for (i = 0; i < size; i++)
363 		if (((const uint8_t *)buf)[i] != patt)
364 			return 0;
365 	return 1;
366 }
367 
368 /* Patterns to write to a physical eraseblock when torturing it */
369 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
370 
371 /**
372  * torture_peb - test a supposedly bad physical eraseblock.
373  * @ubi: UBI device description object
374  * @pnum: the physical eraseblock number to test
375  *
376  * This function returns %-EIO if the physical eraseblock did not pass the
377  * test, a positive number of erase operations done if the test was
378  * successfully passed, and other negative error codes in case of other errors.
379  */
380 static int torture_peb(struct ubi_device *ubi, int pnum)
381 {
382 	int err, i, patt_count;
383 
384 	patt_count = ARRAY_SIZE(patterns);
385 	ubi_assert(patt_count > 0);
386 
387 	mutex_lock(&ubi->buf_mutex);
388 	for (i = 0; i < patt_count; i++) {
389 		err = do_sync_erase(ubi, pnum);
390 		if (err)
391 			goto out;
392 
393 		/* Make sure the PEB contains only 0xFF bytes */
394 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
395 		if (err)
396 			goto out;
397 
398 		err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
399 		if (err == 0) {
400 			ubi_err("erased PEB %d, but a non-0xFF byte found",
401 				pnum);
402 			err = -EIO;
403 			goto out;
404 		}
405 
406 		/* Write a pattern and check it */
407 		memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
408 		err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
409 		if (err)
410 			goto out;
411 
412 		memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
413 		err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
414 		if (err)
415 			goto out;
416 
417 		err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
418 		if (err == 0) {
419 			ubi_err("pattern %x checking failed for PEB %d",
420 				patterns[i], pnum);
421 			err = -EIO;
422 			goto out;
423 		}
424 	}
425 
426 	err = patt_count;
427 
428 out:
429 	mutex_unlock(&ubi->buf_mutex);
430 	if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
431 		/*
432 		 * If a bit-flip or data integrity error was detected, the test
433 		 * has not passed because it happened on a freshly erased
434 		 * physical eraseblock which means something is wrong with it.
435 		 */
436 		ubi_err("read problems on freshly erased PEB %d, must be bad",
437 			pnum);
438 		err = -EIO;
439 	}
440 	return err;
441 }
442 
443 /**
444  * ubi_io_sync_erase - synchronously erase a physical eraseblock.
445  * @ubi: UBI device description object
446  * @pnum: physical eraseblock number to erase
447  * @torture: if this physical eraseblock has to be tortured
448  *
449  * This function synchronously erases physical eraseblock @pnum. If @torture
450  * flag is not zero, the physical eraseblock is checked by means of writing
451  * different patterns to it and reading them back. If the torturing is enabled,
452  * the physical eraseblock is erased more then once.
453  *
454  * This function returns the number of erasures made in case of success, %-EIO
455  * if the erasure failed or the torturing test failed, and other negative error
456  * codes in case of other errors. Note, %-EIO means that the physical
457  * eraseblock is bad.
458  */
459 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
460 {
461 	int err, ret = 0;
462 
463 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
464 
465 	err = paranoid_check_not_bad(ubi, pnum);
466 	if (err != 0)
467 		return err > 0 ? -EINVAL : err;
468 
469 	if (ubi->ro_mode) {
470 		ubi_err("read-only mode");
471 		return -EROFS;
472 	}
473 
474 	if (torture) {
475 		ret = torture_peb(ubi, pnum);
476 		if (ret < 0)
477 			return ret;
478 	}
479 
480 	err = do_sync_erase(ubi, pnum);
481 	if (err)
482 		return err;
483 
484 	return ret + 1;
485 }
486 
487 /**
488  * ubi_io_is_bad - check if a physical eraseblock is bad.
489  * @ubi: UBI device description object
490  * @pnum: the physical eraseblock number to check
491  *
492  * This function returns a positive number if the physical eraseblock is bad,
493  * zero if not, and a negative error code if an error occurred.
494  */
495 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
496 {
497 	struct mtd_info *mtd = ubi->mtd;
498 
499 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
500 
501 	if (ubi->bad_allowed) {
502 		int ret;
503 
504 		ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
505 		if (ret < 0)
506 			ubi_err("error %d while checking if PEB %d is bad",
507 				ret, pnum);
508 		else if (ret)
509 			dbg_io("PEB %d is bad", pnum);
510 		return ret;
511 	}
512 
513 	return 0;
514 }
515 
516 /**
517  * ubi_io_mark_bad - mark a physical eraseblock as bad.
518  * @ubi: UBI device description object
519  * @pnum: the physical eraseblock number to mark
520  *
521  * This function returns zero in case of success and a negative error code in
522  * case of failure.
523  */
524 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
525 {
526 	int err;
527 	struct mtd_info *mtd = ubi->mtd;
528 
529 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
530 
531 	if (ubi->ro_mode) {
532 		ubi_err("read-only mode");
533 		return -EROFS;
534 	}
535 
536 	if (!ubi->bad_allowed)
537 		return 0;
538 
539 	err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
540 	if (err)
541 		ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
542 	return err;
543 }
544 
545 /**
546  * validate_ec_hdr - validate an erase counter header.
547  * @ubi: UBI device description object
548  * @ec_hdr: the erase counter header to check
549  *
550  * This function returns zero if the erase counter header is OK, and %1 if
551  * not.
552  */
553 static int validate_ec_hdr(const struct ubi_device *ubi,
554 			   const struct ubi_ec_hdr *ec_hdr)
555 {
556 	long long ec;
557 	int vid_hdr_offset, leb_start;
558 
559 	ec = be64_to_cpu(ec_hdr->ec);
560 	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
561 	leb_start = be32_to_cpu(ec_hdr->data_offset);
562 
563 	if (ec_hdr->version != UBI_VERSION) {
564 		ubi_err("node with incompatible UBI version found: "
565 			"this UBI version is %d, image version is %d",
566 			UBI_VERSION, (int)ec_hdr->version);
567 		goto bad;
568 	}
569 
570 	if (vid_hdr_offset != ubi->vid_hdr_offset) {
571 		ubi_err("bad VID header offset %d, expected %d",
572 			vid_hdr_offset, ubi->vid_hdr_offset);
573 		goto bad;
574 	}
575 
576 	if (leb_start != ubi->leb_start) {
577 		ubi_err("bad data offset %d, expected %d",
578 			leb_start, ubi->leb_start);
579 		goto bad;
580 	}
581 
582 	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
583 		ubi_err("bad erase counter %lld", ec);
584 		goto bad;
585 	}
586 
587 	return 0;
588 
589 bad:
590 	ubi_err("bad EC header");
591 	ubi_dbg_dump_ec_hdr(ec_hdr);
592 	ubi_dbg_dump_stack();
593 	return 1;
594 }
595 
596 /**
597  * ubi_io_read_ec_hdr - read and check an erase counter header.
598  * @ubi: UBI device description object
599  * @pnum: physical eraseblock to read from
600  * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
601  * header
602  * @verbose: be verbose if the header is corrupted or was not found
603  *
604  * This function reads erase counter header from physical eraseblock @pnum and
605  * stores it in @ec_hdr. This function also checks CRC checksum of the read
606  * erase counter header. The following codes may be returned:
607  *
608  * o %0 if the CRC checksum is correct and the header was successfully read;
609  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
610  *   and corrected by the flash driver; this is harmless but may indicate that
611  *   this eraseblock may become bad soon (but may be not);
612  * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
613  * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
614  * o a negative error code in case of failure.
615  */
616 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
617 		       struct ubi_ec_hdr *ec_hdr, int verbose)
618 {
619 	int err, read_err = 0;
620 	uint32_t crc, magic, hdr_crc;
621 
622 	dbg_io("read EC header from PEB %d", pnum);
623 	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
624 
625 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
626 	if (err) {
627 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
628 			return err;
629 
630 		/*
631 		 * We read all the data, but either a correctable bit-flip
632 		 * occurred, or MTD reported about some data integrity error,
633 		 * like an ECC error in case of NAND. The former is harmless,
634 		 * the later may mean that the read data is corrupted. But we
635 		 * have a CRC check-sum and we will detect this. If the EC
636 		 * header is still OK, we just report this as there was a
637 		 * bit-flip.
638 		 */
639 		read_err = err;
640 	}
641 
642 	magic = be32_to_cpu(ec_hdr->magic);
643 	if (magic != UBI_EC_HDR_MAGIC) {
644 		/*
645 		 * The magic field is wrong. Let's check if we have read all
646 		 * 0xFF. If yes, this physical eraseblock is assumed to be
647 		 * empty.
648 		 *
649 		 * But if there was a read error, we do not test it for all
650 		 * 0xFFs. Even if it does contain all 0xFFs, this error
651 		 * indicates that something is still wrong with this physical
652 		 * eraseblock and we anyway cannot treat it as empty.
653 		 */
654 		if (read_err != -EBADMSG &&
655 		    check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
656 			/* The physical eraseblock is supposedly empty */
657 
658 			/*
659 			 * The below is just a paranoid check, it has to be
660 			 * compiled out if paranoid checks are disabled.
661 			 */
662 			err = paranoid_check_all_ff(ubi, pnum, 0,
663 						    ubi->peb_size);
664 			if (err)
665 				return err > 0 ? UBI_IO_BAD_EC_HDR : err;
666 
667 			if (verbose)
668 				ubi_warn("no EC header found at PEB %d, "
669 					 "only 0xFF bytes", pnum);
670 			return UBI_IO_PEB_EMPTY;
671 		}
672 
673 		/*
674 		 * This is not a valid erase counter header, and these are not
675 		 * 0xFF bytes. Report that the header is corrupted.
676 		 */
677 		if (verbose) {
678 			ubi_warn("bad magic number at PEB %d: %08x instead of "
679 				 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
680 			ubi_dbg_dump_ec_hdr(ec_hdr);
681 		}
682 		return UBI_IO_BAD_EC_HDR;
683 	}
684 
685 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
686 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
687 
688 	if (hdr_crc != crc) {
689 		if (verbose) {
690 			ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
691 				 " read %#08x", pnum, crc, hdr_crc);
692 			ubi_dbg_dump_ec_hdr(ec_hdr);
693 		}
694 		return UBI_IO_BAD_EC_HDR;
695 	}
696 
697 	/* And of course validate what has just been read from the media */
698 	err = validate_ec_hdr(ubi, ec_hdr);
699 	if (err) {
700 		ubi_err("validation failed for PEB %d", pnum);
701 		return -EINVAL;
702 	}
703 
704 	return read_err ? UBI_IO_BITFLIPS : 0;
705 }
706 
707 /**
708  * ubi_io_write_ec_hdr - write an erase counter header.
709  * @ubi: UBI device description object
710  * @pnum: physical eraseblock to write to
711  * @ec_hdr: the erase counter header to write
712  *
713  * This function writes erase counter header described by @ec_hdr to physical
714  * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
715  * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
716  * field.
717  *
718  * This function returns zero in case of success and a negative error code in
719  * case of failure. If %-EIO is returned, the physical eraseblock most probably
720  * went bad.
721  */
722 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
723 			struct ubi_ec_hdr *ec_hdr)
724 {
725 	int err;
726 	uint32_t crc;
727 
728 	dbg_io("write EC header to PEB %d", pnum);
729 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
730 
731 	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
732 	ec_hdr->version = UBI_VERSION;
733 	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
734 	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
735 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
736 	ec_hdr->hdr_crc = cpu_to_be32(crc);
737 
738 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
739 	if (err)
740 		return -EINVAL;
741 
742 	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
743 	return err;
744 }
745 
746 /**
747  * validate_vid_hdr - validate a volume identifier header.
748  * @ubi: UBI device description object
749  * @vid_hdr: the volume identifier header to check
750  *
751  * This function checks that data stored in the volume identifier header
752  * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
753  */
754 static int validate_vid_hdr(const struct ubi_device *ubi,
755 			    const struct ubi_vid_hdr *vid_hdr)
756 {
757 	int vol_type = vid_hdr->vol_type;
758 	int copy_flag = vid_hdr->copy_flag;
759 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
760 	int lnum = be32_to_cpu(vid_hdr->lnum);
761 	int compat = vid_hdr->compat;
762 	int data_size = be32_to_cpu(vid_hdr->data_size);
763 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
764 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
765 	int data_crc = be32_to_cpu(vid_hdr->data_crc);
766 	int usable_leb_size = ubi->leb_size - data_pad;
767 
768 	if (copy_flag != 0 && copy_flag != 1) {
769 		dbg_err("bad copy_flag");
770 		goto bad;
771 	}
772 
773 	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
774 	    data_pad < 0) {
775 		dbg_err("negative values");
776 		goto bad;
777 	}
778 
779 	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
780 		dbg_err("bad vol_id");
781 		goto bad;
782 	}
783 
784 	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
785 		dbg_err("bad compat");
786 		goto bad;
787 	}
788 
789 	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
790 	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
791 	    compat != UBI_COMPAT_REJECT) {
792 		dbg_err("bad compat");
793 		goto bad;
794 	}
795 
796 	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
797 		dbg_err("bad vol_type");
798 		goto bad;
799 	}
800 
801 	if (data_pad >= ubi->leb_size / 2) {
802 		dbg_err("bad data_pad");
803 		goto bad;
804 	}
805 
806 	if (vol_type == UBI_VID_STATIC) {
807 		/*
808 		 * Although from high-level point of view static volumes may
809 		 * contain zero bytes of data, but no VID headers can contain
810 		 * zero at these fields, because they empty volumes do not have
811 		 * mapped logical eraseblocks.
812 		 */
813 		if (used_ebs == 0) {
814 			dbg_err("zero used_ebs");
815 			goto bad;
816 		}
817 		if (data_size == 0) {
818 			dbg_err("zero data_size");
819 			goto bad;
820 		}
821 		if (lnum < used_ebs - 1) {
822 			if (data_size != usable_leb_size) {
823 				dbg_err("bad data_size");
824 				goto bad;
825 			}
826 		} else if (lnum == used_ebs - 1) {
827 			if (data_size == 0) {
828 				dbg_err("bad data_size at last LEB");
829 				goto bad;
830 			}
831 		} else {
832 			dbg_err("too high lnum");
833 			goto bad;
834 		}
835 	} else {
836 		if (copy_flag == 0) {
837 			if (data_crc != 0) {
838 				dbg_err("non-zero data CRC");
839 				goto bad;
840 			}
841 			if (data_size != 0) {
842 				dbg_err("non-zero data_size");
843 				goto bad;
844 			}
845 		} else {
846 			if (data_size == 0) {
847 				dbg_err("zero data_size of copy");
848 				goto bad;
849 			}
850 		}
851 		if (used_ebs != 0) {
852 			dbg_err("bad used_ebs");
853 			goto bad;
854 		}
855 	}
856 
857 	return 0;
858 
859 bad:
860 	ubi_err("bad VID header");
861 	ubi_dbg_dump_vid_hdr(vid_hdr);
862 	ubi_dbg_dump_stack();
863 	return 1;
864 }
865 
866 /**
867  * ubi_io_read_vid_hdr - read and check a volume identifier header.
868  * @ubi: UBI device description object
869  * @pnum: physical eraseblock number to read from
870  * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
871  * identifier header
872  * @verbose: be verbose if the header is corrupted or wasn't found
873  *
874  * This function reads the volume identifier header from physical eraseblock
875  * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
876  * volume identifier header. The following codes may be returned:
877  *
878  * o %0 if the CRC checksum is correct and the header was successfully read;
879  * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
880  *   and corrected by the flash driver; this is harmless but may indicate that
881  *   this eraseblock may become bad soon;
882  * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
883  *   error detected);
884  * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
885  *   header there);
886  * o a negative error code in case of failure.
887  */
888 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
889 			struct ubi_vid_hdr *vid_hdr, int verbose)
890 {
891 	int err, read_err = 0;
892 	uint32_t crc, magic, hdr_crc;
893 	void *p;
894 
895 	dbg_io("read VID header from PEB %d", pnum);
896 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
897 
898 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
899 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
900 			  ubi->vid_hdr_alsize);
901 	if (err) {
902 		if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
903 			return err;
904 
905 		/*
906 		 * We read all the data, but either a correctable bit-flip
907 		 * occurred, or MTD reported about some data integrity error,
908 		 * like an ECC error in case of NAND. The former is harmless,
909 		 * the later may mean the read data is corrupted. But we have a
910 		 * CRC check-sum and we will identify this. If the VID header is
911 		 * still OK, we just report this as there was a bit-flip.
912 		 */
913 		read_err = err;
914 	}
915 
916 	magic = be32_to_cpu(vid_hdr->magic);
917 	if (magic != UBI_VID_HDR_MAGIC) {
918 		/*
919 		 * If we have read all 0xFF bytes, the VID header probably does
920 		 * not exist and the physical eraseblock is assumed to be free.
921 		 *
922 		 * But if there was a read error, we do not test the data for
923 		 * 0xFFs. Even if it does contain all 0xFFs, this error
924 		 * indicates that something is still wrong with this physical
925 		 * eraseblock and it cannot be regarded as free.
926 		 */
927 		if (read_err != -EBADMSG &&
928 		    check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
929 			/* The physical eraseblock is supposedly free */
930 
931 			/*
932 			 * The below is just a paranoid check, it has to be
933 			 * compiled out if paranoid checks are disabled.
934 			 */
935 			err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
936 						    ubi->leb_size);
937 			if (err)
938 				return err > 0 ? UBI_IO_BAD_VID_HDR : err;
939 
940 			if (verbose)
941 				ubi_warn("no VID header found at PEB %d, "
942 					 "only 0xFF bytes", pnum);
943 			return UBI_IO_PEB_FREE;
944 		}
945 
946 		/*
947 		 * This is not a valid VID header, and these are not 0xFF
948 		 * bytes. Report that the header is corrupted.
949 		 */
950 		if (verbose) {
951 			ubi_warn("bad magic number at PEB %d: %08x instead of "
952 				 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
953 			ubi_dbg_dump_vid_hdr(vid_hdr);
954 		}
955 		return UBI_IO_BAD_VID_HDR;
956 	}
957 
958 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
959 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
960 
961 	if (hdr_crc != crc) {
962 		if (verbose) {
963 			ubi_warn("bad CRC at PEB %d, calculated %#08x, "
964 				 "read %#08x", pnum, crc, hdr_crc);
965 			ubi_dbg_dump_vid_hdr(vid_hdr);
966 		}
967 		return UBI_IO_BAD_VID_HDR;
968 	}
969 
970 	/* Validate the VID header that we have just read */
971 	err = validate_vid_hdr(ubi, vid_hdr);
972 	if (err) {
973 		ubi_err("validation failed for PEB %d", pnum);
974 		return -EINVAL;
975 	}
976 
977 	return read_err ? UBI_IO_BITFLIPS : 0;
978 }
979 
980 /**
981  * ubi_io_write_vid_hdr - write a volume identifier header.
982  * @ubi: UBI device description object
983  * @pnum: the physical eraseblock number to write to
984  * @vid_hdr: the volume identifier header to write
985  *
986  * This function writes the volume identifier header described by @vid_hdr to
987  * physical eraseblock @pnum. This function automatically fills the
988  * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
989  * header CRC checksum and stores it at vid_hdr->hdr_crc.
990  *
991  * This function returns zero in case of success and a negative error code in
992  * case of failure. If %-EIO is returned, the physical eraseblock probably went
993  * bad.
994  */
995 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
996 			 struct ubi_vid_hdr *vid_hdr)
997 {
998 	int err;
999 	uint32_t crc;
1000 	void *p;
1001 
1002 	dbg_io("write VID header to PEB %d", pnum);
1003 	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1004 
1005 	err = paranoid_check_peb_ec_hdr(ubi, pnum);
1006 	if (err)
1007 		return err > 0 ? -EINVAL: err;
1008 
1009 	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1010 	vid_hdr->version = UBI_VERSION;
1011 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1012 	vid_hdr->hdr_crc = cpu_to_be32(crc);
1013 
1014 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1015 	if (err)
1016 		return -EINVAL;
1017 
1018 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1019 	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1020 			   ubi->vid_hdr_alsize);
1021 	return err;
1022 }
1023 
1024 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1025 
1026 /**
1027  * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1028  * @ubi: UBI device description object
1029  * @pnum: physical eraseblock number to check
1030  *
1031  * This function returns zero if the physical eraseblock is good, a positive
1032  * number if it is bad and a negative error code if an error occurred.
1033  */
1034 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1035 {
1036 	int err;
1037 
1038 	err = ubi_io_is_bad(ubi, pnum);
1039 	if (!err)
1040 		return err;
1041 
1042 	ubi_err("paranoid check failed for PEB %d", pnum);
1043 	ubi_dbg_dump_stack();
1044 	return err;
1045 }
1046 
1047 /**
1048  * paranoid_check_ec_hdr - check if an erase counter header is all right.
1049  * @ubi: UBI device description object
1050  * @pnum: physical eraseblock number the erase counter header belongs to
1051  * @ec_hdr: the erase counter header to check
1052  *
1053  * This function returns zero if the erase counter header contains valid
1054  * values, and %1 if not.
1055  */
1056 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1057 				 const struct ubi_ec_hdr *ec_hdr)
1058 {
1059 	int err;
1060 	uint32_t magic;
1061 
1062 	magic = be32_to_cpu(ec_hdr->magic);
1063 	if (magic != UBI_EC_HDR_MAGIC) {
1064 		ubi_err("bad magic %#08x, must be %#08x",
1065 			magic, UBI_EC_HDR_MAGIC);
1066 		goto fail;
1067 	}
1068 
1069 	err = validate_ec_hdr(ubi, ec_hdr);
1070 	if (err) {
1071 		ubi_err("paranoid check failed for PEB %d", pnum);
1072 		goto fail;
1073 	}
1074 
1075 	return 0;
1076 
1077 fail:
1078 	ubi_dbg_dump_ec_hdr(ec_hdr);
1079 	ubi_dbg_dump_stack();
1080 	return 1;
1081 }
1082 
1083 /**
1084  * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1085  * physical eraseblock is in-place and is all right.
1086  * @ubi: UBI device description object
1087  * @pnum: the physical eraseblock number to check
1088  *
1089  * This function returns zero if the erase counter header is all right, %1 if
1090  * not, and a negative error code if an error occurred.
1091  */
1092 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1093 {
1094 	int err;
1095 	uint32_t crc, hdr_crc;
1096 	struct ubi_ec_hdr *ec_hdr;
1097 
1098 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1099 	if (!ec_hdr)
1100 		return -ENOMEM;
1101 
1102 	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1103 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1104 		goto exit;
1105 
1106 	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1107 	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1108 	if (hdr_crc != crc) {
1109 		ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1110 		ubi_err("paranoid check failed for PEB %d", pnum);
1111 		ubi_dbg_dump_ec_hdr(ec_hdr);
1112 		ubi_dbg_dump_stack();
1113 		err = 1;
1114 		goto exit;
1115 	}
1116 
1117 	err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1118 
1119 exit:
1120 	kfree(ec_hdr);
1121 	return err;
1122 }
1123 
1124 /**
1125  * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1126  * @ubi: UBI device description object
1127  * @pnum: physical eraseblock number the volume identifier header belongs to
1128  * @vid_hdr: the volume identifier header to check
1129  *
1130  * This function returns zero if the volume identifier header is all right, and
1131  * %1 if not.
1132  */
1133 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1134 				  const struct ubi_vid_hdr *vid_hdr)
1135 {
1136 	int err;
1137 	uint32_t magic;
1138 
1139 	magic = be32_to_cpu(vid_hdr->magic);
1140 	if (magic != UBI_VID_HDR_MAGIC) {
1141 		ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1142 			magic, pnum, UBI_VID_HDR_MAGIC);
1143 		goto fail;
1144 	}
1145 
1146 	err = validate_vid_hdr(ubi, vid_hdr);
1147 	if (err) {
1148 		ubi_err("paranoid check failed for PEB %d", pnum);
1149 		goto fail;
1150 	}
1151 
1152 	return err;
1153 
1154 fail:
1155 	ubi_err("paranoid check failed for PEB %d", pnum);
1156 	ubi_dbg_dump_vid_hdr(vid_hdr);
1157 	ubi_dbg_dump_stack();
1158 	return 1;
1159 
1160 }
1161 
1162 /**
1163  * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1164  * physical eraseblock is in-place and is all right.
1165  * @ubi: UBI device description object
1166  * @pnum: the physical eraseblock number to check
1167  *
1168  * This function returns zero if the volume identifier header is all right,
1169  * %1 if not, and a negative error code if an error occurred.
1170  */
1171 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1172 {
1173 	int err;
1174 	uint32_t crc, hdr_crc;
1175 	struct ubi_vid_hdr *vid_hdr;
1176 	void *p;
1177 
1178 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1179 	if (!vid_hdr)
1180 		return -ENOMEM;
1181 
1182 	p = (char *)vid_hdr - ubi->vid_hdr_shift;
1183 	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1184 			  ubi->vid_hdr_alsize);
1185 	if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1186 		goto exit;
1187 
1188 	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1189 	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1190 	if (hdr_crc != crc) {
1191 		ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1192 			"read %#08x", pnum, crc, hdr_crc);
1193 		ubi_err("paranoid check failed for PEB %d", pnum);
1194 		ubi_dbg_dump_vid_hdr(vid_hdr);
1195 		ubi_dbg_dump_stack();
1196 		err = 1;
1197 		goto exit;
1198 	}
1199 
1200 	err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1201 
1202 exit:
1203 	ubi_free_vid_hdr(ubi, vid_hdr);
1204 	return err;
1205 }
1206 
1207 /**
1208  * paranoid_check_all_ff - check that a region of flash is empty.
1209  * @ubi: UBI device description object
1210  * @pnum: the physical eraseblock number to check
1211  * @offset: the starting offset within the physical eraseblock to check
1212  * @len: the length of the region to check
1213  *
1214  * This function returns zero if only 0xFF bytes are present at offset
1215  * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1216  * code if an error occurred.
1217  */
1218 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1219 				 int len)
1220 {
1221 	size_t read;
1222 	int err;
1223 	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1224 
1225 	mutex_lock(&ubi->dbg_buf_mutex);
1226 	err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1227 	if (err && err != -EUCLEAN) {
1228 		ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1229 			"read %zd bytes", err, len, pnum, offset, read);
1230 		goto error;
1231 	}
1232 
1233 	err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1234 	if (err == 0) {
1235 		ubi_err("flash region at PEB %d:%d, length %d does not "
1236 			"contain all 0xFF bytes", pnum, offset, len);
1237 		goto fail;
1238 	}
1239 	mutex_unlock(&ubi->dbg_buf_mutex);
1240 
1241 	return 0;
1242 
1243 fail:
1244 	ubi_err("paranoid check failed for PEB %d", pnum);
1245 	dbg_msg("hex dump of the %d-%d region", offset, offset + len);
1246 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1247 		       ubi->dbg_peb_buf, len, 1);
1248 	err = 1;
1249 error:
1250 	ubi_dbg_dump_stack();
1251 	mutex_unlock(&ubi->dbg_buf_mutex);
1252 	return err;
1253 }
1254 
1255 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
1256