xref: /openbmc/linux/drivers/mtd/ubi/fastmap.c (revision 3932b9ca)
1 /*
2  * Copyright (c) 2012 Linutronix GmbH
3  * Author: Richard Weinberger <richard@nod.at>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; version 2.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  */
15 
16 #include <linux/crc32.h>
17 #include "ubi.h"
18 
19 /**
20  * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device.
21  * @ubi: UBI device description object
22  */
23 size_t ubi_calc_fm_size(struct ubi_device *ubi)
24 {
25 	size_t size;
26 
27 	size = sizeof(struct ubi_fm_hdr) + \
28 		sizeof(struct ubi_fm_scan_pool) + \
29 		sizeof(struct ubi_fm_scan_pool) + \
30 		(ubi->peb_count * sizeof(struct ubi_fm_ec)) + \
31 		(sizeof(struct ubi_fm_eba) + \
32 		(ubi->peb_count * sizeof(__be32))) + \
33 		sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES;
34 	return roundup(size, ubi->leb_size);
35 }
36 
37 
38 /**
39  * new_fm_vhdr - allocate a new volume header for fastmap usage.
40  * @ubi: UBI device description object
41  * @vol_id: the VID of the new header
42  *
43  * Returns a new struct ubi_vid_hdr on success.
44  * NULL indicates out of memory.
45  */
46 static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id)
47 {
48 	struct ubi_vid_hdr *new;
49 
50 	new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
51 	if (!new)
52 		goto out;
53 
54 	new->vol_type = UBI_VID_DYNAMIC;
55 	new->vol_id = cpu_to_be32(vol_id);
56 
57 	/* UBI implementations without fastmap support have to delete the
58 	 * fastmap.
59 	 */
60 	new->compat = UBI_COMPAT_DELETE;
61 
62 out:
63 	return new;
64 }
65 
66 /**
67  * add_aeb - create and add a attach erase block to a given list.
68  * @ai: UBI attach info object
69  * @list: the target list
70  * @pnum: PEB number of the new attach erase block
71  * @ec: erease counter of the new LEB
72  * @scrub: scrub this PEB after attaching
73  *
74  * Returns 0 on success, < 0 indicates an internal error.
75  */
76 static int add_aeb(struct ubi_attach_info *ai, struct list_head *list,
77 		   int pnum, int ec, int scrub)
78 {
79 	struct ubi_ainf_peb *aeb;
80 
81 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
82 	if (!aeb)
83 		return -ENOMEM;
84 
85 	aeb->pnum = pnum;
86 	aeb->ec = ec;
87 	aeb->lnum = -1;
88 	aeb->scrub = scrub;
89 	aeb->copy_flag = aeb->sqnum = 0;
90 
91 	ai->ec_sum += aeb->ec;
92 	ai->ec_count++;
93 
94 	if (ai->max_ec < aeb->ec)
95 		ai->max_ec = aeb->ec;
96 
97 	if (ai->min_ec > aeb->ec)
98 		ai->min_ec = aeb->ec;
99 
100 	list_add_tail(&aeb->u.list, list);
101 
102 	return 0;
103 }
104 
105 /**
106  * add_vol - create and add a new volume to ubi_attach_info.
107  * @ai: ubi_attach_info object
108  * @vol_id: VID of the new volume
109  * @used_ebs: number of used EBS
110  * @data_pad: data padding value of the new volume
111  * @vol_type: volume type
112  * @last_eb_bytes: number of bytes in the last LEB
113  *
114  * Returns the new struct ubi_ainf_volume on success.
115  * NULL indicates an error.
116  */
117 static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id,
118 				       int used_ebs, int data_pad, u8 vol_type,
119 				       int last_eb_bytes)
120 {
121 	struct ubi_ainf_volume *av;
122 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
123 
124 	while (*p) {
125 		parent = *p;
126 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
127 
128 		if (vol_id > av->vol_id)
129 			p = &(*p)->rb_left;
130 		else
131 			p = &(*p)->rb_right;
132 	}
133 
134 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
135 	if (!av)
136 		goto out;
137 
138 	av->highest_lnum = av->leb_count = 0;
139 	av->vol_id = vol_id;
140 	av->used_ebs = used_ebs;
141 	av->data_pad = data_pad;
142 	av->last_data_size = last_eb_bytes;
143 	av->compat = 0;
144 	av->vol_type = vol_type;
145 	av->root = RB_ROOT;
146 
147 	dbg_bld("found volume (ID %i)", vol_id);
148 
149 	rb_link_node(&av->rb, parent, p);
150 	rb_insert_color(&av->rb, &ai->volumes);
151 
152 out:
153 	return av;
154 }
155 
156 /**
157  * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it
158  * from it's original list.
159  * @ai: ubi_attach_info object
160  * @aeb: the to be assigned SEB
161  * @av: target scan volume
162  */
163 static void assign_aeb_to_av(struct ubi_attach_info *ai,
164 			     struct ubi_ainf_peb *aeb,
165 			     struct ubi_ainf_volume *av)
166 {
167 	struct ubi_ainf_peb *tmp_aeb;
168 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
169 
170 	p = &av->root.rb_node;
171 	while (*p) {
172 		parent = *p;
173 
174 		tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
175 		if (aeb->lnum != tmp_aeb->lnum) {
176 			if (aeb->lnum < tmp_aeb->lnum)
177 				p = &(*p)->rb_left;
178 			else
179 				p = &(*p)->rb_right;
180 
181 			continue;
182 		} else
183 			break;
184 	}
185 
186 	list_del(&aeb->u.list);
187 	av->leb_count++;
188 
189 	rb_link_node(&aeb->u.rb, parent, p);
190 	rb_insert_color(&aeb->u.rb, &av->root);
191 }
192 
193 /**
194  * update_vol - inserts or updates a LEB which was found a pool.
195  * @ubi: the UBI device object
196  * @ai: attach info object
197  * @av: the volume this LEB belongs to
198  * @new_vh: the volume header derived from new_aeb
199  * @new_aeb: the AEB to be examined
200  *
201  * Returns 0 on success, < 0 indicates an internal error.
202  */
203 static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai,
204 		      struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh,
205 		      struct ubi_ainf_peb *new_aeb)
206 {
207 	struct rb_node **p = &av->root.rb_node, *parent = NULL;
208 	struct ubi_ainf_peb *aeb, *victim;
209 	int cmp_res;
210 
211 	while (*p) {
212 		parent = *p;
213 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
214 
215 		if (be32_to_cpu(new_vh->lnum) != aeb->lnum) {
216 			if (be32_to_cpu(new_vh->lnum) < aeb->lnum)
217 				p = &(*p)->rb_left;
218 			else
219 				p = &(*p)->rb_right;
220 
221 			continue;
222 		}
223 
224 		/* This case can happen if the fastmap gets written
225 		 * because of a volume change (creation, deletion, ..).
226 		 * Then a PEB can be within the persistent EBA and the pool.
227 		 */
228 		if (aeb->pnum == new_aeb->pnum) {
229 			ubi_assert(aeb->lnum == new_aeb->lnum);
230 			kmem_cache_free(ai->aeb_slab_cache, new_aeb);
231 
232 			return 0;
233 		}
234 
235 		cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh);
236 		if (cmp_res < 0)
237 			return cmp_res;
238 
239 		/* new_aeb is newer */
240 		if (cmp_res & 1) {
241 			victim = kmem_cache_alloc(ai->aeb_slab_cache,
242 				GFP_KERNEL);
243 			if (!victim)
244 				return -ENOMEM;
245 
246 			victim->ec = aeb->ec;
247 			victim->pnum = aeb->pnum;
248 			list_add_tail(&victim->u.list, &ai->erase);
249 
250 			if (av->highest_lnum == be32_to_cpu(new_vh->lnum))
251 				av->last_data_size = \
252 					be32_to_cpu(new_vh->data_size);
253 
254 			dbg_bld("vol %i: AEB %i's PEB %i is the newer",
255 				av->vol_id, aeb->lnum, new_aeb->pnum);
256 
257 			aeb->ec = new_aeb->ec;
258 			aeb->pnum = new_aeb->pnum;
259 			aeb->copy_flag = new_vh->copy_flag;
260 			aeb->scrub = new_aeb->scrub;
261 			kmem_cache_free(ai->aeb_slab_cache, new_aeb);
262 
263 		/* new_aeb is older */
264 		} else {
265 			dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it",
266 				av->vol_id, aeb->lnum, new_aeb->pnum);
267 			list_add_tail(&new_aeb->u.list, &ai->erase);
268 		}
269 
270 		return 0;
271 	}
272 	/* This LEB is new, let's add it to the volume */
273 
274 	if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) {
275 		av->highest_lnum = be32_to_cpu(new_vh->lnum);
276 		av->last_data_size = be32_to_cpu(new_vh->data_size);
277 	}
278 
279 	if (av->vol_type == UBI_STATIC_VOLUME)
280 		av->used_ebs = be32_to_cpu(new_vh->used_ebs);
281 
282 	av->leb_count++;
283 
284 	rb_link_node(&new_aeb->u.rb, parent, p);
285 	rb_insert_color(&new_aeb->u.rb, &av->root);
286 
287 	return 0;
288 }
289 
290 /**
291  * process_pool_aeb - we found a non-empty PEB in a pool.
292  * @ubi: UBI device object
293  * @ai: attach info object
294  * @new_vh: the volume header derived from new_aeb
295  * @new_aeb: the AEB to be examined
296  *
297  * Returns 0 on success, < 0 indicates an internal error.
298  */
299 static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai,
300 			    struct ubi_vid_hdr *new_vh,
301 			    struct ubi_ainf_peb *new_aeb)
302 {
303 	struct ubi_ainf_volume *av, *tmp_av = NULL;
304 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
305 	int found = 0;
306 
307 	if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID ||
308 		be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) {
309 		kmem_cache_free(ai->aeb_slab_cache, new_aeb);
310 
311 		return 0;
312 	}
313 
314 	/* Find the volume this SEB belongs to */
315 	while (*p) {
316 		parent = *p;
317 		tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb);
318 
319 		if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id)
320 			p = &(*p)->rb_left;
321 		else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id)
322 			p = &(*p)->rb_right;
323 		else {
324 			found = 1;
325 			break;
326 		}
327 	}
328 
329 	if (found)
330 		av = tmp_av;
331 	else {
332 		ubi_err("orphaned volume in fastmap pool!");
333 		return UBI_BAD_FASTMAP;
334 	}
335 
336 	ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id);
337 
338 	return update_vol(ubi, ai, av, new_vh, new_aeb);
339 }
340 
341 /**
342  * unmap_peb - unmap a PEB.
343  * If fastmap detects a free PEB in the pool it has to check whether
344  * this PEB has been unmapped after writing the fastmap.
345  *
346  * @ai: UBI attach info object
347  * @pnum: The PEB to be unmapped
348  */
349 static void unmap_peb(struct ubi_attach_info *ai, int pnum)
350 {
351 	struct ubi_ainf_volume *av;
352 	struct rb_node *node, *node2;
353 	struct ubi_ainf_peb *aeb;
354 
355 	for (node = rb_first(&ai->volumes); node; node = rb_next(node)) {
356 		av = rb_entry(node, struct ubi_ainf_volume, rb);
357 
358 		for (node2 = rb_first(&av->root); node2;
359 		     node2 = rb_next(node2)) {
360 			aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb);
361 			if (aeb->pnum == pnum) {
362 				rb_erase(&aeb->u.rb, &av->root);
363 				kmem_cache_free(ai->aeb_slab_cache, aeb);
364 				return;
365 			}
366 		}
367 	}
368 }
369 
370 /**
371  * scan_pool - scans a pool for changed (no longer empty PEBs).
372  * @ubi: UBI device object
373  * @ai: attach info object
374  * @pebs: an array of all PEB numbers in the to be scanned pool
375  * @pool_size: size of the pool (number of entries in @pebs)
376  * @max_sqnum: pointer to the maximal sequence number
377  * @eba_orphans: list of PEBs which need to be scanned
378  * @free: list of PEBs which are most likely free (and go into @ai->free)
379  *
380  * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned.
381  * < 0 indicates an internal error.
382  */
383 static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai,
384 		     int *pebs, int pool_size, unsigned long long *max_sqnum,
385 		     struct list_head *eba_orphans, struct list_head *free)
386 {
387 	struct ubi_vid_hdr *vh;
388 	struct ubi_ec_hdr *ech;
389 	struct ubi_ainf_peb *new_aeb, *tmp_aeb;
390 	int i, pnum, err, found_orphan, ret = 0;
391 
392 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
393 	if (!ech)
394 		return -ENOMEM;
395 
396 	vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
397 	if (!vh) {
398 		kfree(ech);
399 		return -ENOMEM;
400 	}
401 
402 	dbg_bld("scanning fastmap pool: size = %i", pool_size);
403 
404 	/*
405 	 * Now scan all PEBs in the pool to find changes which have been made
406 	 * after the creation of the fastmap
407 	 */
408 	for (i = 0; i < pool_size; i++) {
409 		int scrub = 0;
410 		int image_seq;
411 
412 		pnum = be32_to_cpu(pebs[i]);
413 
414 		if (ubi_io_is_bad(ubi, pnum)) {
415 			ubi_err("bad PEB in fastmap pool!");
416 			ret = UBI_BAD_FASTMAP;
417 			goto out;
418 		}
419 
420 		err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
421 		if (err && err != UBI_IO_BITFLIPS) {
422 			ubi_err("unable to read EC header! PEB:%i err:%i",
423 				pnum, err);
424 			ret = err > 0 ? UBI_BAD_FASTMAP : err;
425 			goto out;
426 		} else if (err == UBI_IO_BITFLIPS)
427 			scrub = 1;
428 
429 		/*
430 		 * Older UBI implementations have image_seq set to zero, so
431 		 * we shouldn't fail if image_seq == 0.
432 		 */
433 		image_seq = be32_to_cpu(ech->image_seq);
434 
435 		if (image_seq && (image_seq != ubi->image_seq)) {
436 			ubi_err("bad image seq: 0x%x, expected: 0x%x",
437 				be32_to_cpu(ech->image_seq), ubi->image_seq);
438 			ret = UBI_BAD_FASTMAP;
439 			goto out;
440 		}
441 
442 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
443 		if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) {
444 			unsigned long long ec = be64_to_cpu(ech->ec);
445 			unmap_peb(ai, pnum);
446 			dbg_bld("Adding PEB to free: %i", pnum);
447 			if (err == UBI_IO_FF_BITFLIPS)
448 				add_aeb(ai, free, pnum, ec, 1);
449 			else
450 				add_aeb(ai, free, pnum, ec, 0);
451 			continue;
452 		} else if (err == 0 || err == UBI_IO_BITFLIPS) {
453 			dbg_bld("Found non empty PEB:%i in pool", pnum);
454 
455 			if (err == UBI_IO_BITFLIPS)
456 				scrub = 1;
457 
458 			found_orphan = 0;
459 			list_for_each_entry(tmp_aeb, eba_orphans, u.list) {
460 				if (tmp_aeb->pnum == pnum) {
461 					found_orphan = 1;
462 					break;
463 				}
464 			}
465 			if (found_orphan) {
466 				list_del(&tmp_aeb->u.list);
467 				kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
468 			}
469 
470 			new_aeb = kmem_cache_alloc(ai->aeb_slab_cache,
471 						   GFP_KERNEL);
472 			if (!new_aeb) {
473 				ret = -ENOMEM;
474 				goto out;
475 			}
476 
477 			new_aeb->ec = be64_to_cpu(ech->ec);
478 			new_aeb->pnum = pnum;
479 			new_aeb->lnum = be32_to_cpu(vh->lnum);
480 			new_aeb->sqnum = be64_to_cpu(vh->sqnum);
481 			new_aeb->copy_flag = vh->copy_flag;
482 			new_aeb->scrub = scrub;
483 
484 			if (*max_sqnum < new_aeb->sqnum)
485 				*max_sqnum = new_aeb->sqnum;
486 
487 			err = process_pool_aeb(ubi, ai, vh, new_aeb);
488 			if (err) {
489 				ret = err > 0 ? UBI_BAD_FASTMAP : err;
490 				goto out;
491 			}
492 		} else {
493 			/* We are paranoid and fall back to scanning mode */
494 			ubi_err("fastmap pool PEBs contains damaged PEBs!");
495 			ret = err > 0 ? UBI_BAD_FASTMAP : err;
496 			goto out;
497 		}
498 
499 	}
500 
501 out:
502 	ubi_free_vid_hdr(ubi, vh);
503 	kfree(ech);
504 	return ret;
505 }
506 
507 /**
508  * count_fastmap_pebs - Counts the PEBs found by fastmap.
509  * @ai: The UBI attach info object
510  */
511 static int count_fastmap_pebs(struct ubi_attach_info *ai)
512 {
513 	struct ubi_ainf_peb *aeb;
514 	struct ubi_ainf_volume *av;
515 	struct rb_node *rb1, *rb2;
516 	int n = 0;
517 
518 	list_for_each_entry(aeb, &ai->erase, u.list)
519 		n++;
520 
521 	list_for_each_entry(aeb, &ai->free, u.list)
522 		n++;
523 
524 	 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
525 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
526 			n++;
527 
528 	return n;
529 }
530 
531 /**
532  * ubi_attach_fastmap - creates ubi_attach_info from a fastmap.
533  * @ubi: UBI device object
534  * @ai: UBI attach info object
535  * @fm: the fastmap to be attached
536  *
537  * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable.
538  * < 0 indicates an internal error.
539  */
540 static int ubi_attach_fastmap(struct ubi_device *ubi,
541 			      struct ubi_attach_info *ai,
542 			      struct ubi_fastmap_layout *fm)
543 {
544 	struct list_head used, eba_orphans, free;
545 	struct ubi_ainf_volume *av;
546 	struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb;
547 	struct ubi_ec_hdr *ech;
548 	struct ubi_fm_sb *fmsb;
549 	struct ubi_fm_hdr *fmhdr;
550 	struct ubi_fm_scan_pool *fmpl1, *fmpl2;
551 	struct ubi_fm_ec *fmec;
552 	struct ubi_fm_volhdr *fmvhdr;
553 	struct ubi_fm_eba *fm_eba;
554 	int ret, i, j, pool_size, wl_pool_size;
555 	size_t fm_pos = 0, fm_size = ubi->fm_size;
556 	unsigned long long max_sqnum = 0;
557 	void *fm_raw = ubi->fm_buf;
558 
559 	INIT_LIST_HEAD(&used);
560 	INIT_LIST_HEAD(&free);
561 	INIT_LIST_HEAD(&eba_orphans);
562 	INIT_LIST_HEAD(&ai->corr);
563 	INIT_LIST_HEAD(&ai->free);
564 	INIT_LIST_HEAD(&ai->erase);
565 	INIT_LIST_HEAD(&ai->alien);
566 	ai->volumes = RB_ROOT;
567 	ai->min_ec = UBI_MAX_ERASECOUNTER;
568 
569 	ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab",
570 					       sizeof(struct ubi_ainf_peb),
571 					       0, 0, NULL);
572 	if (!ai->aeb_slab_cache) {
573 		ret = -ENOMEM;
574 		goto fail;
575 	}
576 
577 	fmsb = (struct ubi_fm_sb *)(fm_raw);
578 	ai->max_sqnum = fmsb->sqnum;
579 	fm_pos += sizeof(struct ubi_fm_sb);
580 	if (fm_pos >= fm_size)
581 		goto fail_bad;
582 
583 	fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
584 	fm_pos += sizeof(*fmhdr);
585 	if (fm_pos >= fm_size)
586 		goto fail_bad;
587 
588 	if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) {
589 		ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x",
590 			be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC);
591 		goto fail_bad;
592 	}
593 
594 	fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
595 	fm_pos += sizeof(*fmpl1);
596 	if (fm_pos >= fm_size)
597 		goto fail_bad;
598 	if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) {
599 		ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
600 			be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC);
601 		goto fail_bad;
602 	}
603 
604 	fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
605 	fm_pos += sizeof(*fmpl2);
606 	if (fm_pos >= fm_size)
607 		goto fail_bad;
608 	if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) {
609 		ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
610 			be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC);
611 		goto fail_bad;
612 	}
613 
614 	pool_size = be16_to_cpu(fmpl1->size);
615 	wl_pool_size = be16_to_cpu(fmpl2->size);
616 	fm->max_pool_size = be16_to_cpu(fmpl1->max_size);
617 	fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size);
618 
619 	if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) {
620 		ubi_err("bad pool size: %i", pool_size);
621 		goto fail_bad;
622 	}
623 
624 	if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) {
625 		ubi_err("bad WL pool size: %i", wl_pool_size);
626 		goto fail_bad;
627 	}
628 
629 
630 	if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE ||
631 	    fm->max_pool_size < 0) {
632 		ubi_err("bad maximal pool size: %i", fm->max_pool_size);
633 		goto fail_bad;
634 	}
635 
636 	if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE ||
637 	    fm->max_wl_pool_size < 0) {
638 		ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size);
639 		goto fail_bad;
640 	}
641 
642 	/* read EC values from free list */
643 	for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) {
644 		fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
645 		fm_pos += sizeof(*fmec);
646 		if (fm_pos >= fm_size)
647 			goto fail_bad;
648 
649 		add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum),
650 			be32_to_cpu(fmec->ec), 0);
651 	}
652 
653 	/* read EC values from used list */
654 	for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) {
655 		fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
656 		fm_pos += sizeof(*fmec);
657 		if (fm_pos >= fm_size)
658 			goto fail_bad;
659 
660 		add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
661 			be32_to_cpu(fmec->ec), 0);
662 	}
663 
664 	/* read EC values from scrub list */
665 	for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) {
666 		fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
667 		fm_pos += sizeof(*fmec);
668 		if (fm_pos >= fm_size)
669 			goto fail_bad;
670 
671 		add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
672 			be32_to_cpu(fmec->ec), 1);
673 	}
674 
675 	/* read EC values from erase list */
676 	for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) {
677 		fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
678 		fm_pos += sizeof(*fmec);
679 		if (fm_pos >= fm_size)
680 			goto fail_bad;
681 
682 		add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum),
683 			be32_to_cpu(fmec->ec), 1);
684 	}
685 
686 	ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
687 	ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count);
688 
689 	/* Iterate over all volumes and read their EBA table */
690 	for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) {
691 		fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
692 		fm_pos += sizeof(*fmvhdr);
693 		if (fm_pos >= fm_size)
694 			goto fail_bad;
695 
696 		if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) {
697 			ubi_err("bad fastmap vol header magic: 0x%x, " \
698 				"expected: 0x%x",
699 				be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC);
700 			goto fail_bad;
701 		}
702 
703 		av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id),
704 			     be32_to_cpu(fmvhdr->used_ebs),
705 			     be32_to_cpu(fmvhdr->data_pad),
706 			     fmvhdr->vol_type,
707 			     be32_to_cpu(fmvhdr->last_eb_bytes));
708 
709 		if (!av)
710 			goto fail_bad;
711 
712 		ai->vols_found++;
713 		if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id))
714 			ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id);
715 
716 		fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
717 		fm_pos += sizeof(*fm_eba);
718 		fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs));
719 		if (fm_pos >= fm_size)
720 			goto fail_bad;
721 
722 		if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) {
723 			ubi_err("bad fastmap EBA header magic: 0x%x, " \
724 				"expected: 0x%x",
725 				be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC);
726 			goto fail_bad;
727 		}
728 
729 		for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) {
730 			int pnum = be32_to_cpu(fm_eba->pnum[j]);
731 
732 			if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0)
733 				continue;
734 
735 			aeb = NULL;
736 			list_for_each_entry(tmp_aeb, &used, u.list) {
737 				if (tmp_aeb->pnum == pnum) {
738 					aeb = tmp_aeb;
739 					break;
740 				}
741 			}
742 
743 			/* This can happen if a PEB is already in an EBA known
744 			 * by this fastmap but the PEB itself is not in the used
745 			 * list.
746 			 * In this case the PEB can be within the fastmap pool
747 			 * or while writing the fastmap it was in the protection
748 			 * queue.
749 			 */
750 			if (!aeb) {
751 				aeb = kmem_cache_alloc(ai->aeb_slab_cache,
752 						       GFP_KERNEL);
753 				if (!aeb) {
754 					ret = -ENOMEM;
755 
756 					goto fail;
757 				}
758 
759 				aeb->lnum = j;
760 				aeb->pnum = be32_to_cpu(fm_eba->pnum[j]);
761 				aeb->ec = -1;
762 				aeb->scrub = aeb->copy_flag = aeb->sqnum = 0;
763 				list_add_tail(&aeb->u.list, &eba_orphans);
764 				continue;
765 			}
766 
767 			aeb->lnum = j;
768 
769 			if (av->highest_lnum <= aeb->lnum)
770 				av->highest_lnum = aeb->lnum;
771 
772 			assign_aeb_to_av(ai, aeb, av);
773 
774 			dbg_bld("inserting PEB:%i (LEB %i) to vol %i",
775 				aeb->pnum, aeb->lnum, av->vol_id);
776 		}
777 
778 		ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
779 		if (!ech) {
780 			ret = -ENOMEM;
781 			goto fail;
782 		}
783 
784 		list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans,
785 					 u.list) {
786 			int err;
787 
788 			if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) {
789 				ubi_err("bad PEB in fastmap EBA orphan list");
790 				ret = UBI_BAD_FASTMAP;
791 				kfree(ech);
792 				goto fail;
793 			}
794 
795 			err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0);
796 			if (err && err != UBI_IO_BITFLIPS) {
797 				ubi_err("unable to read EC header! PEB:%i " \
798 					"err:%i", tmp_aeb->pnum, err);
799 				ret = err > 0 ? UBI_BAD_FASTMAP : err;
800 				kfree(ech);
801 
802 				goto fail;
803 			} else if (err == UBI_IO_BITFLIPS)
804 				tmp_aeb->scrub = 1;
805 
806 			tmp_aeb->ec = be64_to_cpu(ech->ec);
807 			assign_aeb_to_av(ai, tmp_aeb, av);
808 		}
809 
810 		kfree(ech);
811 	}
812 
813 	ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum,
814 			&eba_orphans, &free);
815 	if (ret)
816 		goto fail;
817 
818 	ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum,
819 			&eba_orphans, &free);
820 	if (ret)
821 		goto fail;
822 
823 	if (max_sqnum > ai->max_sqnum)
824 		ai->max_sqnum = max_sqnum;
825 
826 	list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list)
827 		list_move_tail(&tmp_aeb->u.list, &ai->free);
828 
829 	ubi_assert(list_empty(&used));
830 	ubi_assert(list_empty(&eba_orphans));
831 	ubi_assert(list_empty(&free));
832 
833 	/*
834 	 * If fastmap is leaking PEBs (must not happen), raise a
835 	 * fat warning and fall back to scanning mode.
836 	 * We do this here because in ubi_wl_init() it's too late
837 	 * and we cannot fall back to scanning.
838 	 */
839 	if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count -
840 		    ai->bad_peb_count - fm->used_blocks))
841 		goto fail_bad;
842 
843 	return 0;
844 
845 fail_bad:
846 	ret = UBI_BAD_FASTMAP;
847 fail:
848 	list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) {
849 		list_del(&tmp_aeb->u.list);
850 		kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
851 	}
852 	list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, u.list) {
853 		list_del(&tmp_aeb->u.list);
854 		kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
855 	}
856 	list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) {
857 		list_del(&tmp_aeb->u.list);
858 		kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
859 	}
860 
861 	return ret;
862 }
863 
864 /**
865  * ubi_scan_fastmap - scan the fastmap.
866  * @ubi: UBI device object
867  * @ai: UBI attach info to be filled
868  * @fm_anchor: The fastmap starts at this PEB
869  *
870  * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found,
871  * UBI_BAD_FASTMAP if one was found but is not usable.
872  * < 0 indicates an internal error.
873  */
874 int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai,
875 		     int fm_anchor)
876 {
877 	struct ubi_fm_sb *fmsb, *fmsb2;
878 	struct ubi_vid_hdr *vh;
879 	struct ubi_ec_hdr *ech;
880 	struct ubi_fastmap_layout *fm;
881 	int i, used_blocks, pnum, ret = 0;
882 	size_t fm_size;
883 	__be32 crc, tmp_crc;
884 	unsigned long long sqnum = 0;
885 
886 	mutex_lock(&ubi->fm_mutex);
887 	memset(ubi->fm_buf, 0, ubi->fm_size);
888 
889 	fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL);
890 	if (!fmsb) {
891 		ret = -ENOMEM;
892 		goto out;
893 	}
894 
895 	fm = kzalloc(sizeof(*fm), GFP_KERNEL);
896 	if (!fm) {
897 		ret = -ENOMEM;
898 		kfree(fmsb);
899 		goto out;
900 	}
901 
902 	ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb));
903 	if (ret && ret != UBI_IO_BITFLIPS)
904 		goto free_fm_sb;
905 	else if (ret == UBI_IO_BITFLIPS)
906 		fm->to_be_tortured[0] = 1;
907 
908 	if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) {
909 		ubi_err("bad super block magic: 0x%x, expected: 0x%x",
910 			be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC);
911 		ret = UBI_BAD_FASTMAP;
912 		goto free_fm_sb;
913 	}
914 
915 	if (fmsb->version != UBI_FM_FMT_VERSION) {
916 		ubi_err("bad fastmap version: %i, expected: %i",
917 			fmsb->version, UBI_FM_FMT_VERSION);
918 		ret = UBI_BAD_FASTMAP;
919 		goto free_fm_sb;
920 	}
921 
922 	used_blocks = be32_to_cpu(fmsb->used_blocks);
923 	if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) {
924 		ubi_err("number of fastmap blocks is invalid: %i", used_blocks);
925 		ret = UBI_BAD_FASTMAP;
926 		goto free_fm_sb;
927 	}
928 
929 	fm_size = ubi->leb_size * used_blocks;
930 	if (fm_size != ubi->fm_size) {
931 		ubi_err("bad fastmap size: %zi, expected: %zi", fm_size,
932 			ubi->fm_size);
933 		ret = UBI_BAD_FASTMAP;
934 		goto free_fm_sb;
935 	}
936 
937 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
938 	if (!ech) {
939 		ret = -ENOMEM;
940 		goto free_fm_sb;
941 	}
942 
943 	vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
944 	if (!vh) {
945 		ret = -ENOMEM;
946 		goto free_hdr;
947 	}
948 
949 	for (i = 0; i < used_blocks; i++) {
950 		int image_seq;
951 
952 		pnum = be32_to_cpu(fmsb->block_loc[i]);
953 
954 		if (ubi_io_is_bad(ubi, pnum)) {
955 			ret = UBI_BAD_FASTMAP;
956 			goto free_hdr;
957 		}
958 
959 		ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
960 		if (ret && ret != UBI_IO_BITFLIPS) {
961 			ubi_err("unable to read fastmap block# %i EC (PEB: %i)",
962 				i, pnum);
963 			if (ret > 0)
964 				ret = UBI_BAD_FASTMAP;
965 			goto free_hdr;
966 		} else if (ret == UBI_IO_BITFLIPS)
967 			fm->to_be_tortured[i] = 1;
968 
969 		image_seq = be32_to_cpu(ech->image_seq);
970 		if (!ubi->image_seq)
971 			ubi->image_seq = image_seq;
972 
973 		/*
974 		 * Older UBI implementations have image_seq set to zero, so
975 		 * we shouldn't fail if image_seq == 0.
976 		 */
977 		if (image_seq && (image_seq != ubi->image_seq)) {
978 			ubi_err("wrong image seq:%d instead of %d",
979 				be32_to_cpu(ech->image_seq), ubi->image_seq);
980 			ret = UBI_BAD_FASTMAP;
981 			goto free_hdr;
982 		}
983 
984 		ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
985 		if (ret && ret != UBI_IO_BITFLIPS) {
986 			ubi_err("unable to read fastmap block# %i (PEB: %i)",
987 				i, pnum);
988 			goto free_hdr;
989 		}
990 
991 		if (i == 0) {
992 			if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) {
993 				ubi_err("bad fastmap anchor vol_id: 0x%x," \
994 					" expected: 0x%x",
995 					be32_to_cpu(vh->vol_id),
996 					UBI_FM_SB_VOLUME_ID);
997 				ret = UBI_BAD_FASTMAP;
998 				goto free_hdr;
999 			}
1000 		} else {
1001 			if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) {
1002 				ubi_err("bad fastmap data vol_id: 0x%x," \
1003 					" expected: 0x%x",
1004 					be32_to_cpu(vh->vol_id),
1005 					UBI_FM_DATA_VOLUME_ID);
1006 				ret = UBI_BAD_FASTMAP;
1007 				goto free_hdr;
1008 			}
1009 		}
1010 
1011 		if (sqnum < be64_to_cpu(vh->sqnum))
1012 			sqnum = be64_to_cpu(vh->sqnum);
1013 
1014 		ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum,
1015 				  ubi->leb_start, ubi->leb_size);
1016 		if (ret && ret != UBI_IO_BITFLIPS) {
1017 			ubi_err("unable to read fastmap block# %i (PEB: %i, " \
1018 				"err: %i)", i, pnum, ret);
1019 			goto free_hdr;
1020 		}
1021 	}
1022 
1023 	kfree(fmsb);
1024 	fmsb = NULL;
1025 
1026 	fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf);
1027 	tmp_crc = be32_to_cpu(fmsb2->data_crc);
1028 	fmsb2->data_crc = 0;
1029 	crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size);
1030 	if (crc != tmp_crc) {
1031 		ubi_err("fastmap data CRC is invalid");
1032 		ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc);
1033 		ret = UBI_BAD_FASTMAP;
1034 		goto free_hdr;
1035 	}
1036 
1037 	fmsb2->sqnum = sqnum;
1038 
1039 	fm->used_blocks = used_blocks;
1040 
1041 	ret = ubi_attach_fastmap(ubi, ai, fm);
1042 	if (ret) {
1043 		if (ret > 0)
1044 			ret = UBI_BAD_FASTMAP;
1045 		goto free_hdr;
1046 	}
1047 
1048 	for (i = 0; i < used_blocks; i++) {
1049 		struct ubi_wl_entry *e;
1050 
1051 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1052 		if (!e) {
1053 			while (i--)
1054 				kfree(fm->e[i]);
1055 
1056 			ret = -ENOMEM;
1057 			goto free_hdr;
1058 		}
1059 
1060 		e->pnum = be32_to_cpu(fmsb2->block_loc[i]);
1061 		e->ec = be32_to_cpu(fmsb2->block_ec[i]);
1062 		fm->e[i] = e;
1063 	}
1064 
1065 	ubi->fm = fm;
1066 	ubi->fm_pool.max_size = ubi->fm->max_pool_size;
1067 	ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size;
1068 	ubi_msg("attached by fastmap");
1069 	ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size);
1070 	ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
1071 	ubi->fm_disabled = 0;
1072 
1073 	ubi_free_vid_hdr(ubi, vh);
1074 	kfree(ech);
1075 out:
1076 	mutex_unlock(&ubi->fm_mutex);
1077 	if (ret == UBI_BAD_FASTMAP)
1078 		ubi_err("Attach by fastmap failed, doing a full scan!");
1079 	return ret;
1080 
1081 free_hdr:
1082 	ubi_free_vid_hdr(ubi, vh);
1083 	kfree(ech);
1084 free_fm_sb:
1085 	kfree(fmsb);
1086 	kfree(fm);
1087 	goto out;
1088 }
1089 
1090 /**
1091  * ubi_write_fastmap - writes a fastmap.
1092  * @ubi: UBI device object
1093  * @new_fm: the to be written fastmap
1094  *
1095  * Returns 0 on success, < 0 indicates an internal error.
1096  */
1097 static int ubi_write_fastmap(struct ubi_device *ubi,
1098 			     struct ubi_fastmap_layout *new_fm)
1099 {
1100 	size_t fm_pos = 0;
1101 	void *fm_raw;
1102 	struct ubi_fm_sb *fmsb;
1103 	struct ubi_fm_hdr *fmh;
1104 	struct ubi_fm_scan_pool *fmpl1, *fmpl2;
1105 	struct ubi_fm_ec *fec;
1106 	struct ubi_fm_volhdr *fvh;
1107 	struct ubi_fm_eba *feba;
1108 	struct rb_node *node;
1109 	struct ubi_wl_entry *wl_e;
1110 	struct ubi_volume *vol;
1111 	struct ubi_vid_hdr *avhdr, *dvhdr;
1112 	struct ubi_work *ubi_wrk;
1113 	int ret, i, j, free_peb_count, used_peb_count, vol_count;
1114 	int scrub_peb_count, erase_peb_count;
1115 
1116 	fm_raw = ubi->fm_buf;
1117 	memset(ubi->fm_buf, 0, ubi->fm_size);
1118 
1119 	avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
1120 	if (!avhdr) {
1121 		ret = -ENOMEM;
1122 		goto out;
1123 	}
1124 
1125 	dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID);
1126 	if (!dvhdr) {
1127 		ret = -ENOMEM;
1128 		goto out_kfree;
1129 	}
1130 
1131 	spin_lock(&ubi->volumes_lock);
1132 	spin_lock(&ubi->wl_lock);
1133 
1134 	fmsb = (struct ubi_fm_sb *)fm_raw;
1135 	fm_pos += sizeof(*fmsb);
1136 	ubi_assert(fm_pos <= ubi->fm_size);
1137 
1138 	fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
1139 	fm_pos += sizeof(*fmh);
1140 	ubi_assert(fm_pos <= ubi->fm_size);
1141 
1142 	fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC);
1143 	fmsb->version = UBI_FM_FMT_VERSION;
1144 	fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks);
1145 	/* the max sqnum will be filled in while *reading* the fastmap */
1146 	fmsb->sqnum = 0;
1147 
1148 	fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC);
1149 	free_peb_count = 0;
1150 	used_peb_count = 0;
1151 	scrub_peb_count = 0;
1152 	erase_peb_count = 0;
1153 	vol_count = 0;
1154 
1155 	fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
1156 	fm_pos += sizeof(*fmpl1);
1157 	fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
1158 	fmpl1->size = cpu_to_be16(ubi->fm_pool.size);
1159 	fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size);
1160 
1161 	for (i = 0; i < ubi->fm_pool.size; i++)
1162 		fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]);
1163 
1164 	fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
1165 	fm_pos += sizeof(*fmpl2);
1166 	fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
1167 	fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size);
1168 	fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size);
1169 
1170 	for (i = 0; i < ubi->fm_wl_pool.size; i++)
1171 		fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]);
1172 
1173 	for (node = rb_first(&ubi->free); node; node = rb_next(node)) {
1174 		wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1175 		fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1176 
1177 		fec->pnum = cpu_to_be32(wl_e->pnum);
1178 		fec->ec = cpu_to_be32(wl_e->ec);
1179 
1180 		free_peb_count++;
1181 		fm_pos += sizeof(*fec);
1182 		ubi_assert(fm_pos <= ubi->fm_size);
1183 	}
1184 	fmh->free_peb_count = cpu_to_be32(free_peb_count);
1185 
1186 	for (node = rb_first(&ubi->used); node; node = rb_next(node)) {
1187 		wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1188 		fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1189 
1190 		fec->pnum = cpu_to_be32(wl_e->pnum);
1191 		fec->ec = cpu_to_be32(wl_e->ec);
1192 
1193 		used_peb_count++;
1194 		fm_pos += sizeof(*fec);
1195 		ubi_assert(fm_pos <= ubi->fm_size);
1196 	}
1197 	fmh->used_peb_count = cpu_to_be32(used_peb_count);
1198 
1199 	for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) {
1200 		wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1201 		fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1202 
1203 		fec->pnum = cpu_to_be32(wl_e->pnum);
1204 		fec->ec = cpu_to_be32(wl_e->ec);
1205 
1206 		scrub_peb_count++;
1207 		fm_pos += sizeof(*fec);
1208 		ubi_assert(fm_pos <= ubi->fm_size);
1209 	}
1210 	fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count);
1211 
1212 
1213 	list_for_each_entry(ubi_wrk, &ubi->works, list) {
1214 		if (ubi_is_erase_work(ubi_wrk)) {
1215 			wl_e = ubi_wrk->e;
1216 			ubi_assert(wl_e);
1217 
1218 			fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1219 
1220 			fec->pnum = cpu_to_be32(wl_e->pnum);
1221 			fec->ec = cpu_to_be32(wl_e->ec);
1222 
1223 			erase_peb_count++;
1224 			fm_pos += sizeof(*fec);
1225 			ubi_assert(fm_pos <= ubi->fm_size);
1226 		}
1227 	}
1228 	fmh->erase_peb_count = cpu_to_be32(erase_peb_count);
1229 
1230 	for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) {
1231 		vol = ubi->volumes[i];
1232 
1233 		if (!vol)
1234 			continue;
1235 
1236 		vol_count++;
1237 
1238 		fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
1239 		fm_pos += sizeof(*fvh);
1240 		ubi_assert(fm_pos <= ubi->fm_size);
1241 
1242 		fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC);
1243 		fvh->vol_id = cpu_to_be32(vol->vol_id);
1244 		fvh->vol_type = vol->vol_type;
1245 		fvh->used_ebs = cpu_to_be32(vol->used_ebs);
1246 		fvh->data_pad = cpu_to_be32(vol->data_pad);
1247 		fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes);
1248 
1249 		ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME ||
1250 			vol->vol_type == UBI_STATIC_VOLUME);
1251 
1252 		feba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
1253 		fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs);
1254 		ubi_assert(fm_pos <= ubi->fm_size);
1255 
1256 		for (j = 0; j < vol->reserved_pebs; j++)
1257 			feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]);
1258 
1259 		feba->reserved_pebs = cpu_to_be32(j);
1260 		feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC);
1261 	}
1262 	fmh->vol_count = cpu_to_be32(vol_count);
1263 	fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count);
1264 
1265 	avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1266 	avhdr->lnum = 0;
1267 
1268 	spin_unlock(&ubi->wl_lock);
1269 	spin_unlock(&ubi->volumes_lock);
1270 
1271 	dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum);
1272 	ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr);
1273 	if (ret) {
1274 		ubi_err("unable to write vid_hdr to fastmap SB!");
1275 		goto out_kfree;
1276 	}
1277 
1278 	for (i = 0; i < new_fm->used_blocks; i++) {
1279 		fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum);
1280 		fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec);
1281 	}
1282 
1283 	fmsb->data_crc = 0;
1284 	fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw,
1285 					   ubi->fm_size));
1286 
1287 	for (i = 1; i < new_fm->used_blocks; i++) {
1288 		dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1289 		dvhdr->lnum = cpu_to_be32(i);
1290 		dbg_bld("writing fastmap data to PEB %i sqnum %llu",
1291 			new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum));
1292 		ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr);
1293 		if (ret) {
1294 			ubi_err("unable to write vid_hdr to PEB %i!",
1295 				new_fm->e[i]->pnum);
1296 			goto out_kfree;
1297 		}
1298 	}
1299 
1300 	for (i = 0; i < new_fm->used_blocks; i++) {
1301 		ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size),
1302 			new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size);
1303 		if (ret) {
1304 			ubi_err("unable to write fastmap to PEB %i!",
1305 				new_fm->e[i]->pnum);
1306 			goto out_kfree;
1307 		}
1308 	}
1309 
1310 	ubi_assert(new_fm);
1311 	ubi->fm = new_fm;
1312 
1313 	dbg_bld("fastmap written!");
1314 
1315 out_kfree:
1316 	ubi_free_vid_hdr(ubi, avhdr);
1317 	ubi_free_vid_hdr(ubi, dvhdr);
1318 out:
1319 	return ret;
1320 }
1321 
1322 /**
1323  * erase_block - Manually erase a PEB.
1324  * @ubi: UBI device object
1325  * @pnum: PEB to be erased
1326  *
1327  * Returns the new EC value on success, < 0 indicates an internal error.
1328  */
1329 static int erase_block(struct ubi_device *ubi, int pnum)
1330 {
1331 	int ret;
1332 	struct ubi_ec_hdr *ec_hdr;
1333 	long long ec;
1334 
1335 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1336 	if (!ec_hdr)
1337 		return -ENOMEM;
1338 
1339 	ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1340 	if (ret < 0)
1341 		goto out;
1342 	else if (ret && ret != UBI_IO_BITFLIPS) {
1343 		ret = -EINVAL;
1344 		goto out;
1345 	}
1346 
1347 	ret = ubi_io_sync_erase(ubi, pnum, 0);
1348 	if (ret < 0)
1349 		goto out;
1350 
1351 	ec = be64_to_cpu(ec_hdr->ec);
1352 	ec += ret;
1353 	if (ec > UBI_MAX_ERASECOUNTER) {
1354 		ret = -EINVAL;
1355 		goto out;
1356 	}
1357 
1358 	ec_hdr->ec = cpu_to_be64(ec);
1359 	ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
1360 	if (ret < 0)
1361 		goto out;
1362 
1363 	ret = ec;
1364 out:
1365 	kfree(ec_hdr);
1366 	return ret;
1367 }
1368 
1369 /**
1370  * invalidate_fastmap - destroys a fastmap.
1371  * @ubi: UBI device object
1372  * @fm: the fastmap to be destroyed
1373  *
1374  * Returns 0 on success, < 0 indicates an internal error.
1375  */
1376 static int invalidate_fastmap(struct ubi_device *ubi,
1377 			      struct ubi_fastmap_layout *fm)
1378 {
1379 	int ret;
1380 	struct ubi_vid_hdr *vh;
1381 
1382 	ret = erase_block(ubi, fm->e[0]->pnum);
1383 	if (ret < 0)
1384 		return ret;
1385 
1386 	vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
1387 	if (!vh)
1388 		return -ENOMEM;
1389 
1390 	/* deleting the current fastmap SB is not enough, an old SB may exist,
1391 	 * so create a (corrupted) SB such that fastmap will find it and fall
1392 	 * back to scanning mode in any case */
1393 	vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1394 	ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh);
1395 
1396 	return ret;
1397 }
1398 
1399 /**
1400  * ubi_update_fastmap - will be called by UBI if a volume changes or
1401  * a fastmap pool becomes full.
1402  * @ubi: UBI device object
1403  *
1404  * Returns 0 on success, < 0 indicates an internal error.
1405  */
1406 int ubi_update_fastmap(struct ubi_device *ubi)
1407 {
1408 	int ret, i;
1409 	struct ubi_fastmap_layout *new_fm, *old_fm;
1410 	struct ubi_wl_entry *tmp_e;
1411 
1412 	mutex_lock(&ubi->fm_mutex);
1413 
1414 	ubi_refill_pools(ubi);
1415 
1416 	if (ubi->ro_mode || ubi->fm_disabled) {
1417 		mutex_unlock(&ubi->fm_mutex);
1418 		return 0;
1419 	}
1420 
1421 	ret = ubi_ensure_anchor_pebs(ubi);
1422 	if (ret) {
1423 		mutex_unlock(&ubi->fm_mutex);
1424 		return ret;
1425 	}
1426 
1427 	new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL);
1428 	if (!new_fm) {
1429 		mutex_unlock(&ubi->fm_mutex);
1430 		return -ENOMEM;
1431 	}
1432 
1433 	new_fm->used_blocks = ubi->fm_size / ubi->leb_size;
1434 
1435 	for (i = 0; i < new_fm->used_blocks; i++) {
1436 		new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1437 		if (!new_fm->e[i]) {
1438 			while (i--)
1439 				kfree(new_fm->e[i]);
1440 
1441 			kfree(new_fm);
1442 			mutex_unlock(&ubi->fm_mutex);
1443 			return -ENOMEM;
1444 		}
1445 	}
1446 
1447 	old_fm = ubi->fm;
1448 	ubi->fm = NULL;
1449 
1450 	if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) {
1451 		ubi_err("fastmap too large");
1452 		ret = -ENOSPC;
1453 		goto err;
1454 	}
1455 
1456 	for (i = 1; i < new_fm->used_blocks; i++) {
1457 		spin_lock(&ubi->wl_lock);
1458 		tmp_e = ubi_wl_get_fm_peb(ubi, 0);
1459 		spin_unlock(&ubi->wl_lock);
1460 
1461 		if (!tmp_e && !old_fm) {
1462 			int j;
1463 			ubi_err("could not get any free erase block");
1464 
1465 			for (j = 1; j < i; j++)
1466 				ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0);
1467 
1468 			ret = -ENOSPC;
1469 			goto err;
1470 		} else if (!tmp_e && old_fm) {
1471 			ret = erase_block(ubi, old_fm->e[i]->pnum);
1472 			if (ret < 0) {
1473 				int j;
1474 
1475 				for (j = 1; j < i; j++)
1476 					ubi_wl_put_fm_peb(ubi, new_fm->e[j],
1477 							  j, 0);
1478 
1479 				ubi_err("could not erase old fastmap PEB");
1480 				goto err;
1481 			}
1482 
1483 			new_fm->e[i]->pnum = old_fm->e[i]->pnum;
1484 			new_fm->e[i]->ec = old_fm->e[i]->ec;
1485 		} else {
1486 			new_fm->e[i]->pnum = tmp_e->pnum;
1487 			new_fm->e[i]->ec = tmp_e->ec;
1488 
1489 			if (old_fm)
1490 				ubi_wl_put_fm_peb(ubi, old_fm->e[i], i,
1491 						  old_fm->to_be_tortured[i]);
1492 		}
1493 	}
1494 
1495 	spin_lock(&ubi->wl_lock);
1496 	tmp_e = ubi_wl_get_fm_peb(ubi, 1);
1497 	spin_unlock(&ubi->wl_lock);
1498 
1499 	if (old_fm) {
1500 		/* no fresh anchor PEB was found, reuse the old one */
1501 		if (!tmp_e) {
1502 			ret = erase_block(ubi, old_fm->e[0]->pnum);
1503 			if (ret < 0) {
1504 				int i;
1505 				ubi_err("could not erase old anchor PEB");
1506 
1507 				for (i = 1; i < new_fm->used_blocks; i++)
1508 					ubi_wl_put_fm_peb(ubi, new_fm->e[i],
1509 							  i, 0);
1510 				goto err;
1511 			}
1512 
1513 			new_fm->e[0]->pnum = old_fm->e[0]->pnum;
1514 			new_fm->e[0]->ec = ret;
1515 		} else {
1516 			/* we've got a new anchor PEB, return the old one */
1517 			ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0,
1518 					  old_fm->to_be_tortured[0]);
1519 
1520 			new_fm->e[0]->pnum = tmp_e->pnum;
1521 			new_fm->e[0]->ec = tmp_e->ec;
1522 		}
1523 	} else {
1524 		if (!tmp_e) {
1525 			int i;
1526 			ubi_err("could not find any anchor PEB");
1527 
1528 			for (i = 1; i < new_fm->used_blocks; i++)
1529 				ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0);
1530 
1531 			ret = -ENOSPC;
1532 			goto err;
1533 		}
1534 
1535 		new_fm->e[0]->pnum = tmp_e->pnum;
1536 		new_fm->e[0]->ec = tmp_e->ec;
1537 	}
1538 
1539 	down_write(&ubi->work_sem);
1540 	down_write(&ubi->fm_sem);
1541 	ret = ubi_write_fastmap(ubi, new_fm);
1542 	up_write(&ubi->fm_sem);
1543 	up_write(&ubi->work_sem);
1544 
1545 	if (ret)
1546 		goto err;
1547 
1548 out_unlock:
1549 	mutex_unlock(&ubi->fm_mutex);
1550 	kfree(old_fm);
1551 	return ret;
1552 
1553 err:
1554 	kfree(new_fm);
1555 
1556 	ubi_warn("Unable to write new fastmap, err=%i", ret);
1557 
1558 	ret = 0;
1559 	if (old_fm) {
1560 		ret = invalidate_fastmap(ubi, old_fm);
1561 		if (ret < 0)
1562 			ubi_err("Unable to invalidiate current fastmap!");
1563 		else if (ret)
1564 			ret = 0;
1565 	}
1566 	goto out_unlock;
1567 }
1568