xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
54  * @pnum: the physical eraseblock number attached to the LEB
55  *
56  * This structure is encoding a LEB -> PEB association. Note that the LEB
57  * number is not stored here, because it is the index used to access the
58  * entries table.
59  */
60 struct ubi_eba_entry {
61 	int pnum;
62 };
63 
64 /**
65  * struct ubi_eba_table - LEB -> PEB association information
66  * @entries: the LEB to PEB mapping (one entry per LEB).
67  *
68  * This structure is private to the EBA logic and should be kept here.
69  * It is encoding the LEB to PEB association table, and is subject to
70  * changes.
71  */
72 struct ubi_eba_table {
73 	struct ubi_eba_entry *entries;
74 };
75 
76 /**
77  * next_sqnum - get next sequence number.
78  * @ubi: UBI device description object
79  *
80  * This function returns next sequence number to use, which is just the current
81  * global sequence counter value. It also increases the global sequence
82  * counter.
83  */
84 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
85 {
86 	unsigned long long sqnum;
87 
88 	spin_lock(&ubi->ltree_lock);
89 	sqnum = ubi->global_sqnum++;
90 	spin_unlock(&ubi->ltree_lock);
91 
92 	return sqnum;
93 }
94 
95 /**
96  * ubi_get_compat - get compatibility flags of a volume.
97  * @ubi: UBI device description object
98  * @vol_id: volume ID
99  *
100  * This function returns compatibility flags for an internal volume. User
101  * volumes have no compatibility flags, so %0 is returned.
102  */
103 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
104 {
105 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
106 		return UBI_LAYOUT_VOLUME_COMPAT;
107 	return 0;
108 }
109 
110 /**
111  * ubi_eba_get_ldesc - get information about a LEB
112  * @vol: volume description object
113  * @lnum: logical eraseblock number
114  * @ldesc: the LEB descriptor to fill
115  *
116  * Used to query information about a specific LEB.
117  * It is currently only returning the physical position of the LEB, but will be
118  * extended to provide more information.
119  */
120 void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
121 		       struct ubi_eba_leb_desc *ldesc)
122 {
123 	ldesc->lnum = lnum;
124 	ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
125 }
126 
127 /**
128  * ubi_eba_create_table - allocate a new EBA table and initialize it with all
129  *			  LEBs unmapped
130  * @vol: volume containing the EBA table to copy
131  * @nentries: number of entries in the table
132  *
133  * Allocate a new EBA table and initialize it with all LEBs unmapped.
134  * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
135  */
136 struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
137 					   int nentries)
138 {
139 	struct ubi_eba_table *tbl;
140 	int err = -ENOMEM;
141 	int i;
142 
143 	tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
144 	if (!tbl)
145 		return ERR_PTR(-ENOMEM);
146 
147 	tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
148 				     GFP_KERNEL);
149 	if (!tbl->entries)
150 		goto err;
151 
152 	for (i = 0; i < nentries; i++)
153 		tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
154 
155 	return tbl;
156 
157 err:
158 	kfree(tbl->entries);
159 	kfree(tbl);
160 
161 	return ERR_PTR(err);
162 }
163 
164 /**
165  * ubi_eba_destroy_table - destroy an EBA table
166  * @tbl: the table to destroy
167  *
168  * Destroy an EBA table.
169  */
170 void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
171 {
172 	if (!tbl)
173 		return;
174 
175 	kfree(tbl->entries);
176 	kfree(tbl);
177 }
178 
179 /**
180  * ubi_eba_copy_table - copy the EBA table attached to vol into another table
181  * @vol: volume containing the EBA table to copy
182  * @dst: destination
183  * @nentries: number of entries to copy
184  *
185  * Copy the EBA table stored in vol into the one pointed by dst.
186  */
187 void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
188 			int nentries)
189 {
190 	struct ubi_eba_table *src;
191 	int i;
192 
193 	ubi_assert(dst && vol && vol->eba_tbl);
194 
195 	src = vol->eba_tbl;
196 
197 	for (i = 0; i < nentries; i++)
198 		dst->entries[i].pnum = src->entries[i].pnum;
199 }
200 
201 /**
202  * ubi_eba_replace_table - assign a new EBA table to a volume
203  * @vol: volume containing the EBA table to copy
204  * @tbl: new EBA table
205  *
206  * Assign a new EBA table to the volume and release the old one.
207  */
208 void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
209 {
210 	ubi_eba_destroy_table(vol->eba_tbl);
211 	vol->eba_tbl = tbl;
212 }
213 
214 /**
215  * ltree_lookup - look up the lock tree.
216  * @ubi: UBI device description object
217  * @vol_id: volume ID
218  * @lnum: logical eraseblock number
219  *
220  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
221  * object if the logical eraseblock is locked and %NULL if it is not.
222  * @ubi->ltree_lock has to be locked.
223  */
224 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
225 					    int lnum)
226 {
227 	struct rb_node *p;
228 
229 	p = ubi->ltree.rb_node;
230 	while (p) {
231 		struct ubi_ltree_entry *le;
232 
233 		le = rb_entry(p, struct ubi_ltree_entry, rb);
234 
235 		if (vol_id < le->vol_id)
236 			p = p->rb_left;
237 		else if (vol_id > le->vol_id)
238 			p = p->rb_right;
239 		else {
240 			if (lnum < le->lnum)
241 				p = p->rb_left;
242 			else if (lnum > le->lnum)
243 				p = p->rb_right;
244 			else
245 				return le;
246 		}
247 	}
248 
249 	return NULL;
250 }
251 
252 /**
253  * ltree_add_entry - add new entry to the lock tree.
254  * @ubi: UBI device description object
255  * @vol_id: volume ID
256  * @lnum: logical eraseblock number
257  *
258  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
259  * lock tree. If such entry is already there, its usage counter is increased.
260  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
261  * failed.
262  */
263 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
264 					       int vol_id, int lnum)
265 {
266 	struct ubi_ltree_entry *le, *le1, *le_free;
267 
268 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
269 	if (!le)
270 		return ERR_PTR(-ENOMEM);
271 
272 	le->users = 0;
273 	init_rwsem(&le->mutex);
274 	le->vol_id = vol_id;
275 	le->lnum = lnum;
276 
277 	spin_lock(&ubi->ltree_lock);
278 	le1 = ltree_lookup(ubi, vol_id, lnum);
279 
280 	if (le1) {
281 		/*
282 		 * This logical eraseblock is already locked. The newly
283 		 * allocated lock entry is not needed.
284 		 */
285 		le_free = le;
286 		le = le1;
287 	} else {
288 		struct rb_node **p, *parent = NULL;
289 
290 		/*
291 		 * No lock entry, add the newly allocated one to the
292 		 * @ubi->ltree RB-tree.
293 		 */
294 		le_free = NULL;
295 
296 		p = &ubi->ltree.rb_node;
297 		while (*p) {
298 			parent = *p;
299 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
300 
301 			if (vol_id < le1->vol_id)
302 				p = &(*p)->rb_left;
303 			else if (vol_id > le1->vol_id)
304 				p = &(*p)->rb_right;
305 			else {
306 				ubi_assert(lnum != le1->lnum);
307 				if (lnum < le1->lnum)
308 					p = &(*p)->rb_left;
309 				else
310 					p = &(*p)->rb_right;
311 			}
312 		}
313 
314 		rb_link_node(&le->rb, parent, p);
315 		rb_insert_color(&le->rb, &ubi->ltree);
316 	}
317 	le->users += 1;
318 	spin_unlock(&ubi->ltree_lock);
319 
320 	kfree(le_free);
321 	return le;
322 }
323 
324 /**
325  * leb_read_lock - lock logical eraseblock for reading.
326  * @ubi: UBI device description object
327  * @vol_id: volume ID
328  * @lnum: logical eraseblock number
329  *
330  * This function locks a logical eraseblock for reading. Returns zero in case
331  * of success and a negative error code in case of failure.
332  */
333 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
334 {
335 	struct ubi_ltree_entry *le;
336 
337 	le = ltree_add_entry(ubi, vol_id, lnum);
338 	if (IS_ERR(le))
339 		return PTR_ERR(le);
340 	down_read(&le->mutex);
341 	return 0;
342 }
343 
344 /**
345  * leb_read_unlock - unlock logical eraseblock.
346  * @ubi: UBI device description object
347  * @vol_id: volume ID
348  * @lnum: logical eraseblock number
349  */
350 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
351 {
352 	struct ubi_ltree_entry *le;
353 
354 	spin_lock(&ubi->ltree_lock);
355 	le = ltree_lookup(ubi, vol_id, lnum);
356 	le->users -= 1;
357 	ubi_assert(le->users >= 0);
358 	up_read(&le->mutex);
359 	if (le->users == 0) {
360 		rb_erase(&le->rb, &ubi->ltree);
361 		kfree(le);
362 	}
363 	spin_unlock(&ubi->ltree_lock);
364 }
365 
366 /**
367  * leb_write_lock - lock logical eraseblock for writing.
368  * @ubi: UBI device description object
369  * @vol_id: volume ID
370  * @lnum: logical eraseblock number
371  *
372  * This function locks a logical eraseblock for writing. Returns zero in case
373  * of success and a negative error code in case of failure.
374  */
375 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
376 {
377 	struct ubi_ltree_entry *le;
378 
379 	le = ltree_add_entry(ubi, vol_id, lnum);
380 	if (IS_ERR(le))
381 		return PTR_ERR(le);
382 	down_write(&le->mutex);
383 	return 0;
384 }
385 
386 /**
387  * leb_write_trylock - try to lock logical eraseblock for writing.
388  * @ubi: UBI device description object
389  * @vol_id: volume ID
390  * @lnum: logical eraseblock number
391  *
392  * This function locks a logical eraseblock for writing if there is no
393  * contention and does nothing if there is contention. Returns %0 in case of
394  * success, %1 in case of contention, and and a negative error code in case of
395  * failure.
396  */
397 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
398 {
399 	struct ubi_ltree_entry *le;
400 
401 	le = ltree_add_entry(ubi, vol_id, lnum);
402 	if (IS_ERR(le))
403 		return PTR_ERR(le);
404 	if (down_write_trylock(&le->mutex))
405 		return 0;
406 
407 	/* Contention, cancel */
408 	spin_lock(&ubi->ltree_lock);
409 	le->users -= 1;
410 	ubi_assert(le->users >= 0);
411 	if (le->users == 0) {
412 		rb_erase(&le->rb, &ubi->ltree);
413 		kfree(le);
414 	}
415 	spin_unlock(&ubi->ltree_lock);
416 
417 	return 1;
418 }
419 
420 /**
421  * leb_write_unlock - unlock logical eraseblock.
422  * @ubi: UBI device description object
423  * @vol_id: volume ID
424  * @lnum: logical eraseblock number
425  */
426 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
427 {
428 	struct ubi_ltree_entry *le;
429 
430 	spin_lock(&ubi->ltree_lock);
431 	le = ltree_lookup(ubi, vol_id, lnum);
432 	le->users -= 1;
433 	ubi_assert(le->users >= 0);
434 	up_write(&le->mutex);
435 	if (le->users == 0) {
436 		rb_erase(&le->rb, &ubi->ltree);
437 		kfree(le);
438 	}
439 	spin_unlock(&ubi->ltree_lock);
440 }
441 
442 /**
443  * ubi_eba_is_mapped - check if a LEB is mapped.
444  * @vol: volume description object
445  * @lnum: logical eraseblock number
446  *
447  * This function returns true if the LEB is mapped, false otherwise.
448  */
449 bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
450 {
451 	return vol->eba_tbl->entries[lnum].pnum >= 0;
452 }
453 
454 /**
455  * ubi_eba_unmap_leb - un-map logical eraseblock.
456  * @ubi: UBI device description object
457  * @vol: volume description object
458  * @lnum: logical eraseblock number
459  *
460  * This function un-maps logical eraseblock @lnum and schedules corresponding
461  * physical eraseblock for erasure. Returns zero in case of success and a
462  * negative error code in case of failure.
463  */
464 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
465 		      int lnum)
466 {
467 	int err, pnum, vol_id = vol->vol_id;
468 
469 	if (ubi->ro_mode)
470 		return -EROFS;
471 
472 	err = leb_write_lock(ubi, vol_id, lnum);
473 	if (err)
474 		return err;
475 
476 	pnum = vol->eba_tbl->entries[lnum].pnum;
477 	if (pnum < 0)
478 		/* This logical eraseblock is already unmapped */
479 		goto out_unlock;
480 
481 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
482 
483 	down_read(&ubi->fm_eba_sem);
484 	vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
485 	up_read(&ubi->fm_eba_sem);
486 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
487 
488 out_unlock:
489 	leb_write_unlock(ubi, vol_id, lnum);
490 	return err;
491 }
492 
493 /**
494  * ubi_eba_read_leb - read data.
495  * @ubi: UBI device description object
496  * @vol: volume description object
497  * @lnum: logical eraseblock number
498  * @buf: buffer to store the read data
499  * @offset: offset from where to read
500  * @len: how many bytes to read
501  * @check: data CRC check flag
502  *
503  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
504  * bytes. The @check flag only makes sense for static volumes and forces
505  * eraseblock data CRC checking.
506  *
507  * In case of success this function returns zero. In case of a static volume,
508  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
509  * returned for any volume type if an ECC error was detected by the MTD device
510  * driver. Other negative error cored may be returned in case of other errors.
511  */
512 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
513 		     void *buf, int offset, int len, int check)
514 {
515 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
516 	struct ubi_vid_io_buf *vidb;
517 	struct ubi_vid_hdr *vid_hdr;
518 	uint32_t uninitialized_var(crc);
519 
520 	err = leb_read_lock(ubi, vol_id, lnum);
521 	if (err)
522 		return err;
523 
524 	pnum = vol->eba_tbl->entries[lnum].pnum;
525 	if (pnum < 0) {
526 		/*
527 		 * The logical eraseblock is not mapped, fill the whole buffer
528 		 * with 0xFF bytes. The exception is static volumes for which
529 		 * it is an error to read unmapped logical eraseblocks.
530 		 */
531 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
532 			len, offset, vol_id, lnum);
533 		leb_read_unlock(ubi, vol_id, lnum);
534 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
535 		memset(buf, 0xFF, len);
536 		return 0;
537 	}
538 
539 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
540 		len, offset, vol_id, lnum, pnum);
541 
542 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
543 		check = 0;
544 
545 retry:
546 	if (check) {
547 		vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
548 		if (!vidb) {
549 			err = -ENOMEM;
550 			goto out_unlock;
551 		}
552 
553 		vid_hdr = ubi_get_vid_hdr(vidb);
554 
555 		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
556 		if (err && err != UBI_IO_BITFLIPS) {
557 			if (err > 0) {
558 				/*
559 				 * The header is either absent or corrupted.
560 				 * The former case means there is a bug -
561 				 * switch to read-only mode just in case.
562 				 * The latter case means a real corruption - we
563 				 * may try to recover data. FIXME: but this is
564 				 * not implemented.
565 				 */
566 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
567 				    err == UBI_IO_BAD_HDR) {
568 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
569 						 pnum, vol_id, lnum);
570 					err = -EBADMSG;
571 				} else {
572 					/*
573 					 * Ending up here in the non-Fastmap case
574 					 * is a clear bug as the VID header had to
575 					 * be present at scan time to have it referenced.
576 					 * With fastmap the story is more complicated.
577 					 * Fastmap has the mapping info without the need
578 					 * of a full scan. So the LEB could have been
579 					 * unmapped, Fastmap cannot know this and keeps
580 					 * the LEB referenced.
581 					 * This is valid and works as the layer above UBI
582 					 * has to do bookkeeping about used/referenced
583 					 * LEBs in any case.
584 					 */
585 					if (ubi->fast_attach) {
586 						err = -EBADMSG;
587 					} else {
588 						err = -EINVAL;
589 						ubi_ro_mode(ubi);
590 					}
591 				}
592 			}
593 			goto out_free;
594 		} else if (err == UBI_IO_BITFLIPS)
595 			scrub = 1;
596 
597 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
598 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
599 
600 		crc = be32_to_cpu(vid_hdr->data_crc);
601 		ubi_free_vid_buf(vidb);
602 	}
603 
604 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
605 	if (err) {
606 		if (err == UBI_IO_BITFLIPS)
607 			scrub = 1;
608 		else if (mtd_is_eccerr(err)) {
609 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
610 				goto out_unlock;
611 			scrub = 1;
612 			if (!check) {
613 				ubi_msg(ubi, "force data checking");
614 				check = 1;
615 				goto retry;
616 			}
617 		} else
618 			goto out_unlock;
619 	}
620 
621 	if (check) {
622 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
623 		if (crc1 != crc) {
624 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
625 				 crc1, crc);
626 			err = -EBADMSG;
627 			goto out_unlock;
628 		}
629 	}
630 
631 	if (scrub)
632 		err = ubi_wl_scrub_peb(ubi, pnum);
633 
634 	leb_read_unlock(ubi, vol_id, lnum);
635 	return err;
636 
637 out_free:
638 	ubi_free_vid_buf(vidb);
639 out_unlock:
640 	leb_read_unlock(ubi, vol_id, lnum);
641 	return err;
642 }
643 
644 /**
645  * ubi_eba_read_leb_sg - read data into a scatter gather list.
646  * @ubi: UBI device description object
647  * @vol: volume description object
648  * @lnum: logical eraseblock number
649  * @sgl: UBI scatter gather list to store the read data
650  * @offset: offset from where to read
651  * @len: how many bytes to read
652  * @check: data CRC check flag
653  *
654  * This function works exactly like ubi_eba_read_leb(). But instead of
655  * storing the read data into a buffer it writes to an UBI scatter gather
656  * list.
657  */
658 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
659 			struct ubi_sgl *sgl, int lnum, int offset, int len,
660 			int check)
661 {
662 	int to_read;
663 	int ret;
664 	struct scatterlist *sg;
665 
666 	for (;;) {
667 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
668 		sg = &sgl->sg[sgl->list_pos];
669 		if (len < sg->length - sgl->page_pos)
670 			to_read = len;
671 		else
672 			to_read = sg->length - sgl->page_pos;
673 
674 		ret = ubi_eba_read_leb(ubi, vol, lnum,
675 				       sg_virt(sg) + sgl->page_pos, offset,
676 				       to_read, check);
677 		if (ret < 0)
678 			return ret;
679 
680 		offset += to_read;
681 		len -= to_read;
682 		if (!len) {
683 			sgl->page_pos += to_read;
684 			if (sgl->page_pos == sg->length) {
685 				sgl->list_pos++;
686 				sgl->page_pos = 0;
687 			}
688 
689 			break;
690 		}
691 
692 		sgl->list_pos++;
693 		sgl->page_pos = 0;
694 	}
695 
696 	return ret;
697 }
698 
699 /**
700  * try_recover_peb - try to recover from write failure.
701  * @vol: volume description object
702  * @pnum: the physical eraseblock to recover
703  * @lnum: logical eraseblock number
704  * @buf: data which was not written because of the write failure
705  * @offset: offset of the failed write
706  * @len: how many bytes should have been written
707  * @vidb: VID buffer
708  * @retry: whether the caller should retry in case of failure
709  *
710  * This function is called in case of a write failure and moves all good data
711  * from the potentially bad physical eraseblock to a good physical eraseblock.
712  * This function also writes the data which was not written due to the failure.
713  * Returns 0 in case of success, and a negative error code in case of failure.
714  * In case of failure, the %retry parameter is set to false if this is a fatal
715  * error (retrying won't help), and true otherwise.
716  */
717 static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
718 			   const void *buf, int offset, int len,
719 			   struct ubi_vid_io_buf *vidb, bool *retry)
720 {
721 	struct ubi_device *ubi = vol->ubi;
722 	struct ubi_vid_hdr *vid_hdr;
723 	int new_pnum, err, vol_id = vol->vol_id, data_size;
724 	uint32_t crc;
725 
726 	*retry = false;
727 
728 	new_pnum = ubi_wl_get_peb(ubi);
729 	if (new_pnum < 0) {
730 		err = new_pnum;
731 		goto out_put;
732 	}
733 
734 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
735 		pnum, new_pnum);
736 
737 	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
738 	if (err && err != UBI_IO_BITFLIPS) {
739 		if (err > 0)
740 			err = -EIO;
741 		goto out_put;
742 	}
743 
744 	vid_hdr = ubi_get_vid_hdr(vidb);
745 	ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
746 
747 	mutex_lock(&ubi->buf_mutex);
748 	memset(ubi->peb_buf + offset, 0xFF, len);
749 
750 	/* Read everything before the area where the write failure happened */
751 	if (offset > 0) {
752 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
753 		if (err && err != UBI_IO_BITFLIPS)
754 			goto out_unlock;
755 	}
756 
757 	*retry = true;
758 
759 	memcpy(ubi->peb_buf + offset, buf, len);
760 
761 	data_size = offset + len;
762 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
763 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
764 	vid_hdr->copy_flag = 1;
765 	vid_hdr->data_size = cpu_to_be32(data_size);
766 	vid_hdr->data_crc = cpu_to_be32(crc);
767 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
768 	if (err)
769 		goto out_unlock;
770 
771 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
772 
773 out_unlock:
774 	mutex_unlock(&ubi->buf_mutex);
775 
776 	if (!err)
777 		vol->eba_tbl->entries[lnum].pnum = new_pnum;
778 
779 out_put:
780 	up_read(&ubi->fm_eba_sem);
781 
782 	if (!err) {
783 		ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
784 		ubi_msg(ubi, "data was successfully recovered");
785 	} else if (new_pnum >= 0) {
786 		/*
787 		 * Bad luck? This physical eraseblock is bad too? Crud. Let's
788 		 * try to get another one.
789 		 */
790 		ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
791 		ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
792 	}
793 
794 	return err;
795 }
796 
797 /**
798  * recover_peb - recover from write failure.
799  * @ubi: UBI device description object
800  * @pnum: the physical eraseblock to recover
801  * @vol_id: volume ID
802  * @lnum: logical eraseblock number
803  * @buf: data which was not written because of the write failure
804  * @offset: offset of the failed write
805  * @len: how many bytes should have been written
806  *
807  * This function is called in case of a write failure and moves all good data
808  * from the potentially bad physical eraseblock to a good physical eraseblock.
809  * This function also writes the data which was not written due to the failure.
810  * Returns 0 in case of success, and a negative error code in case of failure.
811  * This function tries %UBI_IO_RETRIES before giving up.
812  */
813 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
814 		       const void *buf, int offset, int len)
815 {
816 	int err, idx = vol_id2idx(ubi, vol_id), tries;
817 	struct ubi_volume *vol = ubi->volumes[idx];
818 	struct ubi_vid_io_buf *vidb;
819 
820 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
821 	if (!vidb)
822 		return -ENOMEM;
823 
824 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
825 		bool retry;
826 
827 		err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
828 				      &retry);
829 		if (!err || !retry)
830 			break;
831 
832 		ubi_msg(ubi, "try again");
833 	}
834 
835 	ubi_free_vid_buf(vidb);
836 
837 	return err;
838 }
839 
840 /**
841  * try_write_vid_and_data - try to write VID header and data to a new PEB.
842  * @vol: volume description object
843  * @lnum: logical eraseblock number
844  * @vidb: the VID buffer to write
845  * @buf: buffer containing the data
846  * @offset: where to start writing data
847  * @len: how many bytes should be written
848  *
849  * This function tries to write VID header and data belonging to logical
850  * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
851  * in case of success and a negative error code in case of failure.
852  * In case of error, it is possible that something was still written to the
853  * flash media, but may be some garbage.
854  */
855 static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
856 				  struct ubi_vid_io_buf *vidb, const void *buf,
857 				  int offset, int len)
858 {
859 	struct ubi_device *ubi = vol->ubi;
860 	int pnum, opnum, err, vol_id = vol->vol_id;
861 
862 	pnum = ubi_wl_get_peb(ubi);
863 	if (pnum < 0) {
864 		err = pnum;
865 		goto out_put;
866 	}
867 
868 	opnum = vol->eba_tbl->entries[lnum].pnum;
869 
870 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
871 		len, offset, vol_id, lnum, pnum);
872 
873 	err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
874 	if (err) {
875 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
876 			 vol_id, lnum, pnum);
877 		goto out_put;
878 	}
879 
880 	if (len) {
881 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
882 		if (err) {
883 			ubi_warn(ubi,
884 				 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
885 				 len, offset, vol_id, lnum, pnum);
886 			goto out_put;
887 		}
888 	}
889 
890 	vol->eba_tbl->entries[lnum].pnum = pnum;
891 
892 out_put:
893 	up_read(&ubi->fm_eba_sem);
894 
895 	if (err && pnum >= 0)
896 		err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
897 	else if (!err && opnum >= 0)
898 		err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
899 
900 	return err;
901 }
902 
903 /**
904  * ubi_eba_write_leb - write data to dynamic volume.
905  * @ubi: UBI device description object
906  * @vol: volume description object
907  * @lnum: logical eraseblock number
908  * @buf: the data to write
909  * @offset: offset within the logical eraseblock where to write
910  * @len: how many bytes to write
911  *
912  * This function writes data to logical eraseblock @lnum of a dynamic volume
913  * @vol. Returns zero in case of success and a negative error code in case
914  * of failure. In case of error, it is possible that something was still
915  * written to the flash media, but may be some garbage.
916  * This function retries %UBI_IO_RETRIES times before giving up.
917  */
918 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
919 		      const void *buf, int offset, int len)
920 {
921 	int err, pnum, tries, vol_id = vol->vol_id;
922 	struct ubi_vid_io_buf *vidb;
923 	struct ubi_vid_hdr *vid_hdr;
924 
925 	if (ubi->ro_mode)
926 		return -EROFS;
927 
928 	err = leb_write_lock(ubi, vol_id, lnum);
929 	if (err)
930 		return err;
931 
932 	pnum = vol->eba_tbl->entries[lnum].pnum;
933 	if (pnum >= 0) {
934 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
935 			len, offset, vol_id, lnum, pnum);
936 
937 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
938 		if (err) {
939 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
940 			if (err == -EIO && ubi->bad_allowed)
941 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
942 						  offset, len);
943 		}
944 
945 		goto out;
946 	}
947 
948 	/*
949 	 * The logical eraseblock is not mapped. We have to get a free physical
950 	 * eraseblock and write the volume identifier header there first.
951 	 */
952 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
953 	if (!vidb) {
954 		leb_write_unlock(ubi, vol_id, lnum);
955 		return -ENOMEM;
956 	}
957 
958 	vid_hdr = ubi_get_vid_hdr(vidb);
959 
960 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
961 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
962 	vid_hdr->vol_id = cpu_to_be32(vol_id);
963 	vid_hdr->lnum = cpu_to_be32(lnum);
964 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
965 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
966 
967 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
968 		err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
969 		if (err != -EIO || !ubi->bad_allowed)
970 			break;
971 
972 		/*
973 		 * Fortunately, this is the first write operation to this
974 		 * physical eraseblock, so just put it and request a new one.
975 		 * We assume that if this physical eraseblock went bad, the
976 		 * erase code will handle that.
977 		 */
978 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
979 		ubi_msg(ubi, "try another PEB");
980 	}
981 
982 	ubi_free_vid_buf(vidb);
983 
984 out:
985 	if (err)
986 		ubi_ro_mode(ubi);
987 
988 	leb_write_unlock(ubi, vol_id, lnum);
989 
990 	return err;
991 }
992 
993 /**
994  * ubi_eba_write_leb_st - write data to static volume.
995  * @ubi: UBI device description object
996  * @vol: volume description object
997  * @lnum: logical eraseblock number
998  * @buf: data to write
999  * @len: how many bytes to write
1000  * @used_ebs: how many logical eraseblocks will this volume contain
1001  *
1002  * This function writes data to logical eraseblock @lnum of static volume
1003  * @vol. The @used_ebs argument should contain total number of logical
1004  * eraseblock in this static volume.
1005  *
1006  * When writing to the last logical eraseblock, the @len argument doesn't have
1007  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1008  * to the real data size, although the @buf buffer has to contain the
1009  * alignment. In all other cases, @len has to be aligned.
1010  *
1011  * It is prohibited to write more than once to logical eraseblocks of static
1012  * volumes. This function returns zero in case of success and a negative error
1013  * code in case of failure.
1014  */
1015 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1016 			 int lnum, const void *buf, int len, int used_ebs)
1017 {
1018 	int err, tries, data_size = len, vol_id = vol->vol_id;
1019 	struct ubi_vid_io_buf *vidb;
1020 	struct ubi_vid_hdr *vid_hdr;
1021 	uint32_t crc;
1022 
1023 	if (ubi->ro_mode)
1024 		return -EROFS;
1025 
1026 	if (lnum == used_ebs - 1)
1027 		/* If this is the last LEB @len may be unaligned */
1028 		len = ALIGN(data_size, ubi->min_io_size);
1029 	else
1030 		ubi_assert(!(len & (ubi->min_io_size - 1)));
1031 
1032 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1033 	if (!vidb)
1034 		return -ENOMEM;
1035 
1036 	vid_hdr = ubi_get_vid_hdr(vidb);
1037 
1038 	err = leb_write_lock(ubi, vol_id, lnum);
1039 	if (err)
1040 		goto out;
1041 
1042 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1043 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1044 	vid_hdr->lnum = cpu_to_be32(lnum);
1045 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1046 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1047 
1048 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
1049 	vid_hdr->vol_type = UBI_VID_STATIC;
1050 	vid_hdr->data_size = cpu_to_be32(data_size);
1051 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1052 	vid_hdr->data_crc = cpu_to_be32(crc);
1053 
1054 	ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1055 
1056 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1057 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1058 		if (err != -EIO || !ubi->bad_allowed)
1059 			break;
1060 
1061 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1062 		ubi_msg(ubi, "try another PEB");
1063 	}
1064 
1065 	if (err)
1066 		ubi_ro_mode(ubi);
1067 
1068 	leb_write_unlock(ubi, vol_id, lnum);
1069 
1070 out:
1071 	ubi_free_vid_buf(vidb);
1072 
1073 	return err;
1074 }
1075 
1076 /*
1077  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1078  * @ubi: UBI device description object
1079  * @vol: volume description object
1080  * @lnum: logical eraseblock number
1081  * @buf: data to write
1082  * @len: how many bytes to write
1083  *
1084  * This function changes the contents of a logical eraseblock atomically. @buf
1085  * has to contain new logical eraseblock data, and @len - the length of the
1086  * data, which has to be aligned. This function guarantees that in case of an
1087  * unclean reboot the old contents is preserved. Returns zero in case of
1088  * success and a negative error code in case of failure.
1089  *
1090  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1091  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1092  */
1093 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1094 			      int lnum, const void *buf, int len)
1095 {
1096 	int err, tries, vol_id = vol->vol_id;
1097 	struct ubi_vid_io_buf *vidb;
1098 	struct ubi_vid_hdr *vid_hdr;
1099 	uint32_t crc;
1100 
1101 	if (ubi->ro_mode)
1102 		return -EROFS;
1103 
1104 	if (len == 0) {
1105 		/*
1106 		 * Special case when data length is zero. In this case the LEB
1107 		 * has to be unmapped and mapped somewhere else.
1108 		 */
1109 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
1110 		if (err)
1111 			return err;
1112 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1113 	}
1114 
1115 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1116 	if (!vidb)
1117 		return -ENOMEM;
1118 
1119 	vid_hdr = ubi_get_vid_hdr(vidb);
1120 
1121 	mutex_lock(&ubi->alc_mutex);
1122 	err = leb_write_lock(ubi, vol_id, lnum);
1123 	if (err)
1124 		goto out_mutex;
1125 
1126 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1127 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1128 	vid_hdr->lnum = cpu_to_be32(lnum);
1129 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1130 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1131 
1132 	crc = crc32(UBI_CRC32_INIT, buf, len);
1133 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1134 	vid_hdr->data_size = cpu_to_be32(len);
1135 	vid_hdr->copy_flag = 1;
1136 	vid_hdr->data_crc = cpu_to_be32(crc);
1137 
1138 	dbg_eba("change LEB %d:%d", vol_id, lnum);
1139 
1140 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1141 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1142 		if (err != -EIO || !ubi->bad_allowed)
1143 			break;
1144 
1145 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1146 		ubi_msg(ubi, "try another PEB");
1147 	}
1148 
1149 	/*
1150 	 * This flash device does not admit of bad eraseblocks or
1151 	 * something nasty and unexpected happened. Switch to read-only
1152 	 * mode just in case.
1153 	 */
1154 	if (err)
1155 		ubi_ro_mode(ubi);
1156 
1157 	leb_write_unlock(ubi, vol_id, lnum);
1158 
1159 out_mutex:
1160 	mutex_unlock(&ubi->alc_mutex);
1161 	ubi_free_vid_buf(vidb);
1162 	return err;
1163 }
1164 
1165 /**
1166  * is_error_sane - check whether a read error is sane.
1167  * @err: code of the error happened during reading
1168  *
1169  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1170  * cannot read data from the target PEB (an error @err happened). If the error
1171  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1172  * fatal and UBI will be switched to R/O mode later.
1173  *
1174  * The idea is that we try not to switch to R/O mode if the read error is
1175  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1176  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1177  * mode, simply because we do not know what happened at the MTD level, and we
1178  * cannot handle this. E.g., the underlying driver may have become crazy, and
1179  * it is safer to switch to R/O mode to preserve the data.
1180  *
1181  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1182  * which we have just written.
1183  */
1184 static int is_error_sane(int err)
1185 {
1186 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1187 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1188 		return 0;
1189 	return 1;
1190 }
1191 
1192 /**
1193  * ubi_eba_copy_leb - copy logical eraseblock.
1194  * @ubi: UBI device description object
1195  * @from: physical eraseblock number from where to copy
1196  * @to: physical eraseblock number where to copy
1197  * @vid_hdr: VID header of the @from physical eraseblock
1198  *
1199  * This function copies logical eraseblock from physical eraseblock @from to
1200  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1201  * function. Returns:
1202  *   o %0 in case of success;
1203  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1204  *   o a negative error code in case of failure.
1205  */
1206 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1207 		     struct ubi_vid_io_buf *vidb)
1208 {
1209 	int err, vol_id, lnum, data_size, aldata_size, idx;
1210 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1211 	struct ubi_volume *vol;
1212 	uint32_t crc;
1213 
1214 	ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1215 
1216 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1217 	lnum = be32_to_cpu(vid_hdr->lnum);
1218 
1219 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1220 
1221 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1222 		data_size = be32_to_cpu(vid_hdr->data_size);
1223 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1224 	} else
1225 		data_size = aldata_size =
1226 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1227 
1228 	idx = vol_id2idx(ubi, vol_id);
1229 	spin_lock(&ubi->volumes_lock);
1230 	/*
1231 	 * Note, we may race with volume deletion, which means that the volume
1232 	 * this logical eraseblock belongs to might be being deleted. Since the
1233 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1234 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1235 	 */
1236 	vol = ubi->volumes[idx];
1237 	spin_unlock(&ubi->volumes_lock);
1238 	if (!vol) {
1239 		/* No need to do further work, cancel */
1240 		dbg_wl("volume %d is being removed, cancel", vol_id);
1241 		return MOVE_CANCEL_RACE;
1242 	}
1243 
1244 	/*
1245 	 * We do not want anybody to write to this logical eraseblock while we
1246 	 * are moving it, so lock it.
1247 	 *
1248 	 * Note, we are using non-waiting locking here, because we cannot sleep
1249 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1250 	 * unmapping the LEB which is mapped to the PEB we are going to move
1251 	 * (@from). This task locks the LEB and goes sleep in the
1252 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1253 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1254 	 * LEB is already locked, we just do not move it and return
1255 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1256 	 * we do not know the reasons of the contention - it may be just a
1257 	 * normal I/O on this LEB, so we want to re-try.
1258 	 */
1259 	err = leb_write_trylock(ubi, vol_id, lnum);
1260 	if (err) {
1261 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1262 		return MOVE_RETRY;
1263 	}
1264 
1265 	/*
1266 	 * The LEB might have been put meanwhile, and the task which put it is
1267 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1268 	 * cancel it.
1269 	 */
1270 	if (vol->eba_tbl->entries[lnum].pnum != from) {
1271 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1272 		       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1273 		err = MOVE_CANCEL_RACE;
1274 		goto out_unlock_leb;
1275 	}
1276 
1277 	/*
1278 	 * OK, now the LEB is locked and we can safely start moving it. Since
1279 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1280 	 * with some other functions - we lock the buffer by taking the
1281 	 * @ubi->buf_mutex.
1282 	 */
1283 	mutex_lock(&ubi->buf_mutex);
1284 	dbg_wl("read %d bytes of data", aldata_size);
1285 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1286 	if (err && err != UBI_IO_BITFLIPS) {
1287 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1288 			 err, from);
1289 		err = MOVE_SOURCE_RD_ERR;
1290 		goto out_unlock_buf;
1291 	}
1292 
1293 	/*
1294 	 * Now we have got to calculate how much data we have to copy. In
1295 	 * case of a static volume it is fairly easy - the VID header contains
1296 	 * the data size. In case of a dynamic volume it is more difficult - we
1297 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1298 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1299 	 * may have some side-effects. And not only this. It is important not
1300 	 * to include those 0xFFs to CRC because later the they may be filled
1301 	 * by data.
1302 	 */
1303 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1304 		aldata_size = data_size =
1305 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1306 
1307 	cond_resched();
1308 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1309 	cond_resched();
1310 
1311 	/*
1312 	 * It may turn out to be that the whole @from physical eraseblock
1313 	 * contains only 0xFF bytes. Then we have to only write the VID header
1314 	 * and do not write any data. This also means we should not set
1315 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1316 	 */
1317 	if (data_size > 0) {
1318 		vid_hdr->copy_flag = 1;
1319 		vid_hdr->data_size = cpu_to_be32(data_size);
1320 		vid_hdr->data_crc = cpu_to_be32(crc);
1321 	}
1322 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1323 
1324 	err = ubi_io_write_vid_hdr(ubi, to, vidb);
1325 	if (err) {
1326 		if (err == -EIO)
1327 			err = MOVE_TARGET_WR_ERR;
1328 		goto out_unlock_buf;
1329 	}
1330 
1331 	cond_resched();
1332 
1333 	/* Read the VID header back and check if it was written correctly */
1334 	err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1335 	if (err) {
1336 		if (err != UBI_IO_BITFLIPS) {
1337 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1338 				 err, to);
1339 			if (is_error_sane(err))
1340 				err = MOVE_TARGET_RD_ERR;
1341 		} else
1342 			err = MOVE_TARGET_BITFLIPS;
1343 		goto out_unlock_buf;
1344 	}
1345 
1346 	if (data_size > 0) {
1347 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1348 		if (err) {
1349 			if (err == -EIO)
1350 				err = MOVE_TARGET_WR_ERR;
1351 			goto out_unlock_buf;
1352 		}
1353 
1354 		cond_resched();
1355 	}
1356 
1357 	ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1358 	vol->eba_tbl->entries[lnum].pnum = to;
1359 
1360 out_unlock_buf:
1361 	mutex_unlock(&ubi->buf_mutex);
1362 out_unlock_leb:
1363 	leb_write_unlock(ubi, vol_id, lnum);
1364 	return err;
1365 }
1366 
1367 /**
1368  * print_rsvd_warning - warn about not having enough reserved PEBs.
1369  * @ubi: UBI device description object
1370  *
1371  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1372  * cannot reserve enough PEBs for bad block handling. This function makes a
1373  * decision whether we have to print a warning or not. The algorithm is as
1374  * follows:
1375  *   o if this is a new UBI image, then just print the warning
1376  *   o if this is an UBI image which has already been used for some time, print
1377  *     a warning only if we can reserve less than 10% of the expected amount of
1378  *     the reserved PEB.
1379  *
1380  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1381  * of PEBs becomes smaller, which is normal and we do not want to scare users
1382  * with a warning every time they attach the MTD device. This was an issue
1383  * reported by real users.
1384  */
1385 static void print_rsvd_warning(struct ubi_device *ubi,
1386 			       struct ubi_attach_info *ai)
1387 {
1388 	/*
1389 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1390 	 * large number to distinguish between newly flashed and used images.
1391 	 */
1392 	if (ai->max_sqnum > (1 << 18)) {
1393 		int min = ubi->beb_rsvd_level / 10;
1394 
1395 		if (!min)
1396 			min = 1;
1397 		if (ubi->beb_rsvd_pebs > min)
1398 			return;
1399 	}
1400 
1401 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1402 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1403 	if (ubi->corr_peb_count)
1404 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1405 			 ubi->corr_peb_count);
1406 }
1407 
1408 /**
1409  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1410  * @ubi: UBI device description object
1411  * @ai_fastmap: UBI attach info object created by fastmap
1412  * @ai_scan: UBI attach info object created by scanning
1413  *
1414  * Returns < 0 in case of an internal error, 0 otherwise.
1415  * If a bad EBA table entry was found it will be printed out and
1416  * ubi_assert() triggers.
1417  */
1418 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1419 		   struct ubi_attach_info *ai_scan)
1420 {
1421 	int i, j, num_volumes, ret = 0;
1422 	int **scan_eba, **fm_eba;
1423 	struct ubi_ainf_volume *av;
1424 	struct ubi_volume *vol;
1425 	struct ubi_ainf_peb *aeb;
1426 	struct rb_node *rb;
1427 
1428 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1429 
1430 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1431 	if (!scan_eba)
1432 		return -ENOMEM;
1433 
1434 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1435 	if (!fm_eba) {
1436 		kfree(scan_eba);
1437 		return -ENOMEM;
1438 	}
1439 
1440 	for (i = 0; i < num_volumes; i++) {
1441 		vol = ubi->volumes[i];
1442 		if (!vol)
1443 			continue;
1444 
1445 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1446 				      GFP_KERNEL);
1447 		if (!scan_eba[i]) {
1448 			ret = -ENOMEM;
1449 			goto out_free;
1450 		}
1451 
1452 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1453 				    GFP_KERNEL);
1454 		if (!fm_eba[i]) {
1455 			ret = -ENOMEM;
1456 			goto out_free;
1457 		}
1458 
1459 		for (j = 0; j < vol->reserved_pebs; j++)
1460 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1461 
1462 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1463 		if (!av)
1464 			continue;
1465 
1466 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1467 			scan_eba[i][aeb->lnum] = aeb->pnum;
1468 
1469 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1470 		if (!av)
1471 			continue;
1472 
1473 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1474 			fm_eba[i][aeb->lnum] = aeb->pnum;
1475 
1476 		for (j = 0; j < vol->reserved_pebs; j++) {
1477 			if (scan_eba[i][j] != fm_eba[i][j]) {
1478 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1479 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1480 					continue;
1481 
1482 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1483 					vol->vol_id, j, fm_eba[i][j],
1484 					scan_eba[i][j]);
1485 				ubi_assert(0);
1486 			}
1487 		}
1488 	}
1489 
1490 out_free:
1491 	for (i = 0; i < num_volumes; i++) {
1492 		if (!ubi->volumes[i])
1493 			continue;
1494 
1495 		kfree(scan_eba[i]);
1496 		kfree(fm_eba[i]);
1497 	}
1498 
1499 	kfree(scan_eba);
1500 	kfree(fm_eba);
1501 	return ret;
1502 }
1503 
1504 /**
1505  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1506  * @ubi: UBI device description object
1507  * @ai: attaching information
1508  *
1509  * This function returns zero in case of success and a negative error code in
1510  * case of failure.
1511  */
1512 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1513 {
1514 	int i, err, num_volumes;
1515 	struct ubi_ainf_volume *av;
1516 	struct ubi_volume *vol;
1517 	struct ubi_ainf_peb *aeb;
1518 	struct rb_node *rb;
1519 
1520 	dbg_eba("initialize EBA sub-system");
1521 
1522 	spin_lock_init(&ubi->ltree_lock);
1523 	mutex_init(&ubi->alc_mutex);
1524 	ubi->ltree = RB_ROOT;
1525 
1526 	ubi->global_sqnum = ai->max_sqnum + 1;
1527 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1528 
1529 	for (i = 0; i < num_volumes; i++) {
1530 		struct ubi_eba_table *tbl;
1531 
1532 		vol = ubi->volumes[i];
1533 		if (!vol)
1534 			continue;
1535 
1536 		cond_resched();
1537 
1538 		tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1539 		if (IS_ERR(tbl)) {
1540 			err = PTR_ERR(tbl);
1541 			goto out_free;
1542 		}
1543 
1544 		ubi_eba_replace_table(vol, tbl);
1545 
1546 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1547 		if (!av)
1548 			continue;
1549 
1550 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1551 			if (aeb->lnum >= vol->reserved_pebs) {
1552 				/*
1553 				 * This may happen in case of an unclean reboot
1554 				 * during re-size.
1555 				 */
1556 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1557 			} else {
1558 				struct ubi_eba_entry *entry;
1559 
1560 				entry = &vol->eba_tbl->entries[aeb->lnum];
1561 				entry->pnum = aeb->pnum;
1562 			}
1563 		}
1564 	}
1565 
1566 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1567 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1568 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1569 		if (ubi->corr_peb_count)
1570 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1571 				ubi->corr_peb_count);
1572 		err = -ENOSPC;
1573 		goto out_free;
1574 	}
1575 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1576 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1577 
1578 	if (ubi->bad_allowed) {
1579 		ubi_calculate_reserved(ubi);
1580 
1581 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1582 			/* No enough free physical eraseblocks */
1583 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1584 			print_rsvd_warning(ubi, ai);
1585 		} else
1586 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1587 
1588 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1589 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1590 	}
1591 
1592 	dbg_eba("EBA sub-system is initialized");
1593 	return 0;
1594 
1595 out_free:
1596 	for (i = 0; i < num_volumes; i++) {
1597 		if (!ubi->volumes[i])
1598 			continue;
1599 		ubi_eba_replace_table(ubi->volumes[i], NULL);
1600 	}
1601 	return err;
1602 }
1603