xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision ba61bb17)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
54  * @pnum: the physical eraseblock number attached to the LEB
55  *
56  * This structure is encoding a LEB -> PEB association. Note that the LEB
57  * number is not stored here, because it is the index used to access the
58  * entries table.
59  */
60 struct ubi_eba_entry {
61 	int pnum;
62 };
63 
64 /**
65  * struct ubi_eba_table - LEB -> PEB association information
66  * @entries: the LEB to PEB mapping (one entry per LEB).
67  *
68  * This structure is private to the EBA logic and should be kept here.
69  * It is encoding the LEB to PEB association table, and is subject to
70  * changes.
71  */
72 struct ubi_eba_table {
73 	struct ubi_eba_entry *entries;
74 };
75 
76 /**
77  * next_sqnum - get next sequence number.
78  * @ubi: UBI device description object
79  *
80  * This function returns next sequence number to use, which is just the current
81  * global sequence counter value. It also increases the global sequence
82  * counter.
83  */
84 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
85 {
86 	unsigned long long sqnum;
87 
88 	spin_lock(&ubi->ltree_lock);
89 	sqnum = ubi->global_sqnum++;
90 	spin_unlock(&ubi->ltree_lock);
91 
92 	return sqnum;
93 }
94 
95 /**
96  * ubi_get_compat - get compatibility flags of a volume.
97  * @ubi: UBI device description object
98  * @vol_id: volume ID
99  *
100  * This function returns compatibility flags for an internal volume. User
101  * volumes have no compatibility flags, so %0 is returned.
102  */
103 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
104 {
105 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
106 		return UBI_LAYOUT_VOLUME_COMPAT;
107 	return 0;
108 }
109 
110 /**
111  * ubi_eba_get_ldesc - get information about a LEB
112  * @vol: volume description object
113  * @lnum: logical eraseblock number
114  * @ldesc: the LEB descriptor to fill
115  *
116  * Used to query information about a specific LEB.
117  * It is currently only returning the physical position of the LEB, but will be
118  * extended to provide more information.
119  */
120 void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
121 		       struct ubi_eba_leb_desc *ldesc)
122 {
123 	ldesc->lnum = lnum;
124 	ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
125 }
126 
127 /**
128  * ubi_eba_create_table - allocate a new EBA table and initialize it with all
129  *			  LEBs unmapped
130  * @vol: volume containing the EBA table to copy
131  * @nentries: number of entries in the table
132  *
133  * Allocate a new EBA table and initialize it with all LEBs unmapped.
134  * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
135  */
136 struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
137 					   int nentries)
138 {
139 	struct ubi_eba_table *tbl;
140 	int err = -ENOMEM;
141 	int i;
142 
143 	tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
144 	if (!tbl)
145 		return ERR_PTR(-ENOMEM);
146 
147 	tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
148 				     GFP_KERNEL);
149 	if (!tbl->entries)
150 		goto err;
151 
152 	for (i = 0; i < nentries; i++)
153 		tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
154 
155 	return tbl;
156 
157 err:
158 	kfree(tbl->entries);
159 	kfree(tbl);
160 
161 	return ERR_PTR(err);
162 }
163 
164 /**
165  * ubi_eba_destroy_table - destroy an EBA table
166  * @tbl: the table to destroy
167  *
168  * Destroy an EBA table.
169  */
170 void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
171 {
172 	if (!tbl)
173 		return;
174 
175 	kfree(tbl->entries);
176 	kfree(tbl);
177 }
178 
179 /**
180  * ubi_eba_copy_table - copy the EBA table attached to vol into another table
181  * @vol: volume containing the EBA table to copy
182  * @dst: destination
183  * @nentries: number of entries to copy
184  *
185  * Copy the EBA table stored in vol into the one pointed by dst.
186  */
187 void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
188 			int nentries)
189 {
190 	struct ubi_eba_table *src;
191 	int i;
192 
193 	ubi_assert(dst && vol && vol->eba_tbl);
194 
195 	src = vol->eba_tbl;
196 
197 	for (i = 0; i < nentries; i++)
198 		dst->entries[i].pnum = src->entries[i].pnum;
199 }
200 
201 /**
202  * ubi_eba_replace_table - assign a new EBA table to a volume
203  * @vol: volume containing the EBA table to copy
204  * @tbl: new EBA table
205  *
206  * Assign a new EBA table to the volume and release the old one.
207  */
208 void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
209 {
210 	ubi_eba_destroy_table(vol->eba_tbl);
211 	vol->eba_tbl = tbl;
212 }
213 
214 /**
215  * ltree_lookup - look up the lock tree.
216  * @ubi: UBI device description object
217  * @vol_id: volume ID
218  * @lnum: logical eraseblock number
219  *
220  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
221  * object if the logical eraseblock is locked and %NULL if it is not.
222  * @ubi->ltree_lock has to be locked.
223  */
224 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
225 					    int lnum)
226 {
227 	struct rb_node *p;
228 
229 	p = ubi->ltree.rb_node;
230 	while (p) {
231 		struct ubi_ltree_entry *le;
232 
233 		le = rb_entry(p, struct ubi_ltree_entry, rb);
234 
235 		if (vol_id < le->vol_id)
236 			p = p->rb_left;
237 		else if (vol_id > le->vol_id)
238 			p = p->rb_right;
239 		else {
240 			if (lnum < le->lnum)
241 				p = p->rb_left;
242 			else if (lnum > le->lnum)
243 				p = p->rb_right;
244 			else
245 				return le;
246 		}
247 	}
248 
249 	return NULL;
250 }
251 
252 /**
253  * ltree_add_entry - add new entry to the lock tree.
254  * @ubi: UBI device description object
255  * @vol_id: volume ID
256  * @lnum: logical eraseblock number
257  *
258  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
259  * lock tree. If such entry is already there, its usage counter is increased.
260  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
261  * failed.
262  */
263 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
264 					       int vol_id, int lnum)
265 {
266 	struct ubi_ltree_entry *le, *le1, *le_free;
267 
268 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
269 	if (!le)
270 		return ERR_PTR(-ENOMEM);
271 
272 	le->users = 0;
273 	init_rwsem(&le->mutex);
274 	le->vol_id = vol_id;
275 	le->lnum = lnum;
276 
277 	spin_lock(&ubi->ltree_lock);
278 	le1 = ltree_lookup(ubi, vol_id, lnum);
279 
280 	if (le1) {
281 		/*
282 		 * This logical eraseblock is already locked. The newly
283 		 * allocated lock entry is not needed.
284 		 */
285 		le_free = le;
286 		le = le1;
287 	} else {
288 		struct rb_node **p, *parent = NULL;
289 
290 		/*
291 		 * No lock entry, add the newly allocated one to the
292 		 * @ubi->ltree RB-tree.
293 		 */
294 		le_free = NULL;
295 
296 		p = &ubi->ltree.rb_node;
297 		while (*p) {
298 			parent = *p;
299 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
300 
301 			if (vol_id < le1->vol_id)
302 				p = &(*p)->rb_left;
303 			else if (vol_id > le1->vol_id)
304 				p = &(*p)->rb_right;
305 			else {
306 				ubi_assert(lnum != le1->lnum);
307 				if (lnum < le1->lnum)
308 					p = &(*p)->rb_left;
309 				else
310 					p = &(*p)->rb_right;
311 			}
312 		}
313 
314 		rb_link_node(&le->rb, parent, p);
315 		rb_insert_color(&le->rb, &ubi->ltree);
316 	}
317 	le->users += 1;
318 	spin_unlock(&ubi->ltree_lock);
319 
320 	kfree(le_free);
321 	return le;
322 }
323 
324 /**
325  * leb_read_lock - lock logical eraseblock for reading.
326  * @ubi: UBI device description object
327  * @vol_id: volume ID
328  * @lnum: logical eraseblock number
329  *
330  * This function locks a logical eraseblock for reading. Returns zero in case
331  * of success and a negative error code in case of failure.
332  */
333 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
334 {
335 	struct ubi_ltree_entry *le;
336 
337 	le = ltree_add_entry(ubi, vol_id, lnum);
338 	if (IS_ERR(le))
339 		return PTR_ERR(le);
340 	down_read(&le->mutex);
341 	return 0;
342 }
343 
344 /**
345  * leb_read_unlock - unlock logical eraseblock.
346  * @ubi: UBI device description object
347  * @vol_id: volume ID
348  * @lnum: logical eraseblock number
349  */
350 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
351 {
352 	struct ubi_ltree_entry *le;
353 
354 	spin_lock(&ubi->ltree_lock);
355 	le = ltree_lookup(ubi, vol_id, lnum);
356 	le->users -= 1;
357 	ubi_assert(le->users >= 0);
358 	up_read(&le->mutex);
359 	if (le->users == 0) {
360 		rb_erase(&le->rb, &ubi->ltree);
361 		kfree(le);
362 	}
363 	spin_unlock(&ubi->ltree_lock);
364 }
365 
366 /**
367  * leb_write_lock - lock logical eraseblock for writing.
368  * @ubi: UBI device description object
369  * @vol_id: volume ID
370  * @lnum: logical eraseblock number
371  *
372  * This function locks a logical eraseblock for writing. Returns zero in case
373  * of success and a negative error code in case of failure.
374  */
375 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
376 {
377 	struct ubi_ltree_entry *le;
378 
379 	le = ltree_add_entry(ubi, vol_id, lnum);
380 	if (IS_ERR(le))
381 		return PTR_ERR(le);
382 	down_write(&le->mutex);
383 	return 0;
384 }
385 
386 /**
387  * leb_write_trylock - try to lock logical eraseblock for writing.
388  * @ubi: UBI device description object
389  * @vol_id: volume ID
390  * @lnum: logical eraseblock number
391  *
392  * This function locks a logical eraseblock for writing if there is no
393  * contention and does nothing if there is contention. Returns %0 in case of
394  * success, %1 in case of contention, and and a negative error code in case of
395  * failure.
396  */
397 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
398 {
399 	struct ubi_ltree_entry *le;
400 
401 	le = ltree_add_entry(ubi, vol_id, lnum);
402 	if (IS_ERR(le))
403 		return PTR_ERR(le);
404 	if (down_write_trylock(&le->mutex))
405 		return 0;
406 
407 	/* Contention, cancel */
408 	spin_lock(&ubi->ltree_lock);
409 	le->users -= 1;
410 	ubi_assert(le->users >= 0);
411 	if (le->users == 0) {
412 		rb_erase(&le->rb, &ubi->ltree);
413 		kfree(le);
414 	}
415 	spin_unlock(&ubi->ltree_lock);
416 
417 	return 1;
418 }
419 
420 /**
421  * leb_write_unlock - unlock logical eraseblock.
422  * @ubi: UBI device description object
423  * @vol_id: volume ID
424  * @lnum: logical eraseblock number
425  */
426 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
427 {
428 	struct ubi_ltree_entry *le;
429 
430 	spin_lock(&ubi->ltree_lock);
431 	le = ltree_lookup(ubi, vol_id, lnum);
432 	le->users -= 1;
433 	ubi_assert(le->users >= 0);
434 	up_write(&le->mutex);
435 	if (le->users == 0) {
436 		rb_erase(&le->rb, &ubi->ltree);
437 		kfree(le);
438 	}
439 	spin_unlock(&ubi->ltree_lock);
440 }
441 
442 /**
443  * ubi_eba_is_mapped - check if a LEB is mapped.
444  * @vol: volume description object
445  * @lnum: logical eraseblock number
446  *
447  * This function returns true if the LEB is mapped, false otherwise.
448  */
449 bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
450 {
451 	return vol->eba_tbl->entries[lnum].pnum >= 0;
452 }
453 
454 /**
455  * ubi_eba_unmap_leb - un-map logical eraseblock.
456  * @ubi: UBI device description object
457  * @vol: volume description object
458  * @lnum: logical eraseblock number
459  *
460  * This function un-maps logical eraseblock @lnum and schedules corresponding
461  * physical eraseblock for erasure. Returns zero in case of success and a
462  * negative error code in case of failure.
463  */
464 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
465 		      int lnum)
466 {
467 	int err, pnum, vol_id = vol->vol_id;
468 
469 	if (ubi->ro_mode)
470 		return -EROFS;
471 
472 	err = leb_write_lock(ubi, vol_id, lnum);
473 	if (err)
474 		return err;
475 
476 	pnum = vol->eba_tbl->entries[lnum].pnum;
477 	if (pnum < 0)
478 		/* This logical eraseblock is already unmapped */
479 		goto out_unlock;
480 
481 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
482 
483 	down_read(&ubi->fm_eba_sem);
484 	vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
485 	up_read(&ubi->fm_eba_sem);
486 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
487 
488 out_unlock:
489 	leb_write_unlock(ubi, vol_id, lnum);
490 	return err;
491 }
492 
493 #ifdef CONFIG_MTD_UBI_FASTMAP
494 /**
495  * check_mapping - check and fixup a mapping
496  * @ubi: UBI device description object
497  * @vol: volume description object
498  * @lnum: logical eraseblock number
499  * @pnum: physical eraseblock number
500  *
501  * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
502  * operations, if such an operation is interrupted the mapping still looks
503  * good, but upon first read an ECC is reported to the upper layer.
504  * Normaly during the full-scan at attach time this is fixed, for Fastmap
505  * we have to deal with it while reading.
506  * If the PEB behind a LEB shows this symthom we change the mapping to
507  * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
508  *
509  * Returns 0 on success, negative error code in case of failure.
510  */
511 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
512 			 int *pnum)
513 {
514 	int err;
515 	struct ubi_vid_io_buf *vidb;
516 	struct ubi_vid_hdr *vid_hdr;
517 
518 	if (!ubi->fast_attach)
519 		return 0;
520 
521 	if (!vol->checkmap || test_bit(lnum, vol->checkmap))
522 		return 0;
523 
524 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
525 	if (!vidb)
526 		return -ENOMEM;
527 
528 	err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
529 	if (err > 0 && err != UBI_IO_BITFLIPS) {
530 		int torture = 0;
531 
532 		switch (err) {
533 			case UBI_IO_FF:
534 			case UBI_IO_FF_BITFLIPS:
535 			case UBI_IO_BAD_HDR:
536 			case UBI_IO_BAD_HDR_EBADMSG:
537 				break;
538 			default:
539 				ubi_assert(0);
540 		}
541 
542 		if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
543 			torture = 1;
544 
545 		down_read(&ubi->fm_eba_sem);
546 		vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
547 		up_read(&ubi->fm_eba_sem);
548 		ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
549 
550 		*pnum = UBI_LEB_UNMAPPED;
551 	} else if (err < 0) {
552 		ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
553 			*pnum, err);
554 
555 		goto out_free;
556 	} else {
557 		int found_vol_id, found_lnum;
558 
559 		ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
560 
561 		vid_hdr = ubi_get_vid_hdr(vidb);
562 		found_vol_id = be32_to_cpu(vid_hdr->vol_id);
563 		found_lnum = be32_to_cpu(vid_hdr->lnum);
564 
565 		if (found_lnum != lnum || found_vol_id != vol->vol_id) {
566 			ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
567 				*pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
568 			ubi_ro_mode(ubi);
569 			err = -EINVAL;
570 			goto out_free;
571 		}
572 	}
573 
574 	set_bit(lnum, vol->checkmap);
575 	err = 0;
576 
577 out_free:
578 	ubi_free_vid_buf(vidb);
579 
580 	return err;
581 }
582 #else
583 static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
584 		  int *pnum)
585 {
586 	return 0;
587 }
588 #endif
589 
590 /**
591  * ubi_eba_read_leb - read data.
592  * @ubi: UBI device description object
593  * @vol: volume description object
594  * @lnum: logical eraseblock number
595  * @buf: buffer to store the read data
596  * @offset: offset from where to read
597  * @len: how many bytes to read
598  * @check: data CRC check flag
599  *
600  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
601  * bytes. The @check flag only makes sense for static volumes and forces
602  * eraseblock data CRC checking.
603  *
604  * In case of success this function returns zero. In case of a static volume,
605  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
606  * returned for any volume type if an ECC error was detected by the MTD device
607  * driver. Other negative error cored may be returned in case of other errors.
608  */
609 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
610 		     void *buf, int offset, int len, int check)
611 {
612 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
613 	struct ubi_vid_io_buf *vidb;
614 	struct ubi_vid_hdr *vid_hdr;
615 	uint32_t uninitialized_var(crc);
616 
617 	err = leb_read_lock(ubi, vol_id, lnum);
618 	if (err)
619 		return err;
620 
621 	pnum = vol->eba_tbl->entries[lnum].pnum;
622 	if (pnum >= 0) {
623 		err = check_mapping(ubi, vol, lnum, &pnum);
624 		if (err < 0)
625 			goto out_unlock;
626 	}
627 
628 	if (pnum == UBI_LEB_UNMAPPED) {
629 		/*
630 		 * The logical eraseblock is not mapped, fill the whole buffer
631 		 * with 0xFF bytes. The exception is static volumes for which
632 		 * it is an error to read unmapped logical eraseblocks.
633 		 */
634 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
635 			len, offset, vol_id, lnum);
636 		leb_read_unlock(ubi, vol_id, lnum);
637 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
638 		memset(buf, 0xFF, len);
639 		return 0;
640 	}
641 
642 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
643 		len, offset, vol_id, lnum, pnum);
644 
645 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
646 		check = 0;
647 
648 retry:
649 	if (check) {
650 		vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
651 		if (!vidb) {
652 			err = -ENOMEM;
653 			goto out_unlock;
654 		}
655 
656 		vid_hdr = ubi_get_vid_hdr(vidb);
657 
658 		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
659 		if (err && err != UBI_IO_BITFLIPS) {
660 			if (err > 0) {
661 				/*
662 				 * The header is either absent or corrupted.
663 				 * The former case means there is a bug -
664 				 * switch to read-only mode just in case.
665 				 * The latter case means a real corruption - we
666 				 * may try to recover data. FIXME: but this is
667 				 * not implemented.
668 				 */
669 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
670 				    err == UBI_IO_BAD_HDR) {
671 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
672 						 pnum, vol_id, lnum);
673 					err = -EBADMSG;
674 				} else {
675 					/*
676 					 * Ending up here in the non-Fastmap case
677 					 * is a clear bug as the VID header had to
678 					 * be present at scan time to have it referenced.
679 					 * With fastmap the story is more complicated.
680 					 * Fastmap has the mapping info without the need
681 					 * of a full scan. So the LEB could have been
682 					 * unmapped, Fastmap cannot know this and keeps
683 					 * the LEB referenced.
684 					 * This is valid and works as the layer above UBI
685 					 * has to do bookkeeping about used/referenced
686 					 * LEBs in any case.
687 					 */
688 					if (ubi->fast_attach) {
689 						err = -EBADMSG;
690 					} else {
691 						err = -EINVAL;
692 						ubi_ro_mode(ubi);
693 					}
694 				}
695 			}
696 			goto out_free;
697 		} else if (err == UBI_IO_BITFLIPS)
698 			scrub = 1;
699 
700 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
701 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
702 
703 		crc = be32_to_cpu(vid_hdr->data_crc);
704 		ubi_free_vid_buf(vidb);
705 	}
706 
707 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
708 	if (err) {
709 		if (err == UBI_IO_BITFLIPS)
710 			scrub = 1;
711 		else if (mtd_is_eccerr(err)) {
712 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
713 				goto out_unlock;
714 			scrub = 1;
715 			if (!check) {
716 				ubi_msg(ubi, "force data checking");
717 				check = 1;
718 				goto retry;
719 			}
720 		} else
721 			goto out_unlock;
722 	}
723 
724 	if (check) {
725 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
726 		if (crc1 != crc) {
727 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
728 				 crc1, crc);
729 			err = -EBADMSG;
730 			goto out_unlock;
731 		}
732 	}
733 
734 	if (scrub)
735 		err = ubi_wl_scrub_peb(ubi, pnum);
736 
737 	leb_read_unlock(ubi, vol_id, lnum);
738 	return err;
739 
740 out_free:
741 	ubi_free_vid_buf(vidb);
742 out_unlock:
743 	leb_read_unlock(ubi, vol_id, lnum);
744 	return err;
745 }
746 
747 /**
748  * ubi_eba_read_leb_sg - read data into a scatter gather list.
749  * @ubi: UBI device description object
750  * @vol: volume description object
751  * @lnum: logical eraseblock number
752  * @sgl: UBI scatter gather list to store the read data
753  * @offset: offset from where to read
754  * @len: how many bytes to read
755  * @check: data CRC check flag
756  *
757  * This function works exactly like ubi_eba_read_leb(). But instead of
758  * storing the read data into a buffer it writes to an UBI scatter gather
759  * list.
760  */
761 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
762 			struct ubi_sgl *sgl, int lnum, int offset, int len,
763 			int check)
764 {
765 	int to_read;
766 	int ret;
767 	struct scatterlist *sg;
768 
769 	for (;;) {
770 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
771 		sg = &sgl->sg[sgl->list_pos];
772 		if (len < sg->length - sgl->page_pos)
773 			to_read = len;
774 		else
775 			to_read = sg->length - sgl->page_pos;
776 
777 		ret = ubi_eba_read_leb(ubi, vol, lnum,
778 				       sg_virt(sg) + sgl->page_pos, offset,
779 				       to_read, check);
780 		if (ret < 0)
781 			return ret;
782 
783 		offset += to_read;
784 		len -= to_read;
785 		if (!len) {
786 			sgl->page_pos += to_read;
787 			if (sgl->page_pos == sg->length) {
788 				sgl->list_pos++;
789 				sgl->page_pos = 0;
790 			}
791 
792 			break;
793 		}
794 
795 		sgl->list_pos++;
796 		sgl->page_pos = 0;
797 	}
798 
799 	return ret;
800 }
801 
802 /**
803  * try_recover_peb - try to recover from write failure.
804  * @vol: volume description object
805  * @pnum: the physical eraseblock to recover
806  * @lnum: logical eraseblock number
807  * @buf: data which was not written because of the write failure
808  * @offset: offset of the failed write
809  * @len: how many bytes should have been written
810  * @vidb: VID buffer
811  * @retry: whether the caller should retry in case of failure
812  *
813  * This function is called in case of a write failure and moves all good data
814  * from the potentially bad physical eraseblock to a good physical eraseblock.
815  * This function also writes the data which was not written due to the failure.
816  * Returns 0 in case of success, and a negative error code in case of failure.
817  * In case of failure, the %retry parameter is set to false if this is a fatal
818  * error (retrying won't help), and true otherwise.
819  */
820 static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
821 			   const void *buf, int offset, int len,
822 			   struct ubi_vid_io_buf *vidb, bool *retry)
823 {
824 	struct ubi_device *ubi = vol->ubi;
825 	struct ubi_vid_hdr *vid_hdr;
826 	int new_pnum, err, vol_id = vol->vol_id, data_size;
827 	uint32_t crc;
828 
829 	*retry = false;
830 
831 	new_pnum = ubi_wl_get_peb(ubi);
832 	if (new_pnum < 0) {
833 		err = new_pnum;
834 		goto out_put;
835 	}
836 
837 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
838 		pnum, new_pnum);
839 
840 	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
841 	if (err && err != UBI_IO_BITFLIPS) {
842 		if (err > 0)
843 			err = -EIO;
844 		goto out_put;
845 	}
846 
847 	vid_hdr = ubi_get_vid_hdr(vidb);
848 	ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
849 
850 	mutex_lock(&ubi->buf_mutex);
851 	memset(ubi->peb_buf + offset, 0xFF, len);
852 
853 	/* Read everything before the area where the write failure happened */
854 	if (offset > 0) {
855 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
856 		if (err && err != UBI_IO_BITFLIPS)
857 			goto out_unlock;
858 	}
859 
860 	*retry = true;
861 
862 	memcpy(ubi->peb_buf + offset, buf, len);
863 
864 	data_size = offset + len;
865 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
866 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
867 	vid_hdr->copy_flag = 1;
868 	vid_hdr->data_size = cpu_to_be32(data_size);
869 	vid_hdr->data_crc = cpu_to_be32(crc);
870 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
871 	if (err)
872 		goto out_unlock;
873 
874 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
875 
876 out_unlock:
877 	mutex_unlock(&ubi->buf_mutex);
878 
879 	if (!err)
880 		vol->eba_tbl->entries[lnum].pnum = new_pnum;
881 
882 out_put:
883 	up_read(&ubi->fm_eba_sem);
884 
885 	if (!err) {
886 		ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
887 		ubi_msg(ubi, "data was successfully recovered");
888 	} else if (new_pnum >= 0) {
889 		/*
890 		 * Bad luck? This physical eraseblock is bad too? Crud. Let's
891 		 * try to get another one.
892 		 */
893 		ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
894 		ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
895 	}
896 
897 	return err;
898 }
899 
900 /**
901  * recover_peb - recover from write failure.
902  * @ubi: UBI device description object
903  * @pnum: the physical eraseblock to recover
904  * @vol_id: volume ID
905  * @lnum: logical eraseblock number
906  * @buf: data which was not written because of the write failure
907  * @offset: offset of the failed write
908  * @len: how many bytes should have been written
909  *
910  * This function is called in case of a write failure and moves all good data
911  * from the potentially bad physical eraseblock to a good physical eraseblock.
912  * This function also writes the data which was not written due to the failure.
913  * Returns 0 in case of success, and a negative error code in case of failure.
914  * This function tries %UBI_IO_RETRIES before giving up.
915  */
916 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
917 		       const void *buf, int offset, int len)
918 {
919 	int err, idx = vol_id2idx(ubi, vol_id), tries;
920 	struct ubi_volume *vol = ubi->volumes[idx];
921 	struct ubi_vid_io_buf *vidb;
922 
923 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
924 	if (!vidb)
925 		return -ENOMEM;
926 
927 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
928 		bool retry;
929 
930 		err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
931 				      &retry);
932 		if (!err || !retry)
933 			break;
934 
935 		ubi_msg(ubi, "try again");
936 	}
937 
938 	ubi_free_vid_buf(vidb);
939 
940 	return err;
941 }
942 
943 /**
944  * try_write_vid_and_data - try to write VID header and data to a new PEB.
945  * @vol: volume description object
946  * @lnum: logical eraseblock number
947  * @vidb: the VID buffer to write
948  * @buf: buffer containing the data
949  * @offset: where to start writing data
950  * @len: how many bytes should be written
951  *
952  * This function tries to write VID header and data belonging to logical
953  * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
954  * in case of success and a negative error code in case of failure.
955  * In case of error, it is possible that something was still written to the
956  * flash media, but may be some garbage.
957  */
958 static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
959 				  struct ubi_vid_io_buf *vidb, const void *buf,
960 				  int offset, int len)
961 {
962 	struct ubi_device *ubi = vol->ubi;
963 	int pnum, opnum, err, vol_id = vol->vol_id;
964 
965 	pnum = ubi_wl_get_peb(ubi);
966 	if (pnum < 0) {
967 		err = pnum;
968 		goto out_put;
969 	}
970 
971 	opnum = vol->eba_tbl->entries[lnum].pnum;
972 
973 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
974 		len, offset, vol_id, lnum, pnum);
975 
976 	err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
977 	if (err) {
978 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
979 			 vol_id, lnum, pnum);
980 		goto out_put;
981 	}
982 
983 	if (len) {
984 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
985 		if (err) {
986 			ubi_warn(ubi,
987 				 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
988 				 len, offset, vol_id, lnum, pnum);
989 			goto out_put;
990 		}
991 	}
992 
993 	vol->eba_tbl->entries[lnum].pnum = pnum;
994 
995 out_put:
996 	up_read(&ubi->fm_eba_sem);
997 
998 	if (err && pnum >= 0)
999 		err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1000 	else if (!err && opnum >= 0)
1001 		err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
1002 
1003 	return err;
1004 }
1005 
1006 /**
1007  * ubi_eba_write_leb - write data to dynamic volume.
1008  * @ubi: UBI device description object
1009  * @vol: volume description object
1010  * @lnum: logical eraseblock number
1011  * @buf: the data to write
1012  * @offset: offset within the logical eraseblock where to write
1013  * @len: how many bytes to write
1014  *
1015  * This function writes data to logical eraseblock @lnum of a dynamic volume
1016  * @vol. Returns zero in case of success and a negative error code in case
1017  * of failure. In case of error, it is possible that something was still
1018  * written to the flash media, but may be some garbage.
1019  * This function retries %UBI_IO_RETRIES times before giving up.
1020  */
1021 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
1022 		      const void *buf, int offset, int len)
1023 {
1024 	int err, pnum, tries, vol_id = vol->vol_id;
1025 	struct ubi_vid_io_buf *vidb;
1026 	struct ubi_vid_hdr *vid_hdr;
1027 
1028 	if (ubi->ro_mode)
1029 		return -EROFS;
1030 
1031 	err = leb_write_lock(ubi, vol_id, lnum);
1032 	if (err)
1033 		return err;
1034 
1035 	pnum = vol->eba_tbl->entries[lnum].pnum;
1036 	if (pnum >= 0) {
1037 		err = check_mapping(ubi, vol, lnum, &pnum);
1038 		if (err < 0)
1039 			goto out;
1040 	}
1041 
1042 	if (pnum >= 0) {
1043 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1044 			len, offset, vol_id, lnum, pnum);
1045 
1046 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
1047 		if (err) {
1048 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
1049 			if (err == -EIO && ubi->bad_allowed)
1050 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
1051 						  offset, len);
1052 		}
1053 
1054 		goto out;
1055 	}
1056 
1057 	/*
1058 	 * The logical eraseblock is not mapped. We have to get a free physical
1059 	 * eraseblock and write the volume identifier header there first.
1060 	 */
1061 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1062 	if (!vidb) {
1063 		leb_write_unlock(ubi, vol_id, lnum);
1064 		return -ENOMEM;
1065 	}
1066 
1067 	vid_hdr = ubi_get_vid_hdr(vidb);
1068 
1069 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1070 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1071 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1072 	vid_hdr->lnum = cpu_to_be32(lnum);
1073 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1074 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1075 
1076 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1077 		err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
1078 		if (err != -EIO || !ubi->bad_allowed)
1079 			break;
1080 
1081 		/*
1082 		 * Fortunately, this is the first write operation to this
1083 		 * physical eraseblock, so just put it and request a new one.
1084 		 * We assume that if this physical eraseblock went bad, the
1085 		 * erase code will handle that.
1086 		 */
1087 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1088 		ubi_msg(ubi, "try another PEB");
1089 	}
1090 
1091 	ubi_free_vid_buf(vidb);
1092 
1093 out:
1094 	if (err)
1095 		ubi_ro_mode(ubi);
1096 
1097 	leb_write_unlock(ubi, vol_id, lnum);
1098 
1099 	return err;
1100 }
1101 
1102 /**
1103  * ubi_eba_write_leb_st - write data to static volume.
1104  * @ubi: UBI device description object
1105  * @vol: volume description object
1106  * @lnum: logical eraseblock number
1107  * @buf: data to write
1108  * @len: how many bytes to write
1109  * @used_ebs: how many logical eraseblocks will this volume contain
1110  *
1111  * This function writes data to logical eraseblock @lnum of static volume
1112  * @vol. The @used_ebs argument should contain total number of logical
1113  * eraseblock in this static volume.
1114  *
1115  * When writing to the last logical eraseblock, the @len argument doesn't have
1116  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1117  * to the real data size, although the @buf buffer has to contain the
1118  * alignment. In all other cases, @len has to be aligned.
1119  *
1120  * It is prohibited to write more than once to logical eraseblocks of static
1121  * volumes. This function returns zero in case of success and a negative error
1122  * code in case of failure.
1123  */
1124 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1125 			 int lnum, const void *buf, int len, int used_ebs)
1126 {
1127 	int err, tries, data_size = len, vol_id = vol->vol_id;
1128 	struct ubi_vid_io_buf *vidb;
1129 	struct ubi_vid_hdr *vid_hdr;
1130 	uint32_t crc;
1131 
1132 	if (ubi->ro_mode)
1133 		return -EROFS;
1134 
1135 	if (lnum == used_ebs - 1)
1136 		/* If this is the last LEB @len may be unaligned */
1137 		len = ALIGN(data_size, ubi->min_io_size);
1138 	else
1139 		ubi_assert(!(len & (ubi->min_io_size - 1)));
1140 
1141 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1142 	if (!vidb)
1143 		return -ENOMEM;
1144 
1145 	vid_hdr = ubi_get_vid_hdr(vidb);
1146 
1147 	err = leb_write_lock(ubi, vol_id, lnum);
1148 	if (err)
1149 		goto out;
1150 
1151 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1152 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1153 	vid_hdr->lnum = cpu_to_be32(lnum);
1154 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1155 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1156 
1157 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
1158 	vid_hdr->vol_type = UBI_VID_STATIC;
1159 	vid_hdr->data_size = cpu_to_be32(data_size);
1160 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1161 	vid_hdr->data_crc = cpu_to_be32(crc);
1162 
1163 	ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1164 
1165 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1166 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1167 		if (err != -EIO || !ubi->bad_allowed)
1168 			break;
1169 
1170 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1171 		ubi_msg(ubi, "try another PEB");
1172 	}
1173 
1174 	if (err)
1175 		ubi_ro_mode(ubi);
1176 
1177 	leb_write_unlock(ubi, vol_id, lnum);
1178 
1179 out:
1180 	ubi_free_vid_buf(vidb);
1181 
1182 	return err;
1183 }
1184 
1185 /*
1186  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1187  * @ubi: UBI device description object
1188  * @vol: volume description object
1189  * @lnum: logical eraseblock number
1190  * @buf: data to write
1191  * @len: how many bytes to write
1192  *
1193  * This function changes the contents of a logical eraseblock atomically. @buf
1194  * has to contain new logical eraseblock data, and @len - the length of the
1195  * data, which has to be aligned. This function guarantees that in case of an
1196  * unclean reboot the old contents is preserved. Returns zero in case of
1197  * success and a negative error code in case of failure.
1198  *
1199  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1200  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1201  */
1202 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1203 			      int lnum, const void *buf, int len)
1204 {
1205 	int err, tries, vol_id = vol->vol_id;
1206 	struct ubi_vid_io_buf *vidb;
1207 	struct ubi_vid_hdr *vid_hdr;
1208 	uint32_t crc;
1209 
1210 	if (ubi->ro_mode)
1211 		return -EROFS;
1212 
1213 	if (len == 0) {
1214 		/*
1215 		 * Special case when data length is zero. In this case the LEB
1216 		 * has to be unmapped and mapped somewhere else.
1217 		 */
1218 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
1219 		if (err)
1220 			return err;
1221 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1222 	}
1223 
1224 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1225 	if (!vidb)
1226 		return -ENOMEM;
1227 
1228 	vid_hdr = ubi_get_vid_hdr(vidb);
1229 
1230 	mutex_lock(&ubi->alc_mutex);
1231 	err = leb_write_lock(ubi, vol_id, lnum);
1232 	if (err)
1233 		goto out_mutex;
1234 
1235 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1236 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1237 	vid_hdr->lnum = cpu_to_be32(lnum);
1238 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1239 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1240 
1241 	crc = crc32(UBI_CRC32_INIT, buf, len);
1242 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1243 	vid_hdr->data_size = cpu_to_be32(len);
1244 	vid_hdr->copy_flag = 1;
1245 	vid_hdr->data_crc = cpu_to_be32(crc);
1246 
1247 	dbg_eba("change LEB %d:%d", vol_id, lnum);
1248 
1249 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1250 		err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
1251 		if (err != -EIO || !ubi->bad_allowed)
1252 			break;
1253 
1254 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1255 		ubi_msg(ubi, "try another PEB");
1256 	}
1257 
1258 	/*
1259 	 * This flash device does not admit of bad eraseblocks or
1260 	 * something nasty and unexpected happened. Switch to read-only
1261 	 * mode just in case.
1262 	 */
1263 	if (err)
1264 		ubi_ro_mode(ubi);
1265 
1266 	leb_write_unlock(ubi, vol_id, lnum);
1267 
1268 out_mutex:
1269 	mutex_unlock(&ubi->alc_mutex);
1270 	ubi_free_vid_buf(vidb);
1271 	return err;
1272 }
1273 
1274 /**
1275  * is_error_sane - check whether a read error is sane.
1276  * @err: code of the error happened during reading
1277  *
1278  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1279  * cannot read data from the target PEB (an error @err happened). If the error
1280  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1281  * fatal and UBI will be switched to R/O mode later.
1282  *
1283  * The idea is that we try not to switch to R/O mode if the read error is
1284  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1285  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1286  * mode, simply because we do not know what happened at the MTD level, and we
1287  * cannot handle this. E.g., the underlying driver may have become crazy, and
1288  * it is safer to switch to R/O mode to preserve the data.
1289  *
1290  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1291  * which we have just written.
1292  */
1293 static int is_error_sane(int err)
1294 {
1295 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1296 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1297 		return 0;
1298 	return 1;
1299 }
1300 
1301 /**
1302  * ubi_eba_copy_leb - copy logical eraseblock.
1303  * @ubi: UBI device description object
1304  * @from: physical eraseblock number from where to copy
1305  * @to: physical eraseblock number where to copy
1306  * @vid_hdr: VID header of the @from physical eraseblock
1307  *
1308  * This function copies logical eraseblock from physical eraseblock @from to
1309  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1310  * function. Returns:
1311  *   o %0 in case of success;
1312  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1313  *   o a negative error code in case of failure.
1314  */
1315 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1316 		     struct ubi_vid_io_buf *vidb)
1317 {
1318 	int err, vol_id, lnum, data_size, aldata_size, idx;
1319 	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1320 	struct ubi_volume *vol;
1321 	uint32_t crc;
1322 
1323 	ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
1324 
1325 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1326 	lnum = be32_to_cpu(vid_hdr->lnum);
1327 
1328 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1329 
1330 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1331 		data_size = be32_to_cpu(vid_hdr->data_size);
1332 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1333 	} else
1334 		data_size = aldata_size =
1335 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1336 
1337 	idx = vol_id2idx(ubi, vol_id);
1338 	spin_lock(&ubi->volumes_lock);
1339 	/*
1340 	 * Note, we may race with volume deletion, which means that the volume
1341 	 * this logical eraseblock belongs to might be being deleted. Since the
1342 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1343 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1344 	 */
1345 	vol = ubi->volumes[idx];
1346 	spin_unlock(&ubi->volumes_lock);
1347 	if (!vol) {
1348 		/* No need to do further work, cancel */
1349 		dbg_wl("volume %d is being removed, cancel", vol_id);
1350 		return MOVE_CANCEL_RACE;
1351 	}
1352 
1353 	/*
1354 	 * We do not want anybody to write to this logical eraseblock while we
1355 	 * are moving it, so lock it.
1356 	 *
1357 	 * Note, we are using non-waiting locking here, because we cannot sleep
1358 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1359 	 * unmapping the LEB which is mapped to the PEB we are going to move
1360 	 * (@from). This task locks the LEB and goes sleep in the
1361 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1362 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1363 	 * LEB is already locked, we just do not move it and return
1364 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1365 	 * we do not know the reasons of the contention - it may be just a
1366 	 * normal I/O on this LEB, so we want to re-try.
1367 	 */
1368 	err = leb_write_trylock(ubi, vol_id, lnum);
1369 	if (err) {
1370 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1371 		return MOVE_RETRY;
1372 	}
1373 
1374 	/*
1375 	 * The LEB might have been put meanwhile, and the task which put it is
1376 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1377 	 * cancel it.
1378 	 */
1379 	if (vol->eba_tbl->entries[lnum].pnum != from) {
1380 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1381 		       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1382 		err = MOVE_CANCEL_RACE;
1383 		goto out_unlock_leb;
1384 	}
1385 
1386 	/*
1387 	 * OK, now the LEB is locked and we can safely start moving it. Since
1388 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1389 	 * with some other functions - we lock the buffer by taking the
1390 	 * @ubi->buf_mutex.
1391 	 */
1392 	mutex_lock(&ubi->buf_mutex);
1393 	dbg_wl("read %d bytes of data", aldata_size);
1394 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1395 	if (err && err != UBI_IO_BITFLIPS) {
1396 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1397 			 err, from);
1398 		err = MOVE_SOURCE_RD_ERR;
1399 		goto out_unlock_buf;
1400 	}
1401 
1402 	/*
1403 	 * Now we have got to calculate how much data we have to copy. In
1404 	 * case of a static volume it is fairly easy - the VID header contains
1405 	 * the data size. In case of a dynamic volume it is more difficult - we
1406 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1407 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1408 	 * may have some side-effects. And not only this. It is important not
1409 	 * to include those 0xFFs to CRC because later the they may be filled
1410 	 * by data.
1411 	 */
1412 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1413 		aldata_size = data_size =
1414 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1415 
1416 	cond_resched();
1417 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1418 	cond_resched();
1419 
1420 	/*
1421 	 * It may turn out to be that the whole @from physical eraseblock
1422 	 * contains only 0xFF bytes. Then we have to only write the VID header
1423 	 * and do not write any data. This also means we should not set
1424 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1425 	 */
1426 	if (data_size > 0) {
1427 		vid_hdr->copy_flag = 1;
1428 		vid_hdr->data_size = cpu_to_be32(data_size);
1429 		vid_hdr->data_crc = cpu_to_be32(crc);
1430 	}
1431 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1432 
1433 	err = ubi_io_write_vid_hdr(ubi, to, vidb);
1434 	if (err) {
1435 		if (err == -EIO)
1436 			err = MOVE_TARGET_WR_ERR;
1437 		goto out_unlock_buf;
1438 	}
1439 
1440 	cond_resched();
1441 
1442 	/* Read the VID header back and check if it was written correctly */
1443 	err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
1444 	if (err) {
1445 		if (err != UBI_IO_BITFLIPS) {
1446 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1447 				 err, to);
1448 			if (is_error_sane(err))
1449 				err = MOVE_TARGET_RD_ERR;
1450 		} else
1451 			err = MOVE_TARGET_BITFLIPS;
1452 		goto out_unlock_buf;
1453 	}
1454 
1455 	if (data_size > 0) {
1456 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1457 		if (err) {
1458 			if (err == -EIO)
1459 				err = MOVE_TARGET_WR_ERR;
1460 			goto out_unlock_buf;
1461 		}
1462 
1463 		cond_resched();
1464 	}
1465 
1466 	ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1467 	vol->eba_tbl->entries[lnum].pnum = to;
1468 
1469 out_unlock_buf:
1470 	mutex_unlock(&ubi->buf_mutex);
1471 out_unlock_leb:
1472 	leb_write_unlock(ubi, vol_id, lnum);
1473 	return err;
1474 }
1475 
1476 /**
1477  * print_rsvd_warning - warn about not having enough reserved PEBs.
1478  * @ubi: UBI device description object
1479  *
1480  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1481  * cannot reserve enough PEBs for bad block handling. This function makes a
1482  * decision whether we have to print a warning or not. The algorithm is as
1483  * follows:
1484  *   o if this is a new UBI image, then just print the warning
1485  *   o if this is an UBI image which has already been used for some time, print
1486  *     a warning only if we can reserve less than 10% of the expected amount of
1487  *     the reserved PEB.
1488  *
1489  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1490  * of PEBs becomes smaller, which is normal and we do not want to scare users
1491  * with a warning every time they attach the MTD device. This was an issue
1492  * reported by real users.
1493  */
1494 static void print_rsvd_warning(struct ubi_device *ubi,
1495 			       struct ubi_attach_info *ai)
1496 {
1497 	/*
1498 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1499 	 * large number to distinguish between newly flashed and used images.
1500 	 */
1501 	if (ai->max_sqnum > (1 << 18)) {
1502 		int min = ubi->beb_rsvd_level / 10;
1503 
1504 		if (!min)
1505 			min = 1;
1506 		if (ubi->beb_rsvd_pebs > min)
1507 			return;
1508 	}
1509 
1510 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1511 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1512 	if (ubi->corr_peb_count)
1513 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1514 			 ubi->corr_peb_count);
1515 }
1516 
1517 /**
1518  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1519  * @ubi: UBI device description object
1520  * @ai_fastmap: UBI attach info object created by fastmap
1521  * @ai_scan: UBI attach info object created by scanning
1522  *
1523  * Returns < 0 in case of an internal error, 0 otherwise.
1524  * If a bad EBA table entry was found it will be printed out and
1525  * ubi_assert() triggers.
1526  */
1527 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1528 		   struct ubi_attach_info *ai_scan)
1529 {
1530 	int i, j, num_volumes, ret = 0;
1531 	int **scan_eba, **fm_eba;
1532 	struct ubi_ainf_volume *av;
1533 	struct ubi_volume *vol;
1534 	struct ubi_ainf_peb *aeb;
1535 	struct rb_node *rb;
1536 
1537 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1538 
1539 	scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
1540 	if (!scan_eba)
1541 		return -ENOMEM;
1542 
1543 	fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
1544 	if (!fm_eba) {
1545 		kfree(scan_eba);
1546 		return -ENOMEM;
1547 	}
1548 
1549 	for (i = 0; i < num_volumes; i++) {
1550 		vol = ubi->volumes[i];
1551 		if (!vol)
1552 			continue;
1553 
1554 		scan_eba[i] = kmalloc_array(vol->reserved_pebs,
1555 					    sizeof(**scan_eba),
1556 					    GFP_KERNEL);
1557 		if (!scan_eba[i]) {
1558 			ret = -ENOMEM;
1559 			goto out_free;
1560 		}
1561 
1562 		fm_eba[i] = kmalloc_array(vol->reserved_pebs,
1563 					  sizeof(**fm_eba),
1564 					  GFP_KERNEL);
1565 		if (!fm_eba[i]) {
1566 			ret = -ENOMEM;
1567 			goto out_free;
1568 		}
1569 
1570 		for (j = 0; j < vol->reserved_pebs; j++)
1571 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1572 
1573 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1574 		if (!av)
1575 			continue;
1576 
1577 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1578 			scan_eba[i][aeb->lnum] = aeb->pnum;
1579 
1580 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1581 		if (!av)
1582 			continue;
1583 
1584 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1585 			fm_eba[i][aeb->lnum] = aeb->pnum;
1586 
1587 		for (j = 0; j < vol->reserved_pebs; j++) {
1588 			if (scan_eba[i][j] != fm_eba[i][j]) {
1589 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1590 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1591 					continue;
1592 
1593 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1594 					vol->vol_id, j, fm_eba[i][j],
1595 					scan_eba[i][j]);
1596 				ubi_assert(0);
1597 			}
1598 		}
1599 	}
1600 
1601 out_free:
1602 	for (i = 0; i < num_volumes; i++) {
1603 		if (!ubi->volumes[i])
1604 			continue;
1605 
1606 		kfree(scan_eba[i]);
1607 		kfree(fm_eba[i]);
1608 	}
1609 
1610 	kfree(scan_eba);
1611 	kfree(fm_eba);
1612 	return ret;
1613 }
1614 
1615 /**
1616  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1617  * @ubi: UBI device description object
1618  * @ai: attaching information
1619  *
1620  * This function returns zero in case of success and a negative error code in
1621  * case of failure.
1622  */
1623 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1624 {
1625 	int i, err, num_volumes;
1626 	struct ubi_ainf_volume *av;
1627 	struct ubi_volume *vol;
1628 	struct ubi_ainf_peb *aeb;
1629 	struct rb_node *rb;
1630 
1631 	dbg_eba("initialize EBA sub-system");
1632 
1633 	spin_lock_init(&ubi->ltree_lock);
1634 	mutex_init(&ubi->alc_mutex);
1635 	ubi->ltree = RB_ROOT;
1636 
1637 	ubi->global_sqnum = ai->max_sqnum + 1;
1638 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1639 
1640 	for (i = 0; i < num_volumes; i++) {
1641 		struct ubi_eba_table *tbl;
1642 
1643 		vol = ubi->volumes[i];
1644 		if (!vol)
1645 			continue;
1646 
1647 		cond_resched();
1648 
1649 		tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1650 		if (IS_ERR(tbl)) {
1651 			err = PTR_ERR(tbl);
1652 			goto out_free;
1653 		}
1654 
1655 		ubi_eba_replace_table(vol, tbl);
1656 
1657 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1658 		if (!av)
1659 			continue;
1660 
1661 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1662 			if (aeb->lnum >= vol->reserved_pebs) {
1663 				/*
1664 				 * This may happen in case of an unclean reboot
1665 				 * during re-size.
1666 				 */
1667 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1668 			} else {
1669 				struct ubi_eba_entry *entry;
1670 
1671 				entry = &vol->eba_tbl->entries[aeb->lnum];
1672 				entry->pnum = aeb->pnum;
1673 			}
1674 		}
1675 	}
1676 
1677 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1678 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1679 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1680 		if (ubi->corr_peb_count)
1681 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1682 				ubi->corr_peb_count);
1683 		err = -ENOSPC;
1684 		goto out_free;
1685 	}
1686 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1687 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1688 
1689 	if (ubi->bad_allowed) {
1690 		ubi_calculate_reserved(ubi);
1691 
1692 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1693 			/* No enough free physical eraseblocks */
1694 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1695 			print_rsvd_warning(ubi, ai);
1696 		} else
1697 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1698 
1699 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1700 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1701 	}
1702 
1703 	dbg_eba("EBA sub-system is initialized");
1704 	return 0;
1705 
1706 out_free:
1707 	for (i = 0; i < num_volumes; i++) {
1708 		if (!ubi->volumes[i])
1709 			continue;
1710 		ubi_eba_replace_table(ubi->volumes[i], NULL);
1711 	}
1712 	return err;
1713 }
1714