xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision a1e58bbd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) unit.
23  *
24  * This unit is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA unit implements per-logical eraseblock locking. Before accessing a
31  * logical eraseblock it is locked for reading or writing. The per-logical
32  * eraseblock locking is implemented by means of the lock tree. The lock tree
33  * is an RB-tree which refers all the currently locked logical eraseblocks. The
34  * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
35  * (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 static unsigned long long next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	if (le_free)
193 		kfree(le_free);
194 
195 	return le;
196 }
197 
198 /**
199  * leb_read_lock - lock logical eraseblock for reading.
200  * @ubi: UBI device description object
201  * @vol_id: volume ID
202  * @lnum: logical eraseblock number
203  *
204  * This function locks a logical eraseblock for reading. Returns zero in case
205  * of success and a negative error code in case of failure.
206  */
207 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
208 {
209 	struct ubi_ltree_entry *le;
210 
211 	le = ltree_add_entry(ubi, vol_id, lnum);
212 	if (IS_ERR(le))
213 		return PTR_ERR(le);
214 	down_read(&le->mutex);
215 	return 0;
216 }
217 
218 /**
219  * leb_read_unlock - unlock logical eraseblock.
220  * @ubi: UBI device description object
221  * @vol_id: volume ID
222  * @lnum: logical eraseblock number
223  */
224 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
225 {
226 	int free = 0;
227 	struct ubi_ltree_entry *le;
228 
229 	spin_lock(&ubi->ltree_lock);
230 	le = ltree_lookup(ubi, vol_id, lnum);
231 	le->users -= 1;
232 	ubi_assert(le->users >= 0);
233 	if (le->users == 0) {
234 		rb_erase(&le->rb, &ubi->ltree);
235 		free = 1;
236 	}
237 	spin_unlock(&ubi->ltree_lock);
238 
239 	up_read(&le->mutex);
240 	if (free)
241 		kfree(le);
242 }
243 
244 /**
245  * leb_write_lock - lock logical eraseblock for writing.
246  * @ubi: UBI device description object
247  * @vol_id: volume ID
248  * @lnum: logical eraseblock number
249  *
250  * This function locks a logical eraseblock for writing. Returns zero in case
251  * of success and a negative error code in case of failure.
252  */
253 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
254 {
255 	struct ubi_ltree_entry *le;
256 
257 	le = ltree_add_entry(ubi, vol_id, lnum);
258 	if (IS_ERR(le))
259 		return PTR_ERR(le);
260 	down_write(&le->mutex);
261 	return 0;
262 }
263 
264 /**
265  * leb_write_lock - lock logical eraseblock for writing.
266  * @ubi: UBI device description object
267  * @vol_id: volume ID
268  * @lnum: logical eraseblock number
269  *
270  * This function locks a logical eraseblock for writing if there is no
271  * contention and does nothing if there is contention. Returns %0 in case of
272  * success, %1 in case of contention, and and a negative error code in case of
273  * failure.
274  */
275 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
276 {
277 	int free;
278 	struct ubi_ltree_entry *le;
279 
280 	le = ltree_add_entry(ubi, vol_id, lnum);
281 	if (IS_ERR(le))
282 		return PTR_ERR(le);
283 	if (down_write_trylock(&le->mutex))
284 		return 0;
285 
286 	/* Contention, cancel */
287 	spin_lock(&ubi->ltree_lock);
288 	le->users -= 1;
289 	ubi_assert(le->users >= 0);
290 	if (le->users == 0) {
291 		rb_erase(&le->rb, &ubi->ltree);
292 		free = 1;
293 	} else
294 		free = 0;
295 	spin_unlock(&ubi->ltree_lock);
296 	if (free)
297 		kfree(le);
298 
299 	return 1;
300 }
301 
302 /**
303  * leb_write_unlock - unlock logical eraseblock.
304  * @ubi: UBI device description object
305  * @vol_id: volume ID
306  * @lnum: logical eraseblock number
307  */
308 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
309 {
310 	int free;
311 	struct ubi_ltree_entry *le;
312 
313 	spin_lock(&ubi->ltree_lock);
314 	le = ltree_lookup(ubi, vol_id, lnum);
315 	le->users -= 1;
316 	ubi_assert(le->users >= 0);
317 	if (le->users == 0) {
318 		rb_erase(&le->rb, &ubi->ltree);
319 		free = 1;
320 	} else
321 		free = 0;
322 	spin_unlock(&ubi->ltree_lock);
323 
324 	up_write(&le->mutex);
325 	if (free)
326 		kfree(le);
327 }
328 
329 /**
330  * ubi_eba_unmap_leb - un-map logical eraseblock.
331  * @ubi: UBI device description object
332  * @vol: volume description object
333  * @lnum: logical eraseblock number
334  *
335  * This function un-maps logical eraseblock @lnum and schedules corresponding
336  * physical eraseblock for erasure. Returns zero in case of success and a
337  * negative error code in case of failure.
338  */
339 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
340 		      int lnum)
341 {
342 	int err, pnum, vol_id = vol->vol_id;
343 
344 	if (ubi->ro_mode)
345 		return -EROFS;
346 
347 	err = leb_write_lock(ubi, vol_id, lnum);
348 	if (err)
349 		return err;
350 
351 	pnum = vol->eba_tbl[lnum];
352 	if (pnum < 0)
353 		/* This logical eraseblock is already unmapped */
354 		goto out_unlock;
355 
356 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
357 
358 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
359 	err = ubi_wl_put_peb(ubi, pnum, 0);
360 
361 out_unlock:
362 	leb_write_unlock(ubi, vol_id, lnum);
363 	return err;
364 }
365 
366 /**
367  * ubi_eba_read_leb - read data.
368  * @ubi: UBI device description object
369  * @vol: volume description object
370  * @lnum: logical eraseblock number
371  * @buf: buffer to store the read data
372  * @offset: offset from where to read
373  * @len: how many bytes to read
374  * @check: data CRC check flag
375  *
376  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
377  * bytes. The @check flag only makes sense for static volumes and forces
378  * eraseblock data CRC checking.
379  *
380  * In case of success this function returns zero. In case of a static volume,
381  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
382  * returned for any volume type if an ECC error was detected by the MTD device
383  * driver. Other negative error cored may be returned in case of other errors.
384  */
385 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
386 		     void *buf, int offset, int len, int check)
387 {
388 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
389 	struct ubi_vid_hdr *vid_hdr;
390 	uint32_t uninitialized_var(crc);
391 
392 	err = leb_read_lock(ubi, vol_id, lnum);
393 	if (err)
394 		return err;
395 
396 	pnum = vol->eba_tbl[lnum];
397 	if (pnum < 0) {
398 		/*
399 		 * The logical eraseblock is not mapped, fill the whole buffer
400 		 * with 0xFF bytes. The exception is static volumes for which
401 		 * it is an error to read unmapped logical eraseblocks.
402 		 */
403 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
404 			len, offset, vol_id, lnum);
405 		leb_read_unlock(ubi, vol_id, lnum);
406 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
407 		memset(buf, 0xFF, len);
408 		return 0;
409 	}
410 
411 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
412 		len, offset, vol_id, lnum, pnum);
413 
414 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
415 		check = 0;
416 
417 retry:
418 	if (check) {
419 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
420 		if (!vid_hdr) {
421 			err = -ENOMEM;
422 			goto out_unlock;
423 		}
424 
425 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
426 		if (err && err != UBI_IO_BITFLIPS) {
427 			if (err > 0) {
428 				/*
429 				 * The header is either absent or corrupted.
430 				 * The former case means there is a bug -
431 				 * switch to read-only mode just in case.
432 				 * The latter case means a real corruption - we
433 				 * may try to recover data. FIXME: but this is
434 				 * not implemented.
435 				 */
436 				if (err == UBI_IO_BAD_VID_HDR) {
437 					ubi_warn("bad VID header at PEB %d, LEB"
438 						 "%d:%d", pnum, vol_id, lnum);
439 					err = -EBADMSG;
440 				} else
441 					ubi_ro_mode(ubi);
442 			}
443 			goto out_free;
444 		} else if (err == UBI_IO_BITFLIPS)
445 			scrub = 1;
446 
447 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
448 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
449 
450 		crc = be32_to_cpu(vid_hdr->data_crc);
451 		ubi_free_vid_hdr(ubi, vid_hdr);
452 	}
453 
454 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
455 	if (err) {
456 		if (err == UBI_IO_BITFLIPS) {
457 			scrub = 1;
458 			err = 0;
459 		} else if (err == -EBADMSG) {
460 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
461 				goto out_unlock;
462 			scrub = 1;
463 			if (!check) {
464 				ubi_msg("force data checking");
465 				check = 1;
466 				goto retry;
467 			}
468 		} else
469 			goto out_unlock;
470 	}
471 
472 	if (check) {
473 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
474 		if (crc1 != crc) {
475 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
476 				 crc1, crc);
477 			err = -EBADMSG;
478 			goto out_unlock;
479 		}
480 	}
481 
482 	if (scrub)
483 		err = ubi_wl_scrub_peb(ubi, pnum);
484 
485 	leb_read_unlock(ubi, vol_id, lnum);
486 	return err;
487 
488 out_free:
489 	ubi_free_vid_hdr(ubi, vid_hdr);
490 out_unlock:
491 	leb_read_unlock(ubi, vol_id, lnum);
492 	return err;
493 }
494 
495 /**
496  * recover_peb - recover from write failure.
497  * @ubi: UBI device description object
498  * @pnum: the physical eraseblock to recover
499  * @vol_id: volume ID
500  * @lnum: logical eraseblock number
501  * @buf: data which was not written because of the write failure
502  * @offset: offset of the failed write
503  * @len: how many bytes should have been written
504  *
505  * This function is called in case of a write failure and moves all good data
506  * from the potentially bad physical eraseblock to a good physical eraseblock.
507  * This function also writes the data which was not written due to the failure.
508  * Returns new physical eraseblock number in case of success, and a negative
509  * error code in case of failure.
510  */
511 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
512 		       const void *buf, int offset, int len)
513 {
514 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
515 	struct ubi_volume *vol = ubi->volumes[idx];
516 	struct ubi_vid_hdr *vid_hdr;
517 
518 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
519 	if (!vid_hdr) {
520 		return -ENOMEM;
521 	}
522 
523 	mutex_lock(&ubi->buf_mutex);
524 
525 retry:
526 	new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
527 	if (new_pnum < 0) {
528 		mutex_unlock(&ubi->buf_mutex);
529 		ubi_free_vid_hdr(ubi, vid_hdr);
530 		return new_pnum;
531 	}
532 
533 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
534 
535 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
536 	if (err && err != UBI_IO_BITFLIPS) {
537 		if (err > 0)
538 			err = -EIO;
539 		goto out_put;
540 	}
541 
542 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
543 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
544 	if (err)
545 		goto write_error;
546 
547 	data_size = offset + len;
548 	memset(ubi->peb_buf1 + offset, 0xFF, len);
549 
550 	/* Read everything before the area where the write failure happened */
551 	if (offset > 0) {
552 		err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
553 		if (err && err != UBI_IO_BITFLIPS)
554 			goto out_put;
555 	}
556 
557 	memcpy(ubi->peb_buf1 + offset, buf, len);
558 
559 	err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
560 	if (err)
561 		goto write_error;
562 
563 	mutex_unlock(&ubi->buf_mutex);
564 	ubi_free_vid_hdr(ubi, vid_hdr);
565 
566 	vol->eba_tbl[lnum] = new_pnum;
567 	ubi_wl_put_peb(ubi, pnum, 1);
568 
569 	ubi_msg("data was successfully recovered");
570 	return 0;
571 
572 out_put:
573 	mutex_unlock(&ubi->buf_mutex);
574 	ubi_wl_put_peb(ubi, new_pnum, 1);
575 	ubi_free_vid_hdr(ubi, vid_hdr);
576 	return err;
577 
578 write_error:
579 	/*
580 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
581 	 * get another one.
582 	 */
583 	ubi_warn("failed to write to PEB %d", new_pnum);
584 	ubi_wl_put_peb(ubi, new_pnum, 1);
585 	if (++tries > UBI_IO_RETRIES) {
586 		mutex_unlock(&ubi->buf_mutex);
587 		ubi_free_vid_hdr(ubi, vid_hdr);
588 		return err;
589 	}
590 	ubi_msg("try again");
591 	goto retry;
592 }
593 
594 /**
595  * ubi_eba_write_leb - write data to dynamic volume.
596  * @ubi: UBI device description object
597  * @vol: volume description object
598  * @lnum: logical eraseblock number
599  * @buf: the data to write
600  * @offset: offset within the logical eraseblock where to write
601  * @len: how many bytes to write
602  * @dtype: data type
603  *
604  * This function writes data to logical eraseblock @lnum of a dynamic volume
605  * @vol. Returns zero in case of success and a negative error code in case
606  * of failure. In case of error, it is possible that something was still
607  * written to the flash media, but may be some garbage.
608  */
609 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
610 		      const void *buf, int offset, int len, int dtype)
611 {
612 	int err, pnum, tries = 0, vol_id = vol->vol_id;
613 	struct ubi_vid_hdr *vid_hdr;
614 
615 	if (ubi->ro_mode)
616 		return -EROFS;
617 
618 	err = leb_write_lock(ubi, vol_id, lnum);
619 	if (err)
620 		return err;
621 
622 	pnum = vol->eba_tbl[lnum];
623 	if (pnum >= 0) {
624 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
625 			len, offset, vol_id, lnum, pnum);
626 
627 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
628 		if (err) {
629 			ubi_warn("failed to write data to PEB %d", pnum);
630 			if (err == -EIO && ubi->bad_allowed)
631 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
632 						  offset, len);
633 			if (err)
634 				ubi_ro_mode(ubi);
635 		}
636 		leb_write_unlock(ubi, vol_id, lnum);
637 		return err;
638 	}
639 
640 	/*
641 	 * The logical eraseblock is not mapped. We have to get a free physical
642 	 * eraseblock and write the volume identifier header there first.
643 	 */
644 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
645 	if (!vid_hdr) {
646 		leb_write_unlock(ubi, vol_id, lnum);
647 		return -ENOMEM;
648 	}
649 
650 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
651 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
652 	vid_hdr->vol_id = cpu_to_be32(vol_id);
653 	vid_hdr->lnum = cpu_to_be32(lnum);
654 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
655 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
656 
657 retry:
658 	pnum = ubi_wl_get_peb(ubi, dtype);
659 	if (pnum < 0) {
660 		ubi_free_vid_hdr(ubi, vid_hdr);
661 		leb_write_unlock(ubi, vol_id, lnum);
662 		return pnum;
663 	}
664 
665 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
666 		len, offset, vol_id, lnum, pnum);
667 
668 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
669 	if (err) {
670 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
671 			 vol_id, lnum, pnum);
672 		goto write_error;
673 	}
674 
675 	if (len) {
676 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
677 		if (err) {
678 			ubi_warn("failed to write %d bytes at offset %d of "
679 				 "LEB %d:%d, PEB %d", len, offset, vol_id,
680 				 lnum, pnum);
681 			goto write_error;
682 		}
683 	}
684 
685 	vol->eba_tbl[lnum] = pnum;
686 
687 	leb_write_unlock(ubi, vol_id, lnum);
688 	ubi_free_vid_hdr(ubi, vid_hdr);
689 	return 0;
690 
691 write_error:
692 	if (err != -EIO || !ubi->bad_allowed) {
693 		ubi_ro_mode(ubi);
694 		leb_write_unlock(ubi, vol_id, lnum);
695 		ubi_free_vid_hdr(ubi, vid_hdr);
696 		return err;
697 	}
698 
699 	/*
700 	 * Fortunately, this is the first write operation to this physical
701 	 * eraseblock, so just put it and request a new one. We assume that if
702 	 * this physical eraseblock went bad, the erase code will handle that.
703 	 */
704 	err = ubi_wl_put_peb(ubi, pnum, 1);
705 	if (err || ++tries > UBI_IO_RETRIES) {
706 		ubi_ro_mode(ubi);
707 		leb_write_unlock(ubi, vol_id, lnum);
708 		ubi_free_vid_hdr(ubi, vid_hdr);
709 		return err;
710 	}
711 
712 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
713 	ubi_msg("try another PEB");
714 	goto retry;
715 }
716 
717 /**
718  * ubi_eba_write_leb_st - write data to static volume.
719  * @ubi: UBI device description object
720  * @vol: volume description object
721  * @lnum: logical eraseblock number
722  * @buf: data to write
723  * @len: how many bytes to write
724  * @dtype: data type
725  * @used_ebs: how many logical eraseblocks will this volume contain
726  *
727  * This function writes data to logical eraseblock @lnum of static volume
728  * @vol. The @used_ebs argument should contain total number of logical
729  * eraseblock in this static volume.
730  *
731  * When writing to the last logical eraseblock, the @len argument doesn't have
732  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
733  * to the real data size, although the @buf buffer has to contain the
734  * alignment. In all other cases, @len has to be aligned.
735  *
736  * It is prohibited to write more then once to logical eraseblocks of static
737  * volumes. This function returns zero in case of success and a negative error
738  * code in case of failure.
739  */
740 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
741 			 int lnum, const void *buf, int len, int dtype,
742 			 int used_ebs)
743 {
744 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
745 	struct ubi_vid_hdr *vid_hdr;
746 	uint32_t crc;
747 
748 	if (ubi->ro_mode)
749 		return -EROFS;
750 
751 	if (lnum == used_ebs - 1)
752 		/* If this is the last LEB @len may be unaligned */
753 		len = ALIGN(data_size, ubi->min_io_size);
754 	else
755 		ubi_assert(len % ubi->min_io_size == 0);
756 
757 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
758 	if (!vid_hdr)
759 		return -ENOMEM;
760 
761 	err = leb_write_lock(ubi, vol_id, lnum);
762 	if (err) {
763 		ubi_free_vid_hdr(ubi, vid_hdr);
764 		return err;
765 	}
766 
767 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
768 	vid_hdr->vol_id = cpu_to_be32(vol_id);
769 	vid_hdr->lnum = cpu_to_be32(lnum);
770 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
771 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
772 
773 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
774 	vid_hdr->vol_type = UBI_VID_STATIC;
775 	vid_hdr->data_size = cpu_to_be32(data_size);
776 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
777 	vid_hdr->data_crc = cpu_to_be32(crc);
778 
779 retry:
780 	pnum = ubi_wl_get_peb(ubi, dtype);
781 	if (pnum < 0) {
782 		ubi_free_vid_hdr(ubi, vid_hdr);
783 		leb_write_unlock(ubi, vol_id, lnum);
784 		return pnum;
785 	}
786 
787 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
788 		len, vol_id, lnum, pnum, used_ebs);
789 
790 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
791 	if (err) {
792 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
793 			 vol_id, lnum, pnum);
794 		goto write_error;
795 	}
796 
797 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
798 	if (err) {
799 		ubi_warn("failed to write %d bytes of data to PEB %d",
800 			 len, pnum);
801 		goto write_error;
802 	}
803 
804 	ubi_assert(vol->eba_tbl[lnum] < 0);
805 	vol->eba_tbl[lnum] = pnum;
806 
807 	leb_write_unlock(ubi, vol_id, lnum);
808 	ubi_free_vid_hdr(ubi, vid_hdr);
809 	return 0;
810 
811 write_error:
812 	if (err != -EIO || !ubi->bad_allowed) {
813 		/*
814 		 * This flash device does not admit of bad eraseblocks or
815 		 * something nasty and unexpected happened. Switch to read-only
816 		 * mode just in case.
817 		 */
818 		ubi_ro_mode(ubi);
819 		leb_write_unlock(ubi, vol_id, lnum);
820 		ubi_free_vid_hdr(ubi, vid_hdr);
821 		return err;
822 	}
823 
824 	err = ubi_wl_put_peb(ubi, pnum, 1);
825 	if (err || ++tries > UBI_IO_RETRIES) {
826 		ubi_ro_mode(ubi);
827 		leb_write_unlock(ubi, vol_id, lnum);
828 		ubi_free_vid_hdr(ubi, vid_hdr);
829 		return err;
830 	}
831 
832 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
833 	ubi_msg("try another PEB");
834 	goto retry;
835 }
836 
837 /*
838  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
839  * @ubi: UBI device description object
840  * @vol: volume description object
841  * @lnum: logical eraseblock number
842  * @buf: data to write
843  * @len: how many bytes to write
844  * @dtype: data type
845  *
846  * This function changes the contents of a logical eraseblock atomically. @buf
847  * has to contain new logical eraseblock data, and @len - the length of the
848  * data, which has to be aligned. This function guarantees that in case of an
849  * unclean reboot the old contents is preserved. Returns zero in case of
850  * success and a negative error code in case of failure.
851  *
852  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
853  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
854  */
855 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
856 			      int lnum, const void *buf, int len, int dtype)
857 {
858 	int err, pnum, tries = 0, vol_id = vol->vol_id;
859 	struct ubi_vid_hdr *vid_hdr;
860 	uint32_t crc;
861 
862 	if (ubi->ro_mode)
863 		return -EROFS;
864 
865 	if (len == 0) {
866 		/*
867 		 * Special case when data length is zero. In this case the LEB
868 		 * has to be unmapped and mapped somewhere else.
869 		 */
870 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
871 		if (err)
872 			return err;
873 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
874 	}
875 
876 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
877 	if (!vid_hdr)
878 		return -ENOMEM;
879 
880 	mutex_lock(&ubi->alc_mutex);
881 	err = leb_write_lock(ubi, vol_id, lnum);
882 	if (err)
883 		goto out_mutex;
884 
885 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
886 	vid_hdr->vol_id = cpu_to_be32(vol_id);
887 	vid_hdr->lnum = cpu_to_be32(lnum);
888 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
889 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
890 
891 	crc = crc32(UBI_CRC32_INIT, buf, len);
892 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
893 	vid_hdr->data_size = cpu_to_be32(len);
894 	vid_hdr->copy_flag = 1;
895 	vid_hdr->data_crc = cpu_to_be32(crc);
896 
897 retry:
898 	pnum = ubi_wl_get_peb(ubi, dtype);
899 	if (pnum < 0) {
900 		err = pnum;
901 		goto out_leb_unlock;
902 	}
903 
904 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
905 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
906 
907 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
908 	if (err) {
909 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
910 			 vol_id, lnum, pnum);
911 		goto write_error;
912 	}
913 
914 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
915 	if (err) {
916 		ubi_warn("failed to write %d bytes of data to PEB %d",
917 			 len, pnum);
918 		goto write_error;
919 	}
920 
921 	if (vol->eba_tbl[lnum] >= 0) {
922 		err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
923 		if (err)
924 			goto out_leb_unlock;
925 	}
926 
927 	vol->eba_tbl[lnum] = pnum;
928 
929 out_leb_unlock:
930 	leb_write_unlock(ubi, vol_id, lnum);
931 out_mutex:
932 	mutex_unlock(&ubi->alc_mutex);
933 	ubi_free_vid_hdr(ubi, vid_hdr);
934 	return err;
935 
936 write_error:
937 	if (err != -EIO || !ubi->bad_allowed) {
938 		/*
939 		 * This flash device does not admit of bad eraseblocks or
940 		 * something nasty and unexpected happened. Switch to read-only
941 		 * mode just in case.
942 		 */
943 		ubi_ro_mode(ubi);
944 		goto out_leb_unlock;
945 	}
946 
947 	err = ubi_wl_put_peb(ubi, pnum, 1);
948 	if (err || ++tries > UBI_IO_RETRIES) {
949 		ubi_ro_mode(ubi);
950 		goto out_leb_unlock;
951 	}
952 
953 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
954 	ubi_msg("try another PEB");
955 	goto retry;
956 }
957 
958 /**
959  * ubi_eba_copy_leb - copy logical eraseblock.
960  * @ubi: UBI device description object
961  * @from: physical eraseblock number from where to copy
962  * @to: physical eraseblock number where to copy
963  * @vid_hdr: VID header of the @from physical eraseblock
964  *
965  * This function copies logical eraseblock from physical eraseblock @from to
966  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
967  * function. Returns:
968  *   o %0  in case of success;
969  *   o %1 if the operation was canceled and should be tried later (e.g.,
970  *     because a bit-flip was detected at the target PEB);
971  *   o %2 if the volume is being deleted and this LEB should not be moved.
972  */
973 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
974 		     struct ubi_vid_hdr *vid_hdr)
975 {
976 	int err, vol_id, lnum, data_size, aldata_size, idx;
977 	struct ubi_volume *vol;
978 	uint32_t crc;
979 
980 	vol_id = be32_to_cpu(vid_hdr->vol_id);
981 	lnum = be32_to_cpu(vid_hdr->lnum);
982 
983 	dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
984 
985 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
986 		data_size = be32_to_cpu(vid_hdr->data_size);
987 		aldata_size = ALIGN(data_size, ubi->min_io_size);
988 	} else
989 		data_size = aldata_size =
990 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
991 
992 	idx = vol_id2idx(ubi, vol_id);
993 	spin_lock(&ubi->volumes_lock);
994 	/*
995 	 * Note, we may race with volume deletion, which means that the volume
996 	 * this logical eraseblock belongs to might be being deleted. Since the
997 	 * volume deletion unmaps all the volume's logical eraseblocks, it will
998 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
999 	 */
1000 	vol = ubi->volumes[idx];
1001 	if (!vol) {
1002 		/* No need to do further work, cancel */
1003 		dbg_eba("volume %d is being removed, cancel", vol_id);
1004 		spin_unlock(&ubi->volumes_lock);
1005 		return 2;
1006 	}
1007 	spin_unlock(&ubi->volumes_lock);
1008 
1009 	/*
1010 	 * We do not want anybody to write to this logical eraseblock while we
1011 	 * are moving it, so lock it.
1012 	 *
1013 	 * Note, we are using non-waiting locking here, because we cannot sleep
1014 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1015 	 * unmapping the LEB which is mapped to the PEB we are going to move
1016 	 * (@from). This task locks the LEB and goes sleep in the
1017 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1018 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1019 	 * LEB is already locked, we just do not move it and return %1.
1020 	 */
1021 	err = leb_write_trylock(ubi, vol_id, lnum);
1022 	if (err) {
1023 		dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
1024 		return err;
1025 	}
1026 
1027 	/*
1028 	 * The LEB might have been put meanwhile, and the task which put it is
1029 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1030 	 * cancel it.
1031 	 */
1032 	if (vol->eba_tbl[lnum] != from) {
1033 		dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1034 			"PEB %d, cancel", vol_id, lnum, from,
1035 			vol->eba_tbl[lnum]);
1036 		err = 1;
1037 		goto out_unlock_leb;
1038 	}
1039 
1040 	/*
1041 	 * OK, now the LEB is locked and we can safely start moving iy. Since
1042 	 * this function utilizes thie @ubi->peb1_buf buffer which is shared
1043 	 * with some other functions, so lock the buffer by taking the
1044 	 * @ubi->buf_mutex.
1045 	 */
1046 	mutex_lock(&ubi->buf_mutex);
1047 	dbg_eba("read %d bytes of data", aldata_size);
1048 	err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1049 	if (err && err != UBI_IO_BITFLIPS) {
1050 		ubi_warn("error %d while reading data from PEB %d",
1051 			 err, from);
1052 		goto out_unlock_buf;
1053 	}
1054 
1055 	/*
1056 	 * Now we have got to calculate how much data we have to to copy. In
1057 	 * case of a static volume it is fairly easy - the VID header contains
1058 	 * the data size. In case of a dynamic volume it is more difficult - we
1059 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1060 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1061 	 * may have some side-effects. And not only this. It is important not
1062 	 * to include those 0xFFs to CRC because later the they may be filled
1063 	 * by data.
1064 	 */
1065 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1066 		aldata_size = data_size =
1067 			ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1068 
1069 	cond_resched();
1070 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1071 	cond_resched();
1072 
1073 	/*
1074 	 * It may turn out to me that the whole @from physical eraseblock
1075 	 * contains only 0xFF bytes. Then we have to only write the VID header
1076 	 * and do not write any data. This also means we should not set
1077 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1078 	 */
1079 	if (data_size > 0) {
1080 		vid_hdr->copy_flag = 1;
1081 		vid_hdr->data_size = cpu_to_be32(data_size);
1082 		vid_hdr->data_crc = cpu_to_be32(crc);
1083 	}
1084 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1085 
1086 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1087 	if (err)
1088 		goto out_unlock_buf;
1089 
1090 	cond_resched();
1091 
1092 	/* Read the VID header back and check if it was written correctly */
1093 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1094 	if (err) {
1095 		if (err != UBI_IO_BITFLIPS)
1096 			ubi_warn("cannot read VID header back from PEB %d", to);
1097 		else
1098 			err = 1;
1099 		goto out_unlock_buf;
1100 	}
1101 
1102 	if (data_size > 0) {
1103 		err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1104 		if (err)
1105 			goto out_unlock_buf;
1106 
1107 		cond_resched();
1108 
1109 		/*
1110 		 * We've written the data and are going to read it back to make
1111 		 * sure it was written correctly.
1112 		 */
1113 
1114 		err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1115 		if (err) {
1116 			if (err != UBI_IO_BITFLIPS)
1117 				ubi_warn("cannot read data back from PEB %d",
1118 					 to);
1119 			else
1120 				err = 1;
1121 			goto out_unlock_buf;
1122 		}
1123 
1124 		cond_resched();
1125 
1126 		if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1127 			ubi_warn("read data back from PEB %d - it is different",
1128 				 to);
1129 			goto out_unlock_buf;
1130 		}
1131 	}
1132 
1133 	ubi_assert(vol->eba_tbl[lnum] == from);
1134 	vol->eba_tbl[lnum] = to;
1135 
1136 out_unlock_buf:
1137 	mutex_unlock(&ubi->buf_mutex);
1138 out_unlock_leb:
1139 	leb_write_unlock(ubi, vol_id, lnum);
1140 	return err;
1141 }
1142 
1143 /**
1144  * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1145  * @ubi: UBI device description object
1146  * @si: scanning information
1147  *
1148  * This function returns zero in case of success and a negative error code in
1149  * case of failure.
1150  */
1151 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1152 {
1153 	int i, j, err, num_volumes;
1154 	struct ubi_scan_volume *sv;
1155 	struct ubi_volume *vol;
1156 	struct ubi_scan_leb *seb;
1157 	struct rb_node *rb;
1158 
1159 	dbg_eba("initialize EBA unit");
1160 
1161 	spin_lock_init(&ubi->ltree_lock);
1162 	mutex_init(&ubi->alc_mutex);
1163 	ubi->ltree = RB_ROOT;
1164 
1165 	ubi->global_sqnum = si->max_sqnum + 1;
1166 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1167 
1168 	for (i = 0; i < num_volumes; i++) {
1169 		vol = ubi->volumes[i];
1170 		if (!vol)
1171 			continue;
1172 
1173 		cond_resched();
1174 
1175 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1176 				       GFP_KERNEL);
1177 		if (!vol->eba_tbl) {
1178 			err = -ENOMEM;
1179 			goto out_free;
1180 		}
1181 
1182 		for (j = 0; j < vol->reserved_pebs; j++)
1183 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1184 
1185 		sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1186 		if (!sv)
1187 			continue;
1188 
1189 		ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1190 			if (seb->lnum >= vol->reserved_pebs)
1191 				/*
1192 				 * This may happen in case of an unclean reboot
1193 				 * during re-size.
1194 				 */
1195 				ubi_scan_move_to_list(sv, seb, &si->erase);
1196 			vol->eba_tbl[seb->lnum] = seb->pnum;
1197 		}
1198 	}
1199 
1200 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1201 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1202 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1203 		err = -ENOSPC;
1204 		goto out_free;
1205 	}
1206 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1207 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1208 
1209 	if (ubi->bad_allowed) {
1210 		ubi_calculate_reserved(ubi);
1211 
1212 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1213 			/* No enough free physical eraseblocks */
1214 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1215 			ubi_warn("cannot reserve enough PEBs for bad PEB "
1216 				 "handling, reserved %d, need %d",
1217 				 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1218 		} else
1219 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1220 
1221 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1222 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1223 	}
1224 
1225 	dbg_eba("EBA unit is initialized");
1226 	return 0;
1227 
1228 out_free:
1229 	for (i = 0; i < num_volumes; i++) {
1230 		if (!ubi->volumes[i])
1231 			continue;
1232 		kfree(ubi->volumes[i]->eba_tbl);
1233 	}
1234 	return err;
1235 }
1236 
1237 /**
1238  * ubi_eba_close - close EBA unit.
1239  * @ubi: UBI device description object
1240  */
1241 void ubi_eba_close(const struct ubi_device *ubi)
1242 {
1243 	int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1244 
1245 	dbg_eba("close EBA unit");
1246 
1247 	for (i = 0; i < num_volumes; i++) {
1248 		if (!ubi->volumes[i])
1249 			continue;
1250 		kfree(ubi->volumes[i]->eba_tbl);
1251 	}
1252 }
1253