xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision 95e9fd10)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 static unsigned long long next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	kfree(le_free);
193 	return le;
194 }
195 
196 /**
197  * leb_read_lock - lock logical eraseblock for reading.
198  * @ubi: UBI device description object
199  * @vol_id: volume ID
200  * @lnum: logical eraseblock number
201  *
202  * This function locks a logical eraseblock for reading. Returns zero in case
203  * of success and a negative error code in case of failure.
204  */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 	struct ubi_ltree_entry *le;
208 
209 	le = ltree_add_entry(ubi, vol_id, lnum);
210 	if (IS_ERR(le))
211 		return PTR_ERR(le);
212 	down_read(&le->mutex);
213 	return 0;
214 }
215 
216 /**
217  * leb_read_unlock - unlock logical eraseblock.
218  * @ubi: UBI device description object
219  * @vol_id: volume ID
220  * @lnum: logical eraseblock number
221  */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 	struct ubi_ltree_entry *le;
225 
226 	spin_lock(&ubi->ltree_lock);
227 	le = ltree_lookup(ubi, vol_id, lnum);
228 	le->users -= 1;
229 	ubi_assert(le->users >= 0);
230 	up_read(&le->mutex);
231 	if (le->users == 0) {
232 		rb_erase(&le->rb, &ubi->ltree);
233 		kfree(le);
234 	}
235 	spin_unlock(&ubi->ltree_lock);
236 }
237 
238 /**
239  * leb_write_lock - lock logical eraseblock for writing.
240  * @ubi: UBI device description object
241  * @vol_id: volume ID
242  * @lnum: logical eraseblock number
243  *
244  * This function locks a logical eraseblock for writing. Returns zero in case
245  * of success and a negative error code in case of failure.
246  */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le;
250 
251 	le = ltree_add_entry(ubi, vol_id, lnum);
252 	if (IS_ERR(le))
253 		return PTR_ERR(le);
254 	down_write(&le->mutex);
255 	return 0;
256 }
257 
258 /**
259  * leb_write_lock - lock logical eraseblock for writing.
260  * @ubi: UBI device description object
261  * @vol_id: volume ID
262  * @lnum: logical eraseblock number
263  *
264  * This function locks a logical eraseblock for writing if there is no
265  * contention and does nothing if there is contention. Returns %0 in case of
266  * success, %1 in case of contention, and and a negative error code in case of
267  * failure.
268  */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 	struct ubi_ltree_entry *le;
272 
273 	le = ltree_add_entry(ubi, vol_id, lnum);
274 	if (IS_ERR(le))
275 		return PTR_ERR(le);
276 	if (down_write_trylock(&le->mutex))
277 		return 0;
278 
279 	/* Contention, cancel */
280 	spin_lock(&ubi->ltree_lock);
281 	le->users -= 1;
282 	ubi_assert(le->users >= 0);
283 	if (le->users == 0) {
284 		rb_erase(&le->rb, &ubi->ltree);
285 		kfree(le);
286 	}
287 	spin_unlock(&ubi->ltree_lock);
288 
289 	return 1;
290 }
291 
292 /**
293  * leb_write_unlock - unlock logical eraseblock.
294  * @ubi: UBI device description object
295  * @vol_id: volume ID
296  * @lnum: logical eraseblock number
297  */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 	struct ubi_ltree_entry *le;
301 
302 	spin_lock(&ubi->ltree_lock);
303 	le = ltree_lookup(ubi, vol_id, lnum);
304 	le->users -= 1;
305 	ubi_assert(le->users >= 0);
306 	up_write(&le->mutex);
307 	if (le->users == 0) {
308 		rb_erase(&le->rb, &ubi->ltree);
309 		kfree(le);
310 	}
311 	spin_unlock(&ubi->ltree_lock);
312 }
313 
314 /**
315  * ubi_eba_unmap_leb - un-map logical eraseblock.
316  * @ubi: UBI device description object
317  * @vol: volume description object
318  * @lnum: logical eraseblock number
319  *
320  * This function un-maps logical eraseblock @lnum and schedules corresponding
321  * physical eraseblock for erasure. Returns zero in case of success and a
322  * negative error code in case of failure.
323  */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 		      int lnum)
326 {
327 	int err, pnum, vol_id = vol->vol_id;
328 
329 	if (ubi->ro_mode)
330 		return -EROFS;
331 
332 	err = leb_write_lock(ubi, vol_id, lnum);
333 	if (err)
334 		return err;
335 
336 	pnum = vol->eba_tbl[lnum];
337 	if (pnum < 0)
338 		/* This logical eraseblock is already unmapped */
339 		goto out_unlock;
340 
341 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342 
343 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
344 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
345 
346 out_unlock:
347 	leb_write_unlock(ubi, vol_id, lnum);
348 	return err;
349 }
350 
351 /**
352  * ubi_eba_read_leb - read data.
353  * @ubi: UBI device description object
354  * @vol: volume description object
355  * @lnum: logical eraseblock number
356  * @buf: buffer to store the read data
357  * @offset: offset from where to read
358  * @len: how many bytes to read
359  * @check: data CRC check flag
360  *
361  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
362  * bytes. The @check flag only makes sense for static volumes and forces
363  * eraseblock data CRC checking.
364  *
365  * In case of success this function returns zero. In case of a static volume,
366  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
367  * returned for any volume type if an ECC error was detected by the MTD device
368  * driver. Other negative error cored may be returned in case of other errors.
369  */
370 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
371 		     void *buf, int offset, int len, int check)
372 {
373 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
374 	struct ubi_vid_hdr *vid_hdr;
375 	uint32_t uninitialized_var(crc);
376 
377 	err = leb_read_lock(ubi, vol_id, lnum);
378 	if (err)
379 		return err;
380 
381 	pnum = vol->eba_tbl[lnum];
382 	if (pnum < 0) {
383 		/*
384 		 * The logical eraseblock is not mapped, fill the whole buffer
385 		 * with 0xFF bytes. The exception is static volumes for which
386 		 * it is an error to read unmapped logical eraseblocks.
387 		 */
388 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
389 			len, offset, vol_id, lnum);
390 		leb_read_unlock(ubi, vol_id, lnum);
391 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
392 		memset(buf, 0xFF, len);
393 		return 0;
394 	}
395 
396 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
397 		len, offset, vol_id, lnum, pnum);
398 
399 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
400 		check = 0;
401 
402 retry:
403 	if (check) {
404 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
405 		if (!vid_hdr) {
406 			err = -ENOMEM;
407 			goto out_unlock;
408 		}
409 
410 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
411 		if (err && err != UBI_IO_BITFLIPS) {
412 			if (err > 0) {
413 				/*
414 				 * The header is either absent or corrupted.
415 				 * The former case means there is a bug -
416 				 * switch to read-only mode just in case.
417 				 * The latter case means a real corruption - we
418 				 * may try to recover data. FIXME: but this is
419 				 * not implemented.
420 				 */
421 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
422 				    err == UBI_IO_BAD_HDR) {
423 					ubi_warn("corrupted VID header at PEB "
424 						 "%d, LEB %d:%d", pnum, vol_id,
425 						 lnum);
426 					err = -EBADMSG;
427 				} else
428 					ubi_ro_mode(ubi);
429 			}
430 			goto out_free;
431 		} else if (err == UBI_IO_BITFLIPS)
432 			scrub = 1;
433 
434 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
435 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
436 
437 		crc = be32_to_cpu(vid_hdr->data_crc);
438 		ubi_free_vid_hdr(ubi, vid_hdr);
439 	}
440 
441 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
442 	if (err) {
443 		if (err == UBI_IO_BITFLIPS) {
444 			scrub = 1;
445 			err = 0;
446 		} else if (mtd_is_eccerr(err)) {
447 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
448 				goto out_unlock;
449 			scrub = 1;
450 			if (!check) {
451 				ubi_msg("force data checking");
452 				check = 1;
453 				goto retry;
454 			}
455 		} else
456 			goto out_unlock;
457 	}
458 
459 	if (check) {
460 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
461 		if (crc1 != crc) {
462 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
463 				 crc1, crc);
464 			err = -EBADMSG;
465 			goto out_unlock;
466 		}
467 	}
468 
469 	if (scrub)
470 		err = ubi_wl_scrub_peb(ubi, pnum);
471 
472 	leb_read_unlock(ubi, vol_id, lnum);
473 	return err;
474 
475 out_free:
476 	ubi_free_vid_hdr(ubi, vid_hdr);
477 out_unlock:
478 	leb_read_unlock(ubi, vol_id, lnum);
479 	return err;
480 }
481 
482 /**
483  * recover_peb - recover from write failure.
484  * @ubi: UBI device description object
485  * @pnum: the physical eraseblock to recover
486  * @vol_id: volume ID
487  * @lnum: logical eraseblock number
488  * @buf: data which was not written because of the write failure
489  * @offset: offset of the failed write
490  * @len: how many bytes should have been written
491  *
492  * This function is called in case of a write failure and moves all good data
493  * from the potentially bad physical eraseblock to a good physical eraseblock.
494  * This function also writes the data which was not written due to the failure.
495  * Returns new physical eraseblock number in case of success, and a negative
496  * error code in case of failure.
497  */
498 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
499 		       const void *buf, int offset, int len)
500 {
501 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
502 	struct ubi_volume *vol = ubi->volumes[idx];
503 	struct ubi_vid_hdr *vid_hdr;
504 
505 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
506 	if (!vid_hdr)
507 		return -ENOMEM;
508 
509 retry:
510 	new_pnum = ubi_wl_get_peb(ubi);
511 	if (new_pnum < 0) {
512 		ubi_free_vid_hdr(ubi, vid_hdr);
513 		return new_pnum;
514 	}
515 
516 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
517 
518 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
519 	if (err && err != UBI_IO_BITFLIPS) {
520 		if (err > 0)
521 			err = -EIO;
522 		goto out_put;
523 	}
524 
525 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
526 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
527 	if (err)
528 		goto write_error;
529 
530 	data_size = offset + len;
531 	mutex_lock(&ubi->buf_mutex);
532 	memset(ubi->peb_buf + offset, 0xFF, len);
533 
534 	/* Read everything before the area where the write failure happened */
535 	if (offset > 0) {
536 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
537 		if (err && err != UBI_IO_BITFLIPS)
538 			goto out_unlock;
539 	}
540 
541 	memcpy(ubi->peb_buf + offset, buf, len);
542 
543 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
544 	if (err) {
545 		mutex_unlock(&ubi->buf_mutex);
546 		goto write_error;
547 	}
548 
549 	mutex_unlock(&ubi->buf_mutex);
550 	ubi_free_vid_hdr(ubi, vid_hdr);
551 
552 	vol->eba_tbl[lnum] = new_pnum;
553 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
554 
555 	ubi_msg("data was successfully recovered");
556 	return 0;
557 
558 out_unlock:
559 	mutex_unlock(&ubi->buf_mutex);
560 out_put:
561 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
562 	ubi_free_vid_hdr(ubi, vid_hdr);
563 	return err;
564 
565 write_error:
566 	/*
567 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
568 	 * get another one.
569 	 */
570 	ubi_warn("failed to write to PEB %d", new_pnum);
571 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
572 	if (++tries > UBI_IO_RETRIES) {
573 		ubi_free_vid_hdr(ubi, vid_hdr);
574 		return err;
575 	}
576 	ubi_msg("try again");
577 	goto retry;
578 }
579 
580 /**
581  * ubi_eba_write_leb - write data to dynamic volume.
582  * @ubi: UBI device description object
583  * @vol: volume description object
584  * @lnum: logical eraseblock number
585  * @buf: the data to write
586  * @offset: offset within the logical eraseblock where to write
587  * @len: how many bytes to write
588  *
589  * This function writes data to logical eraseblock @lnum of a dynamic volume
590  * @vol. Returns zero in case of success and a negative error code in case
591  * of failure. In case of error, it is possible that something was still
592  * written to the flash media, but may be some garbage.
593  */
594 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
595 		      const void *buf, int offset, int len)
596 {
597 	int err, pnum, tries = 0, vol_id = vol->vol_id;
598 	struct ubi_vid_hdr *vid_hdr;
599 
600 	if (ubi->ro_mode)
601 		return -EROFS;
602 
603 	err = leb_write_lock(ubi, vol_id, lnum);
604 	if (err)
605 		return err;
606 
607 	pnum = vol->eba_tbl[lnum];
608 	if (pnum >= 0) {
609 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
610 			len, offset, vol_id, lnum, pnum);
611 
612 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
613 		if (err) {
614 			ubi_warn("failed to write data to PEB %d", pnum);
615 			if (err == -EIO && ubi->bad_allowed)
616 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
617 						  offset, len);
618 			if (err)
619 				ubi_ro_mode(ubi);
620 		}
621 		leb_write_unlock(ubi, vol_id, lnum);
622 		return err;
623 	}
624 
625 	/*
626 	 * The logical eraseblock is not mapped. We have to get a free physical
627 	 * eraseblock and write the volume identifier header there first.
628 	 */
629 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
630 	if (!vid_hdr) {
631 		leb_write_unlock(ubi, vol_id, lnum);
632 		return -ENOMEM;
633 	}
634 
635 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
636 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
637 	vid_hdr->vol_id = cpu_to_be32(vol_id);
638 	vid_hdr->lnum = cpu_to_be32(lnum);
639 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
640 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
641 
642 retry:
643 	pnum = ubi_wl_get_peb(ubi);
644 	if (pnum < 0) {
645 		ubi_free_vid_hdr(ubi, vid_hdr);
646 		leb_write_unlock(ubi, vol_id, lnum);
647 		return pnum;
648 	}
649 
650 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
651 		len, offset, vol_id, lnum, pnum);
652 
653 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
654 	if (err) {
655 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
656 			 vol_id, lnum, pnum);
657 		goto write_error;
658 	}
659 
660 	if (len) {
661 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
662 		if (err) {
663 			ubi_warn("failed to write %d bytes at offset %d of "
664 				 "LEB %d:%d, PEB %d", len, offset, vol_id,
665 				 lnum, pnum);
666 			goto write_error;
667 		}
668 	}
669 
670 	vol->eba_tbl[lnum] = pnum;
671 
672 	leb_write_unlock(ubi, vol_id, lnum);
673 	ubi_free_vid_hdr(ubi, vid_hdr);
674 	return 0;
675 
676 write_error:
677 	if (err != -EIO || !ubi->bad_allowed) {
678 		ubi_ro_mode(ubi);
679 		leb_write_unlock(ubi, vol_id, lnum);
680 		ubi_free_vid_hdr(ubi, vid_hdr);
681 		return err;
682 	}
683 
684 	/*
685 	 * Fortunately, this is the first write operation to this physical
686 	 * eraseblock, so just put it and request a new one. We assume that if
687 	 * this physical eraseblock went bad, the erase code will handle that.
688 	 */
689 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
690 	if (err || ++tries > UBI_IO_RETRIES) {
691 		ubi_ro_mode(ubi);
692 		leb_write_unlock(ubi, vol_id, lnum);
693 		ubi_free_vid_hdr(ubi, vid_hdr);
694 		return err;
695 	}
696 
697 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
698 	ubi_msg("try another PEB");
699 	goto retry;
700 }
701 
702 /**
703  * ubi_eba_write_leb_st - write data to static volume.
704  * @ubi: UBI device description object
705  * @vol: volume description object
706  * @lnum: logical eraseblock number
707  * @buf: data to write
708  * @len: how many bytes to write
709  * @used_ebs: how many logical eraseblocks will this volume contain
710  *
711  * This function writes data to logical eraseblock @lnum of static volume
712  * @vol. The @used_ebs argument should contain total number of logical
713  * eraseblock in this static volume.
714  *
715  * When writing to the last logical eraseblock, the @len argument doesn't have
716  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
717  * to the real data size, although the @buf buffer has to contain the
718  * alignment. In all other cases, @len has to be aligned.
719  *
720  * It is prohibited to write more than once to logical eraseblocks of static
721  * volumes. This function returns zero in case of success and a negative error
722  * code in case of failure.
723  */
724 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
725 			 int lnum, const void *buf, int len, int used_ebs)
726 {
727 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
728 	struct ubi_vid_hdr *vid_hdr;
729 	uint32_t crc;
730 
731 	if (ubi->ro_mode)
732 		return -EROFS;
733 
734 	if (lnum == used_ebs - 1)
735 		/* If this is the last LEB @len may be unaligned */
736 		len = ALIGN(data_size, ubi->min_io_size);
737 	else
738 		ubi_assert(!(len & (ubi->min_io_size - 1)));
739 
740 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
741 	if (!vid_hdr)
742 		return -ENOMEM;
743 
744 	err = leb_write_lock(ubi, vol_id, lnum);
745 	if (err) {
746 		ubi_free_vid_hdr(ubi, vid_hdr);
747 		return err;
748 	}
749 
750 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
751 	vid_hdr->vol_id = cpu_to_be32(vol_id);
752 	vid_hdr->lnum = cpu_to_be32(lnum);
753 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
754 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
755 
756 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
757 	vid_hdr->vol_type = UBI_VID_STATIC;
758 	vid_hdr->data_size = cpu_to_be32(data_size);
759 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
760 	vid_hdr->data_crc = cpu_to_be32(crc);
761 
762 retry:
763 	pnum = ubi_wl_get_peb(ubi);
764 	if (pnum < 0) {
765 		ubi_free_vid_hdr(ubi, vid_hdr);
766 		leb_write_unlock(ubi, vol_id, lnum);
767 		return pnum;
768 	}
769 
770 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
771 		len, vol_id, lnum, pnum, used_ebs);
772 
773 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
774 	if (err) {
775 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
776 			 vol_id, lnum, pnum);
777 		goto write_error;
778 	}
779 
780 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
781 	if (err) {
782 		ubi_warn("failed to write %d bytes of data to PEB %d",
783 			 len, pnum);
784 		goto write_error;
785 	}
786 
787 	ubi_assert(vol->eba_tbl[lnum] < 0);
788 	vol->eba_tbl[lnum] = pnum;
789 
790 	leb_write_unlock(ubi, vol_id, lnum);
791 	ubi_free_vid_hdr(ubi, vid_hdr);
792 	return 0;
793 
794 write_error:
795 	if (err != -EIO || !ubi->bad_allowed) {
796 		/*
797 		 * This flash device does not admit of bad eraseblocks or
798 		 * something nasty and unexpected happened. Switch to read-only
799 		 * mode just in case.
800 		 */
801 		ubi_ro_mode(ubi);
802 		leb_write_unlock(ubi, vol_id, lnum);
803 		ubi_free_vid_hdr(ubi, vid_hdr);
804 		return err;
805 	}
806 
807 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
808 	if (err || ++tries > UBI_IO_RETRIES) {
809 		ubi_ro_mode(ubi);
810 		leb_write_unlock(ubi, vol_id, lnum);
811 		ubi_free_vid_hdr(ubi, vid_hdr);
812 		return err;
813 	}
814 
815 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
816 	ubi_msg("try another PEB");
817 	goto retry;
818 }
819 
820 /*
821  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
822  * @ubi: UBI device description object
823  * @vol: volume description object
824  * @lnum: logical eraseblock number
825  * @buf: data to write
826  * @len: how many bytes to write
827  *
828  * This function changes the contents of a logical eraseblock atomically. @buf
829  * has to contain new logical eraseblock data, and @len - the length of the
830  * data, which has to be aligned. This function guarantees that in case of an
831  * unclean reboot the old contents is preserved. Returns zero in case of
832  * success and a negative error code in case of failure.
833  *
834  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
835  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
836  */
837 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
838 			      int lnum, const void *buf, int len)
839 {
840 	int err, pnum, tries = 0, vol_id = vol->vol_id;
841 	struct ubi_vid_hdr *vid_hdr;
842 	uint32_t crc;
843 
844 	if (ubi->ro_mode)
845 		return -EROFS;
846 
847 	if (len == 0) {
848 		/*
849 		 * Special case when data length is zero. In this case the LEB
850 		 * has to be unmapped and mapped somewhere else.
851 		 */
852 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
853 		if (err)
854 			return err;
855 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
856 	}
857 
858 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
859 	if (!vid_hdr)
860 		return -ENOMEM;
861 
862 	mutex_lock(&ubi->alc_mutex);
863 	err = leb_write_lock(ubi, vol_id, lnum);
864 	if (err)
865 		goto out_mutex;
866 
867 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
868 	vid_hdr->vol_id = cpu_to_be32(vol_id);
869 	vid_hdr->lnum = cpu_to_be32(lnum);
870 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
871 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
872 
873 	crc = crc32(UBI_CRC32_INIT, buf, len);
874 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
875 	vid_hdr->data_size = cpu_to_be32(len);
876 	vid_hdr->copy_flag = 1;
877 	vid_hdr->data_crc = cpu_to_be32(crc);
878 
879 retry:
880 	pnum = ubi_wl_get_peb(ubi);
881 	if (pnum < 0) {
882 		err = pnum;
883 		goto out_leb_unlock;
884 	}
885 
886 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
887 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
888 
889 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
890 	if (err) {
891 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
892 			 vol_id, lnum, pnum);
893 		goto write_error;
894 	}
895 
896 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
897 	if (err) {
898 		ubi_warn("failed to write %d bytes of data to PEB %d",
899 			 len, pnum);
900 		goto write_error;
901 	}
902 
903 	if (vol->eba_tbl[lnum] >= 0) {
904 		err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
905 		if (err)
906 			goto out_leb_unlock;
907 	}
908 
909 	vol->eba_tbl[lnum] = pnum;
910 
911 out_leb_unlock:
912 	leb_write_unlock(ubi, vol_id, lnum);
913 out_mutex:
914 	mutex_unlock(&ubi->alc_mutex);
915 	ubi_free_vid_hdr(ubi, vid_hdr);
916 	return err;
917 
918 write_error:
919 	if (err != -EIO || !ubi->bad_allowed) {
920 		/*
921 		 * This flash device does not admit of bad eraseblocks or
922 		 * something nasty and unexpected happened. Switch to read-only
923 		 * mode just in case.
924 		 */
925 		ubi_ro_mode(ubi);
926 		goto out_leb_unlock;
927 	}
928 
929 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
930 	if (err || ++tries > UBI_IO_RETRIES) {
931 		ubi_ro_mode(ubi);
932 		goto out_leb_unlock;
933 	}
934 
935 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
936 	ubi_msg("try another PEB");
937 	goto retry;
938 }
939 
940 /**
941  * is_error_sane - check whether a read error is sane.
942  * @err: code of the error happened during reading
943  *
944  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
945  * cannot read data from the target PEB (an error @err happened). If the error
946  * code is sane, then we treat this error as non-fatal. Otherwise the error is
947  * fatal and UBI will be switched to R/O mode later.
948  *
949  * The idea is that we try not to switch to R/O mode if the read error is
950  * something which suggests there was a real read problem. E.g., %-EIO. Or a
951  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
952  * mode, simply because we do not know what happened at the MTD level, and we
953  * cannot handle this. E.g., the underlying driver may have become crazy, and
954  * it is safer to switch to R/O mode to preserve the data.
955  *
956  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
957  * which we have just written.
958  */
959 static int is_error_sane(int err)
960 {
961 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
962 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
963 		return 0;
964 	return 1;
965 }
966 
967 /**
968  * ubi_eba_copy_leb - copy logical eraseblock.
969  * @ubi: UBI device description object
970  * @from: physical eraseblock number from where to copy
971  * @to: physical eraseblock number where to copy
972  * @vid_hdr: VID header of the @from physical eraseblock
973  *
974  * This function copies logical eraseblock from physical eraseblock @from to
975  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
976  * function. Returns:
977  *   o %0 in case of success;
978  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
979  *   o a negative error code in case of failure.
980  */
981 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
982 		     struct ubi_vid_hdr *vid_hdr)
983 {
984 	int err, vol_id, lnum, data_size, aldata_size, idx;
985 	struct ubi_volume *vol;
986 	uint32_t crc;
987 
988 	vol_id = be32_to_cpu(vid_hdr->vol_id);
989 	lnum = be32_to_cpu(vid_hdr->lnum);
990 
991 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
992 
993 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
994 		data_size = be32_to_cpu(vid_hdr->data_size);
995 		aldata_size = ALIGN(data_size, ubi->min_io_size);
996 	} else
997 		data_size = aldata_size =
998 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
999 
1000 	idx = vol_id2idx(ubi, vol_id);
1001 	spin_lock(&ubi->volumes_lock);
1002 	/*
1003 	 * Note, we may race with volume deletion, which means that the volume
1004 	 * this logical eraseblock belongs to might be being deleted. Since the
1005 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1006 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1007 	 */
1008 	vol = ubi->volumes[idx];
1009 	spin_unlock(&ubi->volumes_lock);
1010 	if (!vol) {
1011 		/* No need to do further work, cancel */
1012 		dbg_wl("volume %d is being removed, cancel", vol_id);
1013 		return MOVE_CANCEL_RACE;
1014 	}
1015 
1016 	/*
1017 	 * We do not want anybody to write to this logical eraseblock while we
1018 	 * are moving it, so lock it.
1019 	 *
1020 	 * Note, we are using non-waiting locking here, because we cannot sleep
1021 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1022 	 * unmapping the LEB which is mapped to the PEB we are going to move
1023 	 * (@from). This task locks the LEB and goes sleep in the
1024 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1025 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1026 	 * LEB is already locked, we just do not move it and return
1027 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1028 	 * we do not know the reasons of the contention - it may be just a
1029 	 * normal I/O on this LEB, so we want to re-try.
1030 	 */
1031 	err = leb_write_trylock(ubi, vol_id, lnum);
1032 	if (err) {
1033 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1034 		return MOVE_RETRY;
1035 	}
1036 
1037 	/*
1038 	 * The LEB might have been put meanwhile, and the task which put it is
1039 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1040 	 * cancel it.
1041 	 */
1042 	if (vol->eba_tbl[lnum] != from) {
1043 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1044 		       "PEB %d, cancel", vol_id, lnum, from,
1045 		       vol->eba_tbl[lnum]);
1046 		err = MOVE_CANCEL_RACE;
1047 		goto out_unlock_leb;
1048 	}
1049 
1050 	/*
1051 	 * OK, now the LEB is locked and we can safely start moving it. Since
1052 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1053 	 * with some other functions - we lock the buffer by taking the
1054 	 * @ubi->buf_mutex.
1055 	 */
1056 	mutex_lock(&ubi->buf_mutex);
1057 	dbg_wl("read %d bytes of data", aldata_size);
1058 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1059 	if (err && err != UBI_IO_BITFLIPS) {
1060 		ubi_warn("error %d while reading data from PEB %d",
1061 			 err, from);
1062 		err = MOVE_SOURCE_RD_ERR;
1063 		goto out_unlock_buf;
1064 	}
1065 
1066 	/*
1067 	 * Now we have got to calculate how much data we have to copy. In
1068 	 * case of a static volume it is fairly easy - the VID header contains
1069 	 * the data size. In case of a dynamic volume it is more difficult - we
1070 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1071 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1072 	 * may have some side-effects. And not only this. It is important not
1073 	 * to include those 0xFFs to CRC because later the they may be filled
1074 	 * by data.
1075 	 */
1076 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1077 		aldata_size = data_size =
1078 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1079 
1080 	cond_resched();
1081 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1082 	cond_resched();
1083 
1084 	/*
1085 	 * It may turn out to be that the whole @from physical eraseblock
1086 	 * contains only 0xFF bytes. Then we have to only write the VID header
1087 	 * and do not write any data. This also means we should not set
1088 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1089 	 */
1090 	if (data_size > 0) {
1091 		vid_hdr->copy_flag = 1;
1092 		vid_hdr->data_size = cpu_to_be32(data_size);
1093 		vid_hdr->data_crc = cpu_to_be32(crc);
1094 	}
1095 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1096 
1097 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1098 	if (err) {
1099 		if (err == -EIO)
1100 			err = MOVE_TARGET_WR_ERR;
1101 		goto out_unlock_buf;
1102 	}
1103 
1104 	cond_resched();
1105 
1106 	/* Read the VID header back and check if it was written correctly */
1107 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1108 	if (err) {
1109 		if (err != UBI_IO_BITFLIPS) {
1110 			ubi_warn("error %d while reading VID header back from "
1111 				  "PEB %d", err, to);
1112 			if (is_error_sane(err))
1113 				err = MOVE_TARGET_RD_ERR;
1114 		} else
1115 			err = MOVE_TARGET_BITFLIPS;
1116 		goto out_unlock_buf;
1117 	}
1118 
1119 	if (data_size > 0) {
1120 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1121 		if (err) {
1122 			if (err == -EIO)
1123 				err = MOVE_TARGET_WR_ERR;
1124 			goto out_unlock_buf;
1125 		}
1126 
1127 		cond_resched();
1128 
1129 		/*
1130 		 * We've written the data and are going to read it back to make
1131 		 * sure it was written correctly.
1132 		 */
1133 		memset(ubi->peb_buf, 0xFF, aldata_size);
1134 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1135 		if (err) {
1136 			if (err != UBI_IO_BITFLIPS) {
1137 				ubi_warn("error %d while reading data back "
1138 					 "from PEB %d", err, to);
1139 				if (is_error_sane(err))
1140 					err = MOVE_TARGET_RD_ERR;
1141 			} else
1142 				err = MOVE_TARGET_BITFLIPS;
1143 			goto out_unlock_buf;
1144 		}
1145 
1146 		cond_resched();
1147 
1148 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1149 			ubi_warn("read data back from PEB %d and it is "
1150 				 "different", to);
1151 			err = -EINVAL;
1152 			goto out_unlock_buf;
1153 		}
1154 	}
1155 
1156 	ubi_assert(vol->eba_tbl[lnum] == from);
1157 	vol->eba_tbl[lnum] = to;
1158 
1159 out_unlock_buf:
1160 	mutex_unlock(&ubi->buf_mutex);
1161 out_unlock_leb:
1162 	leb_write_unlock(ubi, vol_id, lnum);
1163 	return err;
1164 }
1165 
1166 /**
1167  * print_rsvd_warning - warn about not having enough reserved PEBs.
1168  * @ubi: UBI device description object
1169  *
1170  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1171  * cannot reserve enough PEBs for bad block handling. This function makes a
1172  * decision whether we have to print a warning or not. The algorithm is as
1173  * follows:
1174  *   o if this is a new UBI image, then just print the warning
1175  *   o if this is an UBI image which has already been used for some time, print
1176  *     a warning only if we can reserve less than 10% of the expected amount of
1177  *     the reserved PEB.
1178  *
1179  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1180  * of PEBs becomes smaller, which is normal and we do not want to scare users
1181  * with a warning every time they attach the MTD device. This was an issue
1182  * reported by real users.
1183  */
1184 static void print_rsvd_warning(struct ubi_device *ubi,
1185 			       struct ubi_attach_info *ai)
1186 {
1187 	/*
1188 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1189 	 * large number to distinguish between newly flashed and used images.
1190 	 */
1191 	if (ai->max_sqnum > (1 << 18)) {
1192 		int min = ubi->beb_rsvd_level / 10;
1193 
1194 		if (!min)
1195 			min = 1;
1196 		if (ubi->beb_rsvd_pebs > min)
1197 			return;
1198 	}
1199 
1200 	ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d,"
1201 		 " need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1202 	if (ubi->corr_peb_count)
1203 		ubi_warn("%d PEBs are corrupted and not used",
1204 			ubi->corr_peb_count);
1205 }
1206 
1207 /**
1208  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1209  * @ubi: UBI device description object
1210  * @ai: attaching information
1211  *
1212  * This function returns zero in case of success and a negative error code in
1213  * case of failure.
1214  */
1215 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1216 {
1217 	int i, j, err, num_volumes;
1218 	struct ubi_ainf_volume *av;
1219 	struct ubi_volume *vol;
1220 	struct ubi_ainf_peb *aeb;
1221 	struct rb_node *rb;
1222 
1223 	dbg_eba("initialize EBA sub-system");
1224 
1225 	spin_lock_init(&ubi->ltree_lock);
1226 	mutex_init(&ubi->alc_mutex);
1227 	ubi->ltree = RB_ROOT;
1228 
1229 	ubi->global_sqnum = ai->max_sqnum + 1;
1230 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1231 
1232 	for (i = 0; i < num_volumes; i++) {
1233 		vol = ubi->volumes[i];
1234 		if (!vol)
1235 			continue;
1236 
1237 		cond_resched();
1238 
1239 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1240 				       GFP_KERNEL);
1241 		if (!vol->eba_tbl) {
1242 			err = -ENOMEM;
1243 			goto out_free;
1244 		}
1245 
1246 		for (j = 0; j < vol->reserved_pebs; j++)
1247 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1248 
1249 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1250 		if (!av)
1251 			continue;
1252 
1253 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1254 			if (aeb->lnum >= vol->reserved_pebs)
1255 				/*
1256 				 * This may happen in case of an unclean reboot
1257 				 * during re-size.
1258 				 */
1259 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1260 			vol->eba_tbl[aeb->lnum] = aeb->pnum;
1261 		}
1262 	}
1263 
1264 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1265 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1266 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1267 		if (ubi->corr_peb_count)
1268 			ubi_err("%d PEBs are corrupted and not used",
1269 				ubi->corr_peb_count);
1270 		err = -ENOSPC;
1271 		goto out_free;
1272 	}
1273 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1274 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1275 
1276 	if (ubi->bad_allowed) {
1277 		ubi_calculate_reserved(ubi);
1278 
1279 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1280 			/* No enough free physical eraseblocks */
1281 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1282 			print_rsvd_warning(ubi, ai);
1283 		} else
1284 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1285 
1286 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1287 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1288 	}
1289 
1290 	dbg_eba("EBA sub-system is initialized");
1291 	return 0;
1292 
1293 out_free:
1294 	for (i = 0; i < num_volumes; i++) {
1295 		if (!ubi->volumes[i])
1296 			continue;
1297 		kfree(ubi->volumes[i]->eba_tbl);
1298 		ubi->volumes[i]->eba_tbl = NULL;
1299 	}
1300 	return err;
1301 }
1302