1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) sub-system. 23 * 24 * This sub-system is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA sub-system implements per-logical eraseblock locking. Before 31 * accessing a logical eraseblock it is locked for reading or writing. The 32 * per-logical eraseblock locking is implemented by means of the lock tree. The 33 * lock tree is an RB-tree which refers all the currently locked logical 34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. 35 * They are indexed by (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /* Number of physical eraseblocks reserved for atomic LEB change operation */ 50 #define EBA_RESERVED_PEBS 1 51 52 /** 53 * next_sqnum - get next sequence number. 54 * @ubi: UBI device description object 55 * 56 * This function returns next sequence number to use, which is just the current 57 * global sequence counter value. It also increases the global sequence 58 * counter. 59 */ 60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi) 61 { 62 unsigned long long sqnum; 63 64 spin_lock(&ubi->ltree_lock); 65 sqnum = ubi->global_sqnum++; 66 spin_unlock(&ubi->ltree_lock); 67 68 return sqnum; 69 } 70 71 /** 72 * ubi_get_compat - get compatibility flags of a volume. 73 * @ubi: UBI device description object 74 * @vol_id: volume ID 75 * 76 * This function returns compatibility flags for an internal volume. User 77 * volumes have no compatibility flags, so %0 is returned. 78 */ 79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 80 { 81 if (vol_id == UBI_LAYOUT_VOLUME_ID) 82 return UBI_LAYOUT_VOLUME_COMPAT; 83 return 0; 84 } 85 86 /** 87 * ltree_lookup - look up the lock tree. 88 * @ubi: UBI device description object 89 * @vol_id: volume ID 90 * @lnum: logical eraseblock number 91 * 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry 93 * object if the logical eraseblock is locked and %NULL if it is not. 94 * @ubi->ltree_lock has to be locked. 95 */ 96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 97 int lnum) 98 { 99 struct rb_node *p; 100 101 p = ubi->ltree.rb_node; 102 while (p) { 103 struct ubi_ltree_entry *le; 104 105 le = rb_entry(p, struct ubi_ltree_entry, rb); 106 107 if (vol_id < le->vol_id) 108 p = p->rb_left; 109 else if (vol_id > le->vol_id) 110 p = p->rb_right; 111 else { 112 if (lnum < le->lnum) 113 p = p->rb_left; 114 else if (lnum > le->lnum) 115 p = p->rb_right; 116 else 117 return le; 118 } 119 } 120 121 return NULL; 122 } 123 124 /** 125 * ltree_add_entry - add new entry to the lock tree. 126 * @ubi: UBI device description object 127 * @vol_id: volume ID 128 * @lnum: logical eraseblock number 129 * 130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 131 * lock tree. If such entry is already there, its usage counter is increased. 132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 133 * failed. 134 */ 135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, 136 int vol_id, int lnum) 137 { 138 struct ubi_ltree_entry *le, *le1, *le_free; 139 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); 141 if (!le) 142 return ERR_PTR(-ENOMEM); 143 144 le->users = 0; 145 init_rwsem(&le->mutex); 146 le->vol_id = vol_id; 147 le->lnum = lnum; 148 149 spin_lock(&ubi->ltree_lock); 150 le1 = ltree_lookup(ubi, vol_id, lnum); 151 152 if (le1) { 153 /* 154 * This logical eraseblock is already locked. The newly 155 * allocated lock entry is not needed. 156 */ 157 le_free = le; 158 le = le1; 159 } else { 160 struct rb_node **p, *parent = NULL; 161 162 /* 163 * No lock entry, add the newly allocated one to the 164 * @ubi->ltree RB-tree. 165 */ 166 le_free = NULL; 167 168 p = &ubi->ltree.rb_node; 169 while (*p) { 170 parent = *p; 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb); 172 173 if (vol_id < le1->vol_id) 174 p = &(*p)->rb_left; 175 else if (vol_id > le1->vol_id) 176 p = &(*p)->rb_right; 177 else { 178 ubi_assert(lnum != le1->lnum); 179 if (lnum < le1->lnum) 180 p = &(*p)->rb_left; 181 else 182 p = &(*p)->rb_right; 183 } 184 } 185 186 rb_link_node(&le->rb, parent, p); 187 rb_insert_color(&le->rb, &ubi->ltree); 188 } 189 le->users += 1; 190 spin_unlock(&ubi->ltree_lock); 191 192 kfree(le_free); 193 return le; 194 } 195 196 /** 197 * leb_read_lock - lock logical eraseblock for reading. 198 * @ubi: UBI device description object 199 * @vol_id: volume ID 200 * @lnum: logical eraseblock number 201 * 202 * This function locks a logical eraseblock for reading. Returns zero in case 203 * of success and a negative error code in case of failure. 204 */ 205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 206 { 207 struct ubi_ltree_entry *le; 208 209 le = ltree_add_entry(ubi, vol_id, lnum); 210 if (IS_ERR(le)) 211 return PTR_ERR(le); 212 down_read(&le->mutex); 213 return 0; 214 } 215 216 /** 217 * leb_read_unlock - unlock logical eraseblock. 218 * @ubi: UBI device description object 219 * @vol_id: volume ID 220 * @lnum: logical eraseblock number 221 */ 222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 223 { 224 struct ubi_ltree_entry *le; 225 226 spin_lock(&ubi->ltree_lock); 227 le = ltree_lookup(ubi, vol_id, lnum); 228 le->users -= 1; 229 ubi_assert(le->users >= 0); 230 up_read(&le->mutex); 231 if (le->users == 0) { 232 rb_erase(&le->rb, &ubi->ltree); 233 kfree(le); 234 } 235 spin_unlock(&ubi->ltree_lock); 236 } 237 238 /** 239 * leb_write_lock - lock logical eraseblock for writing. 240 * @ubi: UBI device description object 241 * @vol_id: volume ID 242 * @lnum: logical eraseblock number 243 * 244 * This function locks a logical eraseblock for writing. Returns zero in case 245 * of success and a negative error code in case of failure. 246 */ 247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 248 { 249 struct ubi_ltree_entry *le; 250 251 le = ltree_add_entry(ubi, vol_id, lnum); 252 if (IS_ERR(le)) 253 return PTR_ERR(le); 254 down_write(&le->mutex); 255 return 0; 256 } 257 258 /** 259 * leb_write_lock - lock logical eraseblock for writing. 260 * @ubi: UBI device description object 261 * @vol_id: volume ID 262 * @lnum: logical eraseblock number 263 * 264 * This function locks a logical eraseblock for writing if there is no 265 * contention and does nothing if there is contention. Returns %0 in case of 266 * success, %1 in case of contention, and and a negative error code in case of 267 * failure. 268 */ 269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) 270 { 271 struct ubi_ltree_entry *le; 272 273 le = ltree_add_entry(ubi, vol_id, lnum); 274 if (IS_ERR(le)) 275 return PTR_ERR(le); 276 if (down_write_trylock(&le->mutex)) 277 return 0; 278 279 /* Contention, cancel */ 280 spin_lock(&ubi->ltree_lock); 281 le->users -= 1; 282 ubi_assert(le->users >= 0); 283 if (le->users == 0) { 284 rb_erase(&le->rb, &ubi->ltree); 285 kfree(le); 286 } 287 spin_unlock(&ubi->ltree_lock); 288 289 return 1; 290 } 291 292 /** 293 * leb_write_unlock - unlock logical eraseblock. 294 * @ubi: UBI device description object 295 * @vol_id: volume ID 296 * @lnum: logical eraseblock number 297 */ 298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 299 { 300 struct ubi_ltree_entry *le; 301 302 spin_lock(&ubi->ltree_lock); 303 le = ltree_lookup(ubi, vol_id, lnum); 304 le->users -= 1; 305 ubi_assert(le->users >= 0); 306 up_write(&le->mutex); 307 if (le->users == 0) { 308 rb_erase(&le->rb, &ubi->ltree); 309 kfree(le); 310 } 311 spin_unlock(&ubi->ltree_lock); 312 } 313 314 /** 315 * ubi_eba_unmap_leb - un-map logical eraseblock. 316 * @ubi: UBI device description object 317 * @vol: volume description object 318 * @lnum: logical eraseblock number 319 * 320 * This function un-maps logical eraseblock @lnum and schedules corresponding 321 * physical eraseblock for erasure. Returns zero in case of success and a 322 * negative error code in case of failure. 323 */ 324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, 325 int lnum) 326 { 327 int err, pnum, vol_id = vol->vol_id; 328 329 if (ubi->ro_mode) 330 return -EROFS; 331 332 err = leb_write_lock(ubi, vol_id, lnum); 333 if (err) 334 return err; 335 336 pnum = vol->eba_tbl[lnum]; 337 if (pnum < 0) 338 /* This logical eraseblock is already unmapped */ 339 goto out_unlock; 340 341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 342 343 down_read(&ubi->fm_sem); 344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 345 up_read(&ubi->fm_sem); 346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); 347 348 out_unlock: 349 leb_write_unlock(ubi, vol_id, lnum); 350 return err; 351 } 352 353 /** 354 * ubi_eba_read_leb - read data. 355 * @ubi: UBI device description object 356 * @vol: volume description object 357 * @lnum: logical eraseblock number 358 * @buf: buffer to store the read data 359 * @offset: offset from where to read 360 * @len: how many bytes to read 361 * @check: data CRC check flag 362 * 363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 364 * bytes. The @check flag only makes sense for static volumes and forces 365 * eraseblock data CRC checking. 366 * 367 * In case of success this function returns zero. In case of a static volume, 368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 369 * returned for any volume type if an ECC error was detected by the MTD device 370 * driver. Other negative error cored may be returned in case of other errors. 371 */ 372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 373 void *buf, int offset, int len, int check) 374 { 375 int err, pnum, scrub = 0, vol_id = vol->vol_id; 376 struct ubi_vid_hdr *vid_hdr; 377 uint32_t uninitialized_var(crc); 378 379 err = leb_read_lock(ubi, vol_id, lnum); 380 if (err) 381 return err; 382 383 pnum = vol->eba_tbl[lnum]; 384 if (pnum < 0) { 385 /* 386 * The logical eraseblock is not mapped, fill the whole buffer 387 * with 0xFF bytes. The exception is static volumes for which 388 * it is an error to read unmapped logical eraseblocks. 389 */ 390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 391 len, offset, vol_id, lnum); 392 leb_read_unlock(ubi, vol_id, lnum); 393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 394 memset(buf, 0xFF, len); 395 return 0; 396 } 397 398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 399 len, offset, vol_id, lnum, pnum); 400 401 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 402 check = 0; 403 404 retry: 405 if (check) { 406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 407 if (!vid_hdr) { 408 err = -ENOMEM; 409 goto out_unlock; 410 } 411 412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 413 if (err && err != UBI_IO_BITFLIPS) { 414 if (err > 0) { 415 /* 416 * The header is either absent or corrupted. 417 * The former case means there is a bug - 418 * switch to read-only mode just in case. 419 * The latter case means a real corruption - we 420 * may try to recover data. FIXME: but this is 421 * not implemented. 422 */ 423 if (err == UBI_IO_BAD_HDR_EBADMSG || 424 err == UBI_IO_BAD_HDR) { 425 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", 426 pnum, vol_id, lnum); 427 err = -EBADMSG; 428 } else 429 err = -EINVAL; 430 ubi_ro_mode(ubi); 431 } 432 goto out_free; 433 } else if (err == UBI_IO_BITFLIPS) 434 scrub = 1; 435 436 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); 437 ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); 438 439 crc = be32_to_cpu(vid_hdr->data_crc); 440 ubi_free_vid_hdr(ubi, vid_hdr); 441 } 442 443 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 444 if (err) { 445 if (err == UBI_IO_BITFLIPS) 446 scrub = 1; 447 else if (mtd_is_eccerr(err)) { 448 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 449 goto out_unlock; 450 scrub = 1; 451 if (!check) { 452 ubi_msg(ubi, "force data checking"); 453 check = 1; 454 goto retry; 455 } 456 } else 457 goto out_unlock; 458 } 459 460 if (check) { 461 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); 462 if (crc1 != crc) { 463 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", 464 crc1, crc); 465 err = -EBADMSG; 466 goto out_unlock; 467 } 468 } 469 470 if (scrub) 471 err = ubi_wl_scrub_peb(ubi, pnum); 472 473 leb_read_unlock(ubi, vol_id, lnum); 474 return err; 475 476 out_free: 477 ubi_free_vid_hdr(ubi, vid_hdr); 478 out_unlock: 479 leb_read_unlock(ubi, vol_id, lnum); 480 return err; 481 } 482 483 /** 484 * ubi_eba_read_leb_sg - read data into a scatter gather list. 485 * @ubi: UBI device description object 486 * @vol: volume description object 487 * @lnum: logical eraseblock number 488 * @sgl: UBI scatter gather list to store the read data 489 * @offset: offset from where to read 490 * @len: how many bytes to read 491 * @check: data CRC check flag 492 * 493 * This function works exactly like ubi_eba_read_leb(). But instead of 494 * storing the read data into a buffer it writes to an UBI scatter gather 495 * list. 496 */ 497 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, 498 struct ubi_sgl *sgl, int lnum, int offset, int len, 499 int check) 500 { 501 int to_read; 502 int ret; 503 struct scatterlist *sg; 504 505 for (;;) { 506 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); 507 sg = &sgl->sg[sgl->list_pos]; 508 if (len < sg->length - sgl->page_pos) 509 to_read = len; 510 else 511 to_read = sg->length - sgl->page_pos; 512 513 ret = ubi_eba_read_leb(ubi, vol, lnum, 514 sg_virt(sg) + sgl->page_pos, offset, 515 to_read, check); 516 if (ret < 0) 517 return ret; 518 519 offset += to_read; 520 len -= to_read; 521 if (!len) { 522 sgl->page_pos += to_read; 523 if (sgl->page_pos == sg->length) { 524 sgl->list_pos++; 525 sgl->page_pos = 0; 526 } 527 528 break; 529 } 530 531 sgl->list_pos++; 532 sgl->page_pos = 0; 533 } 534 535 return ret; 536 } 537 538 /** 539 * recover_peb - recover from write failure. 540 * @ubi: UBI device description object 541 * @pnum: the physical eraseblock to recover 542 * @vol_id: volume ID 543 * @lnum: logical eraseblock number 544 * @buf: data which was not written because of the write failure 545 * @offset: offset of the failed write 546 * @len: how many bytes should have been written 547 * 548 * This function is called in case of a write failure and moves all good data 549 * from the potentially bad physical eraseblock to a good physical eraseblock. 550 * This function also writes the data which was not written due to the failure. 551 * Returns new physical eraseblock number in case of success, and a negative 552 * error code in case of failure. 553 */ 554 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 555 const void *buf, int offset, int len) 556 { 557 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 558 struct ubi_volume *vol = ubi->volumes[idx]; 559 struct ubi_vid_hdr *vid_hdr; 560 561 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 562 if (!vid_hdr) 563 return -ENOMEM; 564 565 retry: 566 new_pnum = ubi_wl_get_peb(ubi); 567 if (new_pnum < 0) { 568 ubi_free_vid_hdr(ubi, vid_hdr); 569 return new_pnum; 570 } 571 572 ubi_msg(ubi, "recover PEB %d, move data to PEB %d", 573 pnum, new_pnum); 574 575 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 576 if (err && err != UBI_IO_BITFLIPS) { 577 if (err > 0) 578 err = -EIO; 579 goto out_put; 580 } 581 582 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 583 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 584 if (err) 585 goto write_error; 586 587 data_size = offset + len; 588 mutex_lock(&ubi->buf_mutex); 589 memset(ubi->peb_buf + offset, 0xFF, len); 590 591 /* Read everything before the area where the write failure happened */ 592 if (offset > 0) { 593 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); 594 if (err && err != UBI_IO_BITFLIPS) 595 goto out_unlock; 596 } 597 598 memcpy(ubi->peb_buf + offset, buf, len); 599 600 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); 601 if (err) { 602 mutex_unlock(&ubi->buf_mutex); 603 goto write_error; 604 } 605 606 mutex_unlock(&ubi->buf_mutex); 607 ubi_free_vid_hdr(ubi, vid_hdr); 608 609 down_read(&ubi->fm_sem); 610 vol->eba_tbl[lnum] = new_pnum; 611 up_read(&ubi->fm_sem); 612 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 613 614 ubi_msg(ubi, "data was successfully recovered"); 615 return 0; 616 617 out_unlock: 618 mutex_unlock(&ubi->buf_mutex); 619 out_put: 620 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 621 ubi_free_vid_hdr(ubi, vid_hdr); 622 return err; 623 624 write_error: 625 /* 626 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 627 * get another one. 628 */ 629 ubi_warn(ubi, "failed to write to PEB %d", new_pnum); 630 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 631 if (++tries > UBI_IO_RETRIES) { 632 ubi_free_vid_hdr(ubi, vid_hdr); 633 return err; 634 } 635 ubi_msg(ubi, "try again"); 636 goto retry; 637 } 638 639 /** 640 * ubi_eba_write_leb - write data to dynamic volume. 641 * @ubi: UBI device description object 642 * @vol: volume description object 643 * @lnum: logical eraseblock number 644 * @buf: the data to write 645 * @offset: offset within the logical eraseblock where to write 646 * @len: how many bytes to write 647 * 648 * This function writes data to logical eraseblock @lnum of a dynamic volume 649 * @vol. Returns zero in case of success and a negative error code in case 650 * of failure. In case of error, it is possible that something was still 651 * written to the flash media, but may be some garbage. 652 */ 653 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 654 const void *buf, int offset, int len) 655 { 656 int err, pnum, tries = 0, vol_id = vol->vol_id; 657 struct ubi_vid_hdr *vid_hdr; 658 659 if (ubi->ro_mode) 660 return -EROFS; 661 662 err = leb_write_lock(ubi, vol_id, lnum); 663 if (err) 664 return err; 665 666 pnum = vol->eba_tbl[lnum]; 667 if (pnum >= 0) { 668 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 669 len, offset, vol_id, lnum, pnum); 670 671 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 672 if (err) { 673 ubi_warn(ubi, "failed to write data to PEB %d", pnum); 674 if (err == -EIO && ubi->bad_allowed) 675 err = recover_peb(ubi, pnum, vol_id, lnum, buf, 676 offset, len); 677 if (err) 678 ubi_ro_mode(ubi); 679 } 680 leb_write_unlock(ubi, vol_id, lnum); 681 return err; 682 } 683 684 /* 685 * The logical eraseblock is not mapped. We have to get a free physical 686 * eraseblock and write the volume identifier header there first. 687 */ 688 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 689 if (!vid_hdr) { 690 leb_write_unlock(ubi, vol_id, lnum); 691 return -ENOMEM; 692 } 693 694 vid_hdr->vol_type = UBI_VID_DYNAMIC; 695 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 696 vid_hdr->vol_id = cpu_to_be32(vol_id); 697 vid_hdr->lnum = cpu_to_be32(lnum); 698 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 699 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 700 701 retry: 702 pnum = ubi_wl_get_peb(ubi); 703 if (pnum < 0) { 704 ubi_free_vid_hdr(ubi, vid_hdr); 705 leb_write_unlock(ubi, vol_id, lnum); 706 return pnum; 707 } 708 709 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 710 len, offset, vol_id, lnum, pnum); 711 712 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 713 if (err) { 714 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 715 vol_id, lnum, pnum); 716 goto write_error; 717 } 718 719 if (len) { 720 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 721 if (err) { 722 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", 723 len, offset, vol_id, lnum, pnum); 724 goto write_error; 725 } 726 } 727 728 down_read(&ubi->fm_sem); 729 vol->eba_tbl[lnum] = pnum; 730 up_read(&ubi->fm_sem); 731 732 leb_write_unlock(ubi, vol_id, lnum); 733 ubi_free_vid_hdr(ubi, vid_hdr); 734 return 0; 735 736 write_error: 737 if (err != -EIO || !ubi->bad_allowed) { 738 ubi_ro_mode(ubi); 739 leb_write_unlock(ubi, vol_id, lnum); 740 ubi_free_vid_hdr(ubi, vid_hdr); 741 return err; 742 } 743 744 /* 745 * Fortunately, this is the first write operation to this physical 746 * eraseblock, so just put it and request a new one. We assume that if 747 * this physical eraseblock went bad, the erase code will handle that. 748 */ 749 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 750 if (err || ++tries > UBI_IO_RETRIES) { 751 ubi_ro_mode(ubi); 752 leb_write_unlock(ubi, vol_id, lnum); 753 ubi_free_vid_hdr(ubi, vid_hdr); 754 return err; 755 } 756 757 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 758 ubi_msg(ubi, "try another PEB"); 759 goto retry; 760 } 761 762 /** 763 * ubi_eba_write_leb_st - write data to static volume. 764 * @ubi: UBI device description object 765 * @vol: volume description object 766 * @lnum: logical eraseblock number 767 * @buf: data to write 768 * @len: how many bytes to write 769 * @used_ebs: how many logical eraseblocks will this volume contain 770 * 771 * This function writes data to logical eraseblock @lnum of static volume 772 * @vol. The @used_ebs argument should contain total number of logical 773 * eraseblock in this static volume. 774 * 775 * When writing to the last logical eraseblock, the @len argument doesn't have 776 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 777 * to the real data size, although the @buf buffer has to contain the 778 * alignment. In all other cases, @len has to be aligned. 779 * 780 * It is prohibited to write more than once to logical eraseblocks of static 781 * volumes. This function returns zero in case of success and a negative error 782 * code in case of failure. 783 */ 784 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, 785 int lnum, const void *buf, int len, int used_ebs) 786 { 787 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; 788 struct ubi_vid_hdr *vid_hdr; 789 uint32_t crc; 790 791 if (ubi->ro_mode) 792 return -EROFS; 793 794 if (lnum == used_ebs - 1) 795 /* If this is the last LEB @len may be unaligned */ 796 len = ALIGN(data_size, ubi->min_io_size); 797 else 798 ubi_assert(!(len & (ubi->min_io_size - 1))); 799 800 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 801 if (!vid_hdr) 802 return -ENOMEM; 803 804 err = leb_write_lock(ubi, vol_id, lnum); 805 if (err) { 806 ubi_free_vid_hdr(ubi, vid_hdr); 807 return err; 808 } 809 810 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 811 vid_hdr->vol_id = cpu_to_be32(vol_id); 812 vid_hdr->lnum = cpu_to_be32(lnum); 813 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 814 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 815 816 crc = crc32(UBI_CRC32_INIT, buf, data_size); 817 vid_hdr->vol_type = UBI_VID_STATIC; 818 vid_hdr->data_size = cpu_to_be32(data_size); 819 vid_hdr->used_ebs = cpu_to_be32(used_ebs); 820 vid_hdr->data_crc = cpu_to_be32(crc); 821 822 retry: 823 pnum = ubi_wl_get_peb(ubi); 824 if (pnum < 0) { 825 ubi_free_vid_hdr(ubi, vid_hdr); 826 leb_write_unlock(ubi, vol_id, lnum); 827 return pnum; 828 } 829 830 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 831 len, vol_id, lnum, pnum, used_ebs); 832 833 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 834 if (err) { 835 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 836 vol_id, lnum, pnum); 837 goto write_error; 838 } 839 840 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 841 if (err) { 842 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", 843 len, pnum); 844 goto write_error; 845 } 846 847 ubi_assert(vol->eba_tbl[lnum] < 0); 848 down_read(&ubi->fm_sem); 849 vol->eba_tbl[lnum] = pnum; 850 up_read(&ubi->fm_sem); 851 852 leb_write_unlock(ubi, vol_id, lnum); 853 ubi_free_vid_hdr(ubi, vid_hdr); 854 return 0; 855 856 write_error: 857 if (err != -EIO || !ubi->bad_allowed) { 858 /* 859 * This flash device does not admit of bad eraseblocks or 860 * something nasty and unexpected happened. Switch to read-only 861 * mode just in case. 862 */ 863 ubi_ro_mode(ubi); 864 leb_write_unlock(ubi, vol_id, lnum); 865 ubi_free_vid_hdr(ubi, vid_hdr); 866 return err; 867 } 868 869 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 870 if (err || ++tries > UBI_IO_RETRIES) { 871 ubi_ro_mode(ubi); 872 leb_write_unlock(ubi, vol_id, lnum); 873 ubi_free_vid_hdr(ubi, vid_hdr); 874 return err; 875 } 876 877 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 878 ubi_msg(ubi, "try another PEB"); 879 goto retry; 880 } 881 882 /* 883 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 884 * @ubi: UBI device description object 885 * @vol: volume description object 886 * @lnum: logical eraseblock number 887 * @buf: data to write 888 * @len: how many bytes to write 889 * 890 * This function changes the contents of a logical eraseblock atomically. @buf 891 * has to contain new logical eraseblock data, and @len - the length of the 892 * data, which has to be aligned. This function guarantees that in case of an 893 * unclean reboot the old contents is preserved. Returns zero in case of 894 * success and a negative error code in case of failure. 895 * 896 * UBI reserves one LEB for the "atomic LEB change" operation, so only one 897 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. 898 */ 899 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, 900 int lnum, const void *buf, int len) 901 { 902 int err, pnum, tries = 0, vol_id = vol->vol_id; 903 struct ubi_vid_hdr *vid_hdr; 904 uint32_t crc; 905 906 if (ubi->ro_mode) 907 return -EROFS; 908 909 if (len == 0) { 910 /* 911 * Special case when data length is zero. In this case the LEB 912 * has to be unmapped and mapped somewhere else. 913 */ 914 err = ubi_eba_unmap_leb(ubi, vol, lnum); 915 if (err) 916 return err; 917 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); 918 } 919 920 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 921 if (!vid_hdr) 922 return -ENOMEM; 923 924 mutex_lock(&ubi->alc_mutex); 925 err = leb_write_lock(ubi, vol_id, lnum); 926 if (err) 927 goto out_mutex; 928 929 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 930 vid_hdr->vol_id = cpu_to_be32(vol_id); 931 vid_hdr->lnum = cpu_to_be32(lnum); 932 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 933 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 934 935 crc = crc32(UBI_CRC32_INIT, buf, len); 936 vid_hdr->vol_type = UBI_VID_DYNAMIC; 937 vid_hdr->data_size = cpu_to_be32(len); 938 vid_hdr->copy_flag = 1; 939 vid_hdr->data_crc = cpu_to_be32(crc); 940 941 retry: 942 pnum = ubi_wl_get_peb(ubi); 943 if (pnum < 0) { 944 err = pnum; 945 goto out_leb_unlock; 946 } 947 948 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 949 vol_id, lnum, vol->eba_tbl[lnum], pnum); 950 951 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 952 if (err) { 953 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 954 vol_id, lnum, pnum); 955 goto write_error; 956 } 957 958 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 959 if (err) { 960 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", 961 len, pnum); 962 goto write_error; 963 } 964 965 if (vol->eba_tbl[lnum] >= 0) { 966 err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0); 967 if (err) 968 goto out_leb_unlock; 969 } 970 971 down_read(&ubi->fm_sem); 972 vol->eba_tbl[lnum] = pnum; 973 up_read(&ubi->fm_sem); 974 975 out_leb_unlock: 976 leb_write_unlock(ubi, vol_id, lnum); 977 out_mutex: 978 mutex_unlock(&ubi->alc_mutex); 979 ubi_free_vid_hdr(ubi, vid_hdr); 980 return err; 981 982 write_error: 983 if (err != -EIO || !ubi->bad_allowed) { 984 /* 985 * This flash device does not admit of bad eraseblocks or 986 * something nasty and unexpected happened. Switch to read-only 987 * mode just in case. 988 */ 989 ubi_ro_mode(ubi); 990 goto out_leb_unlock; 991 } 992 993 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 994 if (err || ++tries > UBI_IO_RETRIES) { 995 ubi_ro_mode(ubi); 996 goto out_leb_unlock; 997 } 998 999 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 1000 ubi_msg(ubi, "try another PEB"); 1001 goto retry; 1002 } 1003 1004 /** 1005 * is_error_sane - check whether a read error is sane. 1006 * @err: code of the error happened during reading 1007 * 1008 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we 1009 * cannot read data from the target PEB (an error @err happened). If the error 1010 * code is sane, then we treat this error as non-fatal. Otherwise the error is 1011 * fatal and UBI will be switched to R/O mode later. 1012 * 1013 * The idea is that we try not to switch to R/O mode if the read error is 1014 * something which suggests there was a real read problem. E.g., %-EIO. Or a 1015 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O 1016 * mode, simply because we do not know what happened at the MTD level, and we 1017 * cannot handle this. E.g., the underlying driver may have become crazy, and 1018 * it is safer to switch to R/O mode to preserve the data. 1019 * 1020 * And bear in mind, this is about reading from the target PEB, i.e. the PEB 1021 * which we have just written. 1022 */ 1023 static int is_error_sane(int err) 1024 { 1025 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || 1026 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) 1027 return 0; 1028 return 1; 1029 } 1030 1031 /** 1032 * ubi_eba_copy_leb - copy logical eraseblock. 1033 * @ubi: UBI device description object 1034 * @from: physical eraseblock number from where to copy 1035 * @to: physical eraseblock number where to copy 1036 * @vid_hdr: VID header of the @from physical eraseblock 1037 * 1038 * This function copies logical eraseblock from physical eraseblock @from to 1039 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 1040 * function. Returns: 1041 * o %0 in case of success; 1042 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; 1043 * o a negative error code in case of failure. 1044 */ 1045 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 1046 struct ubi_vid_hdr *vid_hdr) 1047 { 1048 int err, vol_id, lnum, data_size, aldata_size, idx; 1049 struct ubi_volume *vol; 1050 uint32_t crc; 1051 1052 vol_id = be32_to_cpu(vid_hdr->vol_id); 1053 lnum = be32_to_cpu(vid_hdr->lnum); 1054 1055 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 1056 1057 if (vid_hdr->vol_type == UBI_VID_STATIC) { 1058 data_size = be32_to_cpu(vid_hdr->data_size); 1059 aldata_size = ALIGN(data_size, ubi->min_io_size); 1060 } else 1061 data_size = aldata_size = 1062 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); 1063 1064 idx = vol_id2idx(ubi, vol_id); 1065 spin_lock(&ubi->volumes_lock); 1066 /* 1067 * Note, we may race with volume deletion, which means that the volume 1068 * this logical eraseblock belongs to might be being deleted. Since the 1069 * volume deletion un-maps all the volume's logical eraseblocks, it will 1070 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. 1071 */ 1072 vol = ubi->volumes[idx]; 1073 spin_unlock(&ubi->volumes_lock); 1074 if (!vol) { 1075 /* No need to do further work, cancel */ 1076 dbg_wl("volume %d is being removed, cancel", vol_id); 1077 return MOVE_CANCEL_RACE; 1078 } 1079 1080 /* 1081 * We do not want anybody to write to this logical eraseblock while we 1082 * are moving it, so lock it. 1083 * 1084 * Note, we are using non-waiting locking here, because we cannot sleep 1085 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is 1086 * unmapping the LEB which is mapped to the PEB we are going to move 1087 * (@from). This task locks the LEB and goes sleep in the 1088 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are 1089 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the 1090 * LEB is already locked, we just do not move it and return 1091 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because 1092 * we do not know the reasons of the contention - it may be just a 1093 * normal I/O on this LEB, so we want to re-try. 1094 */ 1095 err = leb_write_trylock(ubi, vol_id, lnum); 1096 if (err) { 1097 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); 1098 return MOVE_RETRY; 1099 } 1100 1101 /* 1102 * The LEB might have been put meanwhile, and the task which put it is 1103 * probably waiting on @ubi->move_mutex. No need to continue the work, 1104 * cancel it. 1105 */ 1106 if (vol->eba_tbl[lnum] != from) { 1107 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", 1108 vol_id, lnum, from, vol->eba_tbl[lnum]); 1109 err = MOVE_CANCEL_RACE; 1110 goto out_unlock_leb; 1111 } 1112 1113 /* 1114 * OK, now the LEB is locked and we can safely start moving it. Since 1115 * this function utilizes the @ubi->peb_buf buffer which is shared 1116 * with some other functions - we lock the buffer by taking the 1117 * @ubi->buf_mutex. 1118 */ 1119 mutex_lock(&ubi->buf_mutex); 1120 dbg_wl("read %d bytes of data", aldata_size); 1121 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); 1122 if (err && err != UBI_IO_BITFLIPS) { 1123 ubi_warn(ubi, "error %d while reading data from PEB %d", 1124 err, from); 1125 err = MOVE_SOURCE_RD_ERR; 1126 goto out_unlock_buf; 1127 } 1128 1129 /* 1130 * Now we have got to calculate how much data we have to copy. In 1131 * case of a static volume it is fairly easy - the VID header contains 1132 * the data size. In case of a dynamic volume it is more difficult - we 1133 * have to read the contents, cut 0xFF bytes from the end and copy only 1134 * the first part. We must do this to avoid writing 0xFF bytes as it 1135 * may have some side-effects. And not only this. It is important not 1136 * to include those 0xFFs to CRC because later the they may be filled 1137 * by data. 1138 */ 1139 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1140 aldata_size = data_size = 1141 ubi_calc_data_len(ubi, ubi->peb_buf, data_size); 1142 1143 cond_resched(); 1144 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); 1145 cond_resched(); 1146 1147 /* 1148 * It may turn out to be that the whole @from physical eraseblock 1149 * contains only 0xFF bytes. Then we have to only write the VID header 1150 * and do not write any data. This also means we should not set 1151 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1152 */ 1153 if (data_size > 0) { 1154 vid_hdr->copy_flag = 1; 1155 vid_hdr->data_size = cpu_to_be32(data_size); 1156 vid_hdr->data_crc = cpu_to_be32(crc); 1157 } 1158 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 1159 1160 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1161 if (err) { 1162 if (err == -EIO) 1163 err = MOVE_TARGET_WR_ERR; 1164 goto out_unlock_buf; 1165 } 1166 1167 cond_resched(); 1168 1169 /* Read the VID header back and check if it was written correctly */ 1170 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1171 if (err) { 1172 if (err != UBI_IO_BITFLIPS) { 1173 ubi_warn(ubi, "error %d while reading VID header back from PEB %d", 1174 err, to); 1175 if (is_error_sane(err)) 1176 err = MOVE_TARGET_RD_ERR; 1177 } else 1178 err = MOVE_TARGET_BITFLIPS; 1179 goto out_unlock_buf; 1180 } 1181 1182 if (data_size > 0) { 1183 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); 1184 if (err) { 1185 if (err == -EIO) 1186 err = MOVE_TARGET_WR_ERR; 1187 goto out_unlock_buf; 1188 } 1189 1190 cond_resched(); 1191 1192 /* 1193 * We've written the data and are going to read it back to make 1194 * sure it was written correctly. 1195 */ 1196 memset(ubi->peb_buf, 0xFF, aldata_size); 1197 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size); 1198 if (err) { 1199 if (err != UBI_IO_BITFLIPS) { 1200 ubi_warn(ubi, "error %d while reading data back from PEB %d", 1201 err, to); 1202 if (is_error_sane(err)) 1203 err = MOVE_TARGET_RD_ERR; 1204 } else 1205 err = MOVE_TARGET_BITFLIPS; 1206 goto out_unlock_buf; 1207 } 1208 1209 cond_resched(); 1210 1211 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) { 1212 ubi_warn(ubi, "read data back from PEB %d and it is different", 1213 to); 1214 err = -EINVAL; 1215 goto out_unlock_buf; 1216 } 1217 } 1218 1219 ubi_assert(vol->eba_tbl[lnum] == from); 1220 down_read(&ubi->fm_sem); 1221 vol->eba_tbl[lnum] = to; 1222 up_read(&ubi->fm_sem); 1223 1224 out_unlock_buf: 1225 mutex_unlock(&ubi->buf_mutex); 1226 out_unlock_leb: 1227 leb_write_unlock(ubi, vol_id, lnum); 1228 return err; 1229 } 1230 1231 /** 1232 * print_rsvd_warning - warn about not having enough reserved PEBs. 1233 * @ubi: UBI device description object 1234 * 1235 * This is a helper function for 'ubi_eba_init()' which is called when UBI 1236 * cannot reserve enough PEBs for bad block handling. This function makes a 1237 * decision whether we have to print a warning or not. The algorithm is as 1238 * follows: 1239 * o if this is a new UBI image, then just print the warning 1240 * o if this is an UBI image which has already been used for some time, print 1241 * a warning only if we can reserve less than 10% of the expected amount of 1242 * the reserved PEB. 1243 * 1244 * The idea is that when UBI is used, PEBs become bad, and the reserved pool 1245 * of PEBs becomes smaller, which is normal and we do not want to scare users 1246 * with a warning every time they attach the MTD device. This was an issue 1247 * reported by real users. 1248 */ 1249 static void print_rsvd_warning(struct ubi_device *ubi, 1250 struct ubi_attach_info *ai) 1251 { 1252 /* 1253 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably 1254 * large number to distinguish between newly flashed and used images. 1255 */ 1256 if (ai->max_sqnum > (1 << 18)) { 1257 int min = ubi->beb_rsvd_level / 10; 1258 1259 if (!min) 1260 min = 1; 1261 if (ubi->beb_rsvd_pebs > min) 1262 return; 1263 } 1264 1265 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", 1266 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1267 if (ubi->corr_peb_count) 1268 ubi_warn(ubi, "%d PEBs are corrupted and not used", 1269 ubi->corr_peb_count); 1270 } 1271 1272 /** 1273 * self_check_eba - run a self check on the EBA table constructed by fastmap. 1274 * @ubi: UBI device description object 1275 * @ai_fastmap: UBI attach info object created by fastmap 1276 * @ai_scan: UBI attach info object created by scanning 1277 * 1278 * Returns < 0 in case of an internal error, 0 otherwise. 1279 * If a bad EBA table entry was found it will be printed out and 1280 * ubi_assert() triggers. 1281 */ 1282 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, 1283 struct ubi_attach_info *ai_scan) 1284 { 1285 int i, j, num_volumes, ret = 0; 1286 int **scan_eba, **fm_eba; 1287 struct ubi_ainf_volume *av; 1288 struct ubi_volume *vol; 1289 struct ubi_ainf_peb *aeb; 1290 struct rb_node *rb; 1291 1292 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1293 1294 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); 1295 if (!scan_eba) 1296 return -ENOMEM; 1297 1298 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); 1299 if (!fm_eba) { 1300 kfree(scan_eba); 1301 return -ENOMEM; 1302 } 1303 1304 for (i = 0; i < num_volumes; i++) { 1305 vol = ubi->volumes[i]; 1306 if (!vol) 1307 continue; 1308 1309 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), 1310 GFP_KERNEL); 1311 if (!scan_eba[i]) { 1312 ret = -ENOMEM; 1313 goto out_free; 1314 } 1315 1316 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), 1317 GFP_KERNEL); 1318 if (!fm_eba[i]) { 1319 ret = -ENOMEM; 1320 goto out_free; 1321 } 1322 1323 for (j = 0; j < vol->reserved_pebs; j++) 1324 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; 1325 1326 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); 1327 if (!av) 1328 continue; 1329 1330 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1331 scan_eba[i][aeb->lnum] = aeb->pnum; 1332 1333 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); 1334 if (!av) 1335 continue; 1336 1337 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1338 fm_eba[i][aeb->lnum] = aeb->pnum; 1339 1340 for (j = 0; j < vol->reserved_pebs; j++) { 1341 if (scan_eba[i][j] != fm_eba[i][j]) { 1342 if (scan_eba[i][j] == UBI_LEB_UNMAPPED || 1343 fm_eba[i][j] == UBI_LEB_UNMAPPED) 1344 continue; 1345 1346 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", 1347 vol->vol_id, i, fm_eba[i][j], 1348 scan_eba[i][j]); 1349 ubi_assert(0); 1350 } 1351 } 1352 } 1353 1354 out_free: 1355 for (i = 0; i < num_volumes; i++) { 1356 if (!ubi->volumes[i]) 1357 continue; 1358 1359 kfree(scan_eba[i]); 1360 kfree(fm_eba[i]); 1361 } 1362 1363 kfree(scan_eba); 1364 kfree(fm_eba); 1365 return ret; 1366 } 1367 1368 /** 1369 * ubi_eba_init - initialize the EBA sub-system using attaching information. 1370 * @ubi: UBI device description object 1371 * @ai: attaching information 1372 * 1373 * This function returns zero in case of success and a negative error code in 1374 * case of failure. 1375 */ 1376 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1377 { 1378 int i, j, err, num_volumes; 1379 struct ubi_ainf_volume *av; 1380 struct ubi_volume *vol; 1381 struct ubi_ainf_peb *aeb; 1382 struct rb_node *rb; 1383 1384 dbg_eba("initialize EBA sub-system"); 1385 1386 spin_lock_init(&ubi->ltree_lock); 1387 mutex_init(&ubi->alc_mutex); 1388 ubi->ltree = RB_ROOT; 1389 1390 ubi->global_sqnum = ai->max_sqnum + 1; 1391 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1392 1393 for (i = 0; i < num_volumes; i++) { 1394 vol = ubi->volumes[i]; 1395 if (!vol) 1396 continue; 1397 1398 cond_resched(); 1399 1400 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1401 GFP_KERNEL); 1402 if (!vol->eba_tbl) { 1403 err = -ENOMEM; 1404 goto out_free; 1405 } 1406 1407 for (j = 0; j < vol->reserved_pebs; j++) 1408 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1409 1410 av = ubi_find_av(ai, idx2vol_id(ubi, i)); 1411 if (!av) 1412 continue; 1413 1414 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 1415 if (aeb->lnum >= vol->reserved_pebs) 1416 /* 1417 * This may happen in case of an unclean reboot 1418 * during re-size. 1419 */ 1420 ubi_move_aeb_to_list(av, aeb, &ai->erase); 1421 vol->eba_tbl[aeb->lnum] = aeb->pnum; 1422 } 1423 } 1424 1425 if (ubi->avail_pebs < EBA_RESERVED_PEBS) { 1426 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1427 ubi->avail_pebs, EBA_RESERVED_PEBS); 1428 if (ubi->corr_peb_count) 1429 ubi_err(ubi, "%d PEBs are corrupted and not used", 1430 ubi->corr_peb_count); 1431 err = -ENOSPC; 1432 goto out_free; 1433 } 1434 ubi->avail_pebs -= EBA_RESERVED_PEBS; 1435 ubi->rsvd_pebs += EBA_RESERVED_PEBS; 1436 1437 if (ubi->bad_allowed) { 1438 ubi_calculate_reserved(ubi); 1439 1440 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1441 /* No enough free physical eraseblocks */ 1442 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1443 print_rsvd_warning(ubi, ai); 1444 } else 1445 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1446 1447 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1448 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1449 } 1450 1451 dbg_eba("EBA sub-system is initialized"); 1452 return 0; 1453 1454 out_free: 1455 for (i = 0; i < num_volumes; i++) { 1456 if (!ubi->volumes[i]) 1457 continue; 1458 kfree(ubi->volumes[i]->eba_tbl); 1459 ubi->volumes[i]->eba_tbl = NULL; 1460 } 1461 return err; 1462 } 1463