1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) sub-system. 23 * 24 * This sub-system is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA sub-system implements per-logical eraseblock locking. Before 31 * accessing a logical eraseblock it is locked for reading or writing. The 32 * per-logical eraseblock locking is implemented by means of the lock tree. The 33 * lock tree is an RB-tree which refers all the currently locked logical 34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. 35 * They are indexed by (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /* Number of physical eraseblocks reserved for atomic LEB change operation */ 50 #define EBA_RESERVED_PEBS 1 51 52 /** 53 * next_sqnum - get next sequence number. 54 * @ubi: UBI device description object 55 * 56 * This function returns next sequence number to use, which is just the current 57 * global sequence counter value. It also increases the global sequence 58 * counter. 59 */ 60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi) 61 { 62 unsigned long long sqnum; 63 64 spin_lock(&ubi->ltree_lock); 65 sqnum = ubi->global_sqnum++; 66 spin_unlock(&ubi->ltree_lock); 67 68 return sqnum; 69 } 70 71 /** 72 * ubi_get_compat - get compatibility flags of a volume. 73 * @ubi: UBI device description object 74 * @vol_id: volume ID 75 * 76 * This function returns compatibility flags for an internal volume. User 77 * volumes have no compatibility flags, so %0 is returned. 78 */ 79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 80 { 81 if (vol_id == UBI_LAYOUT_VOLUME_ID) 82 return UBI_LAYOUT_VOLUME_COMPAT; 83 return 0; 84 } 85 86 /** 87 * ltree_lookup - look up the lock tree. 88 * @ubi: UBI device description object 89 * @vol_id: volume ID 90 * @lnum: logical eraseblock number 91 * 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry 93 * object if the logical eraseblock is locked and %NULL if it is not. 94 * @ubi->ltree_lock has to be locked. 95 */ 96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 97 int lnum) 98 { 99 struct rb_node *p; 100 101 p = ubi->ltree.rb_node; 102 while (p) { 103 struct ubi_ltree_entry *le; 104 105 le = rb_entry(p, struct ubi_ltree_entry, rb); 106 107 if (vol_id < le->vol_id) 108 p = p->rb_left; 109 else if (vol_id > le->vol_id) 110 p = p->rb_right; 111 else { 112 if (lnum < le->lnum) 113 p = p->rb_left; 114 else if (lnum > le->lnum) 115 p = p->rb_right; 116 else 117 return le; 118 } 119 } 120 121 return NULL; 122 } 123 124 /** 125 * ltree_add_entry - add new entry to the lock tree. 126 * @ubi: UBI device description object 127 * @vol_id: volume ID 128 * @lnum: logical eraseblock number 129 * 130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 131 * lock tree. If such entry is already there, its usage counter is increased. 132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 133 * failed. 134 */ 135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, 136 int vol_id, int lnum) 137 { 138 struct ubi_ltree_entry *le, *le1, *le_free; 139 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); 141 if (!le) 142 return ERR_PTR(-ENOMEM); 143 144 le->users = 0; 145 init_rwsem(&le->mutex); 146 le->vol_id = vol_id; 147 le->lnum = lnum; 148 149 spin_lock(&ubi->ltree_lock); 150 le1 = ltree_lookup(ubi, vol_id, lnum); 151 152 if (le1) { 153 /* 154 * This logical eraseblock is already locked. The newly 155 * allocated lock entry is not needed. 156 */ 157 le_free = le; 158 le = le1; 159 } else { 160 struct rb_node **p, *parent = NULL; 161 162 /* 163 * No lock entry, add the newly allocated one to the 164 * @ubi->ltree RB-tree. 165 */ 166 le_free = NULL; 167 168 p = &ubi->ltree.rb_node; 169 while (*p) { 170 parent = *p; 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb); 172 173 if (vol_id < le1->vol_id) 174 p = &(*p)->rb_left; 175 else if (vol_id > le1->vol_id) 176 p = &(*p)->rb_right; 177 else { 178 ubi_assert(lnum != le1->lnum); 179 if (lnum < le1->lnum) 180 p = &(*p)->rb_left; 181 else 182 p = &(*p)->rb_right; 183 } 184 } 185 186 rb_link_node(&le->rb, parent, p); 187 rb_insert_color(&le->rb, &ubi->ltree); 188 } 189 le->users += 1; 190 spin_unlock(&ubi->ltree_lock); 191 192 kfree(le_free); 193 return le; 194 } 195 196 /** 197 * leb_read_lock - lock logical eraseblock for reading. 198 * @ubi: UBI device description object 199 * @vol_id: volume ID 200 * @lnum: logical eraseblock number 201 * 202 * This function locks a logical eraseblock for reading. Returns zero in case 203 * of success and a negative error code in case of failure. 204 */ 205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 206 { 207 struct ubi_ltree_entry *le; 208 209 le = ltree_add_entry(ubi, vol_id, lnum); 210 if (IS_ERR(le)) 211 return PTR_ERR(le); 212 down_read(&le->mutex); 213 return 0; 214 } 215 216 /** 217 * leb_read_unlock - unlock logical eraseblock. 218 * @ubi: UBI device description object 219 * @vol_id: volume ID 220 * @lnum: logical eraseblock number 221 */ 222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 223 { 224 struct ubi_ltree_entry *le; 225 226 spin_lock(&ubi->ltree_lock); 227 le = ltree_lookup(ubi, vol_id, lnum); 228 le->users -= 1; 229 ubi_assert(le->users >= 0); 230 up_read(&le->mutex); 231 if (le->users == 0) { 232 rb_erase(&le->rb, &ubi->ltree); 233 kfree(le); 234 } 235 spin_unlock(&ubi->ltree_lock); 236 } 237 238 /** 239 * leb_write_lock - lock logical eraseblock for writing. 240 * @ubi: UBI device description object 241 * @vol_id: volume ID 242 * @lnum: logical eraseblock number 243 * 244 * This function locks a logical eraseblock for writing. Returns zero in case 245 * of success and a negative error code in case of failure. 246 */ 247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 248 { 249 struct ubi_ltree_entry *le; 250 251 le = ltree_add_entry(ubi, vol_id, lnum); 252 if (IS_ERR(le)) 253 return PTR_ERR(le); 254 down_write(&le->mutex); 255 return 0; 256 } 257 258 /** 259 * leb_write_lock - lock logical eraseblock for writing. 260 * @ubi: UBI device description object 261 * @vol_id: volume ID 262 * @lnum: logical eraseblock number 263 * 264 * This function locks a logical eraseblock for writing if there is no 265 * contention and does nothing if there is contention. Returns %0 in case of 266 * success, %1 in case of contention, and and a negative error code in case of 267 * failure. 268 */ 269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) 270 { 271 struct ubi_ltree_entry *le; 272 273 le = ltree_add_entry(ubi, vol_id, lnum); 274 if (IS_ERR(le)) 275 return PTR_ERR(le); 276 if (down_write_trylock(&le->mutex)) 277 return 0; 278 279 /* Contention, cancel */ 280 spin_lock(&ubi->ltree_lock); 281 le->users -= 1; 282 ubi_assert(le->users >= 0); 283 if (le->users == 0) { 284 rb_erase(&le->rb, &ubi->ltree); 285 kfree(le); 286 } 287 spin_unlock(&ubi->ltree_lock); 288 289 return 1; 290 } 291 292 /** 293 * leb_write_unlock - unlock logical eraseblock. 294 * @ubi: UBI device description object 295 * @vol_id: volume ID 296 * @lnum: logical eraseblock number 297 */ 298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 299 { 300 struct ubi_ltree_entry *le; 301 302 spin_lock(&ubi->ltree_lock); 303 le = ltree_lookup(ubi, vol_id, lnum); 304 le->users -= 1; 305 ubi_assert(le->users >= 0); 306 up_write(&le->mutex); 307 if (le->users == 0) { 308 rb_erase(&le->rb, &ubi->ltree); 309 kfree(le); 310 } 311 spin_unlock(&ubi->ltree_lock); 312 } 313 314 /** 315 * ubi_eba_unmap_leb - un-map logical eraseblock. 316 * @ubi: UBI device description object 317 * @vol: volume description object 318 * @lnum: logical eraseblock number 319 * 320 * This function un-maps logical eraseblock @lnum and schedules corresponding 321 * physical eraseblock for erasure. Returns zero in case of success and a 322 * negative error code in case of failure. 323 */ 324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, 325 int lnum) 326 { 327 int err, pnum, vol_id = vol->vol_id; 328 329 if (ubi->ro_mode) 330 return -EROFS; 331 332 err = leb_write_lock(ubi, vol_id, lnum); 333 if (err) 334 return err; 335 336 pnum = vol->eba_tbl[lnum]; 337 if (pnum < 0) 338 /* This logical eraseblock is already unmapped */ 339 goto out_unlock; 340 341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 342 343 down_read(&ubi->fm_eba_sem); 344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 345 up_read(&ubi->fm_eba_sem); 346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); 347 348 out_unlock: 349 leb_write_unlock(ubi, vol_id, lnum); 350 return err; 351 } 352 353 /** 354 * ubi_eba_read_leb - read data. 355 * @ubi: UBI device description object 356 * @vol: volume description object 357 * @lnum: logical eraseblock number 358 * @buf: buffer to store the read data 359 * @offset: offset from where to read 360 * @len: how many bytes to read 361 * @check: data CRC check flag 362 * 363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 364 * bytes. The @check flag only makes sense for static volumes and forces 365 * eraseblock data CRC checking. 366 * 367 * In case of success this function returns zero. In case of a static volume, 368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 369 * returned for any volume type if an ECC error was detected by the MTD device 370 * driver. Other negative error cored may be returned in case of other errors. 371 */ 372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 373 void *buf, int offset, int len, int check) 374 { 375 int err, pnum, scrub = 0, vol_id = vol->vol_id; 376 struct ubi_vid_hdr *vid_hdr; 377 uint32_t uninitialized_var(crc); 378 379 err = leb_read_lock(ubi, vol_id, lnum); 380 if (err) 381 return err; 382 383 pnum = vol->eba_tbl[lnum]; 384 if (pnum < 0) { 385 /* 386 * The logical eraseblock is not mapped, fill the whole buffer 387 * with 0xFF bytes. The exception is static volumes for which 388 * it is an error to read unmapped logical eraseblocks. 389 */ 390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 391 len, offset, vol_id, lnum); 392 leb_read_unlock(ubi, vol_id, lnum); 393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 394 memset(buf, 0xFF, len); 395 return 0; 396 } 397 398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 399 len, offset, vol_id, lnum, pnum); 400 401 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 402 check = 0; 403 404 retry: 405 if (check) { 406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 407 if (!vid_hdr) { 408 err = -ENOMEM; 409 goto out_unlock; 410 } 411 412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 413 if (err && err != UBI_IO_BITFLIPS) { 414 if (err > 0) { 415 /* 416 * The header is either absent or corrupted. 417 * The former case means there is a bug - 418 * switch to read-only mode just in case. 419 * The latter case means a real corruption - we 420 * may try to recover data. FIXME: but this is 421 * not implemented. 422 */ 423 if (err == UBI_IO_BAD_HDR_EBADMSG || 424 err == UBI_IO_BAD_HDR) { 425 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", 426 pnum, vol_id, lnum); 427 err = -EBADMSG; 428 } else { 429 err = -EINVAL; 430 ubi_ro_mode(ubi); 431 } 432 } 433 goto out_free; 434 } else if (err == UBI_IO_BITFLIPS) 435 scrub = 1; 436 437 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); 438 ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); 439 440 crc = be32_to_cpu(vid_hdr->data_crc); 441 ubi_free_vid_hdr(ubi, vid_hdr); 442 } 443 444 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 445 if (err) { 446 if (err == UBI_IO_BITFLIPS) 447 scrub = 1; 448 else if (mtd_is_eccerr(err)) { 449 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 450 goto out_unlock; 451 scrub = 1; 452 if (!check) { 453 ubi_msg(ubi, "force data checking"); 454 check = 1; 455 goto retry; 456 } 457 } else 458 goto out_unlock; 459 } 460 461 if (check) { 462 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); 463 if (crc1 != crc) { 464 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", 465 crc1, crc); 466 err = -EBADMSG; 467 goto out_unlock; 468 } 469 } 470 471 if (scrub) 472 err = ubi_wl_scrub_peb(ubi, pnum); 473 474 leb_read_unlock(ubi, vol_id, lnum); 475 return err; 476 477 out_free: 478 ubi_free_vid_hdr(ubi, vid_hdr); 479 out_unlock: 480 leb_read_unlock(ubi, vol_id, lnum); 481 return err; 482 } 483 484 /** 485 * ubi_eba_read_leb_sg - read data into a scatter gather list. 486 * @ubi: UBI device description object 487 * @vol: volume description object 488 * @lnum: logical eraseblock number 489 * @sgl: UBI scatter gather list to store the read data 490 * @offset: offset from where to read 491 * @len: how many bytes to read 492 * @check: data CRC check flag 493 * 494 * This function works exactly like ubi_eba_read_leb(). But instead of 495 * storing the read data into a buffer it writes to an UBI scatter gather 496 * list. 497 */ 498 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, 499 struct ubi_sgl *sgl, int lnum, int offset, int len, 500 int check) 501 { 502 int to_read; 503 int ret; 504 struct scatterlist *sg; 505 506 for (;;) { 507 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); 508 sg = &sgl->sg[sgl->list_pos]; 509 if (len < sg->length - sgl->page_pos) 510 to_read = len; 511 else 512 to_read = sg->length - sgl->page_pos; 513 514 ret = ubi_eba_read_leb(ubi, vol, lnum, 515 sg_virt(sg) + sgl->page_pos, offset, 516 to_read, check); 517 if (ret < 0) 518 return ret; 519 520 offset += to_read; 521 len -= to_read; 522 if (!len) { 523 sgl->page_pos += to_read; 524 if (sgl->page_pos == sg->length) { 525 sgl->list_pos++; 526 sgl->page_pos = 0; 527 } 528 529 break; 530 } 531 532 sgl->list_pos++; 533 sgl->page_pos = 0; 534 } 535 536 return ret; 537 } 538 539 /** 540 * recover_peb - recover from write failure. 541 * @ubi: UBI device description object 542 * @pnum: the physical eraseblock to recover 543 * @vol_id: volume ID 544 * @lnum: logical eraseblock number 545 * @buf: data which was not written because of the write failure 546 * @offset: offset of the failed write 547 * @len: how many bytes should have been written 548 * 549 * This function is called in case of a write failure and moves all good data 550 * from the potentially bad physical eraseblock to a good physical eraseblock. 551 * This function also writes the data which was not written due to the failure. 552 * Returns new physical eraseblock number in case of success, and a negative 553 * error code in case of failure. 554 */ 555 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 556 const void *buf, int offset, int len) 557 { 558 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 559 struct ubi_volume *vol = ubi->volumes[idx]; 560 struct ubi_vid_hdr *vid_hdr; 561 562 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 563 if (!vid_hdr) 564 return -ENOMEM; 565 566 retry: 567 new_pnum = ubi_wl_get_peb(ubi); 568 if (new_pnum < 0) { 569 ubi_free_vid_hdr(ubi, vid_hdr); 570 up_read(&ubi->fm_eba_sem); 571 return new_pnum; 572 } 573 574 ubi_msg(ubi, "recover PEB %d, move data to PEB %d", 575 pnum, new_pnum); 576 577 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 578 if (err && err != UBI_IO_BITFLIPS) { 579 if (err > 0) 580 err = -EIO; 581 up_read(&ubi->fm_eba_sem); 582 goto out_put; 583 } 584 585 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 586 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 587 if (err) { 588 up_read(&ubi->fm_eba_sem); 589 goto write_error; 590 } 591 592 data_size = offset + len; 593 mutex_lock(&ubi->buf_mutex); 594 memset(ubi->peb_buf + offset, 0xFF, len); 595 596 /* Read everything before the area where the write failure happened */ 597 if (offset > 0) { 598 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); 599 if (err && err != UBI_IO_BITFLIPS) { 600 up_read(&ubi->fm_eba_sem); 601 goto out_unlock; 602 } 603 } 604 605 memcpy(ubi->peb_buf + offset, buf, len); 606 607 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); 608 if (err) { 609 mutex_unlock(&ubi->buf_mutex); 610 up_read(&ubi->fm_eba_sem); 611 goto write_error; 612 } 613 614 mutex_unlock(&ubi->buf_mutex); 615 ubi_free_vid_hdr(ubi, vid_hdr); 616 617 vol->eba_tbl[lnum] = new_pnum; 618 up_read(&ubi->fm_eba_sem); 619 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 620 621 ubi_msg(ubi, "data was successfully recovered"); 622 return 0; 623 624 out_unlock: 625 mutex_unlock(&ubi->buf_mutex); 626 out_put: 627 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 628 ubi_free_vid_hdr(ubi, vid_hdr); 629 return err; 630 631 write_error: 632 /* 633 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 634 * get another one. 635 */ 636 ubi_warn(ubi, "failed to write to PEB %d", new_pnum); 637 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); 638 if (++tries > UBI_IO_RETRIES) { 639 ubi_free_vid_hdr(ubi, vid_hdr); 640 return err; 641 } 642 ubi_msg(ubi, "try again"); 643 goto retry; 644 } 645 646 /** 647 * ubi_eba_write_leb - write data to dynamic volume. 648 * @ubi: UBI device description object 649 * @vol: volume description object 650 * @lnum: logical eraseblock number 651 * @buf: the data to write 652 * @offset: offset within the logical eraseblock where to write 653 * @len: how many bytes to write 654 * 655 * This function writes data to logical eraseblock @lnum of a dynamic volume 656 * @vol. Returns zero in case of success and a negative error code in case 657 * of failure. In case of error, it is possible that something was still 658 * written to the flash media, but may be some garbage. 659 */ 660 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 661 const void *buf, int offset, int len) 662 { 663 int err, pnum, tries = 0, vol_id = vol->vol_id; 664 struct ubi_vid_hdr *vid_hdr; 665 666 if (ubi->ro_mode) 667 return -EROFS; 668 669 err = leb_write_lock(ubi, vol_id, lnum); 670 if (err) 671 return err; 672 673 pnum = vol->eba_tbl[lnum]; 674 if (pnum >= 0) { 675 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 676 len, offset, vol_id, lnum, pnum); 677 678 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 679 if (err) { 680 ubi_warn(ubi, "failed to write data to PEB %d", pnum); 681 if (err == -EIO && ubi->bad_allowed) 682 err = recover_peb(ubi, pnum, vol_id, lnum, buf, 683 offset, len); 684 if (err) 685 ubi_ro_mode(ubi); 686 } 687 leb_write_unlock(ubi, vol_id, lnum); 688 return err; 689 } 690 691 /* 692 * The logical eraseblock is not mapped. We have to get a free physical 693 * eraseblock and write the volume identifier header there first. 694 */ 695 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 696 if (!vid_hdr) { 697 leb_write_unlock(ubi, vol_id, lnum); 698 return -ENOMEM; 699 } 700 701 vid_hdr->vol_type = UBI_VID_DYNAMIC; 702 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 703 vid_hdr->vol_id = cpu_to_be32(vol_id); 704 vid_hdr->lnum = cpu_to_be32(lnum); 705 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 706 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 707 708 retry: 709 pnum = ubi_wl_get_peb(ubi); 710 if (pnum < 0) { 711 ubi_free_vid_hdr(ubi, vid_hdr); 712 leb_write_unlock(ubi, vol_id, lnum); 713 up_read(&ubi->fm_eba_sem); 714 return pnum; 715 } 716 717 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 718 len, offset, vol_id, lnum, pnum); 719 720 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 721 if (err) { 722 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 723 vol_id, lnum, pnum); 724 up_read(&ubi->fm_eba_sem); 725 goto write_error; 726 } 727 728 if (len) { 729 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 730 if (err) { 731 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", 732 len, offset, vol_id, lnum, pnum); 733 up_read(&ubi->fm_eba_sem); 734 goto write_error; 735 } 736 } 737 738 vol->eba_tbl[lnum] = pnum; 739 up_read(&ubi->fm_eba_sem); 740 741 leb_write_unlock(ubi, vol_id, lnum); 742 ubi_free_vid_hdr(ubi, vid_hdr); 743 return 0; 744 745 write_error: 746 if (err != -EIO || !ubi->bad_allowed) { 747 ubi_ro_mode(ubi); 748 leb_write_unlock(ubi, vol_id, lnum); 749 ubi_free_vid_hdr(ubi, vid_hdr); 750 return err; 751 } 752 753 /* 754 * Fortunately, this is the first write operation to this physical 755 * eraseblock, so just put it and request a new one. We assume that if 756 * this physical eraseblock went bad, the erase code will handle that. 757 */ 758 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 759 if (err || ++tries > UBI_IO_RETRIES) { 760 ubi_ro_mode(ubi); 761 leb_write_unlock(ubi, vol_id, lnum); 762 ubi_free_vid_hdr(ubi, vid_hdr); 763 return err; 764 } 765 766 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 767 ubi_msg(ubi, "try another PEB"); 768 goto retry; 769 } 770 771 /** 772 * ubi_eba_write_leb_st - write data to static volume. 773 * @ubi: UBI device description object 774 * @vol: volume description object 775 * @lnum: logical eraseblock number 776 * @buf: data to write 777 * @len: how many bytes to write 778 * @used_ebs: how many logical eraseblocks will this volume contain 779 * 780 * This function writes data to logical eraseblock @lnum of static volume 781 * @vol. The @used_ebs argument should contain total number of logical 782 * eraseblock in this static volume. 783 * 784 * When writing to the last logical eraseblock, the @len argument doesn't have 785 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 786 * to the real data size, although the @buf buffer has to contain the 787 * alignment. In all other cases, @len has to be aligned. 788 * 789 * It is prohibited to write more than once to logical eraseblocks of static 790 * volumes. This function returns zero in case of success and a negative error 791 * code in case of failure. 792 */ 793 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, 794 int lnum, const void *buf, int len, int used_ebs) 795 { 796 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; 797 struct ubi_vid_hdr *vid_hdr; 798 uint32_t crc; 799 800 if (ubi->ro_mode) 801 return -EROFS; 802 803 if (lnum == used_ebs - 1) 804 /* If this is the last LEB @len may be unaligned */ 805 len = ALIGN(data_size, ubi->min_io_size); 806 else 807 ubi_assert(!(len & (ubi->min_io_size - 1))); 808 809 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 810 if (!vid_hdr) 811 return -ENOMEM; 812 813 err = leb_write_lock(ubi, vol_id, lnum); 814 if (err) { 815 ubi_free_vid_hdr(ubi, vid_hdr); 816 return err; 817 } 818 819 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 820 vid_hdr->vol_id = cpu_to_be32(vol_id); 821 vid_hdr->lnum = cpu_to_be32(lnum); 822 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 823 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 824 825 crc = crc32(UBI_CRC32_INIT, buf, data_size); 826 vid_hdr->vol_type = UBI_VID_STATIC; 827 vid_hdr->data_size = cpu_to_be32(data_size); 828 vid_hdr->used_ebs = cpu_to_be32(used_ebs); 829 vid_hdr->data_crc = cpu_to_be32(crc); 830 831 retry: 832 pnum = ubi_wl_get_peb(ubi); 833 if (pnum < 0) { 834 ubi_free_vid_hdr(ubi, vid_hdr); 835 leb_write_unlock(ubi, vol_id, lnum); 836 up_read(&ubi->fm_eba_sem); 837 return pnum; 838 } 839 840 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 841 len, vol_id, lnum, pnum, used_ebs); 842 843 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 844 if (err) { 845 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 846 vol_id, lnum, pnum); 847 up_read(&ubi->fm_eba_sem); 848 goto write_error; 849 } 850 851 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 852 if (err) { 853 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", 854 len, pnum); 855 up_read(&ubi->fm_eba_sem); 856 goto write_error; 857 } 858 859 ubi_assert(vol->eba_tbl[lnum] < 0); 860 vol->eba_tbl[lnum] = pnum; 861 up_read(&ubi->fm_eba_sem); 862 863 leb_write_unlock(ubi, vol_id, lnum); 864 ubi_free_vid_hdr(ubi, vid_hdr); 865 return 0; 866 867 write_error: 868 if (err != -EIO || !ubi->bad_allowed) { 869 /* 870 * This flash device does not admit of bad eraseblocks or 871 * something nasty and unexpected happened. Switch to read-only 872 * mode just in case. 873 */ 874 ubi_ro_mode(ubi); 875 leb_write_unlock(ubi, vol_id, lnum); 876 ubi_free_vid_hdr(ubi, vid_hdr); 877 return err; 878 } 879 880 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 881 if (err || ++tries > UBI_IO_RETRIES) { 882 ubi_ro_mode(ubi); 883 leb_write_unlock(ubi, vol_id, lnum); 884 ubi_free_vid_hdr(ubi, vid_hdr); 885 return err; 886 } 887 888 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 889 ubi_msg(ubi, "try another PEB"); 890 goto retry; 891 } 892 893 /* 894 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 895 * @ubi: UBI device description object 896 * @vol: volume description object 897 * @lnum: logical eraseblock number 898 * @buf: data to write 899 * @len: how many bytes to write 900 * 901 * This function changes the contents of a logical eraseblock atomically. @buf 902 * has to contain new logical eraseblock data, and @len - the length of the 903 * data, which has to be aligned. This function guarantees that in case of an 904 * unclean reboot the old contents is preserved. Returns zero in case of 905 * success and a negative error code in case of failure. 906 * 907 * UBI reserves one LEB for the "atomic LEB change" operation, so only one 908 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. 909 */ 910 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, 911 int lnum, const void *buf, int len) 912 { 913 int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id; 914 struct ubi_vid_hdr *vid_hdr; 915 uint32_t crc; 916 917 if (ubi->ro_mode) 918 return -EROFS; 919 920 if (len == 0) { 921 /* 922 * Special case when data length is zero. In this case the LEB 923 * has to be unmapped and mapped somewhere else. 924 */ 925 err = ubi_eba_unmap_leb(ubi, vol, lnum); 926 if (err) 927 return err; 928 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); 929 } 930 931 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 932 if (!vid_hdr) 933 return -ENOMEM; 934 935 mutex_lock(&ubi->alc_mutex); 936 err = leb_write_lock(ubi, vol_id, lnum); 937 if (err) 938 goto out_mutex; 939 940 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 941 vid_hdr->vol_id = cpu_to_be32(vol_id); 942 vid_hdr->lnum = cpu_to_be32(lnum); 943 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 944 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 945 946 crc = crc32(UBI_CRC32_INIT, buf, len); 947 vid_hdr->vol_type = UBI_VID_DYNAMIC; 948 vid_hdr->data_size = cpu_to_be32(len); 949 vid_hdr->copy_flag = 1; 950 vid_hdr->data_crc = cpu_to_be32(crc); 951 952 retry: 953 pnum = ubi_wl_get_peb(ubi); 954 if (pnum < 0) { 955 err = pnum; 956 up_read(&ubi->fm_eba_sem); 957 goto out_leb_unlock; 958 } 959 960 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 961 vol_id, lnum, vol->eba_tbl[lnum], pnum); 962 963 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 964 if (err) { 965 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", 966 vol_id, lnum, pnum); 967 up_read(&ubi->fm_eba_sem); 968 goto write_error; 969 } 970 971 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 972 if (err) { 973 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", 974 len, pnum); 975 up_read(&ubi->fm_eba_sem); 976 goto write_error; 977 } 978 979 old_pnum = vol->eba_tbl[lnum]; 980 vol->eba_tbl[lnum] = pnum; 981 up_read(&ubi->fm_eba_sem); 982 983 if (old_pnum >= 0) { 984 err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0); 985 if (err) 986 goto out_leb_unlock; 987 } 988 989 out_leb_unlock: 990 leb_write_unlock(ubi, vol_id, lnum); 991 out_mutex: 992 mutex_unlock(&ubi->alc_mutex); 993 ubi_free_vid_hdr(ubi, vid_hdr); 994 return err; 995 996 write_error: 997 if (err != -EIO || !ubi->bad_allowed) { 998 /* 999 * This flash device does not admit of bad eraseblocks or 1000 * something nasty and unexpected happened. Switch to read-only 1001 * mode just in case. 1002 */ 1003 ubi_ro_mode(ubi); 1004 goto out_leb_unlock; 1005 } 1006 1007 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); 1008 if (err || ++tries > UBI_IO_RETRIES) { 1009 ubi_ro_mode(ubi); 1010 goto out_leb_unlock; 1011 } 1012 1013 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 1014 ubi_msg(ubi, "try another PEB"); 1015 goto retry; 1016 } 1017 1018 /** 1019 * is_error_sane - check whether a read error is sane. 1020 * @err: code of the error happened during reading 1021 * 1022 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we 1023 * cannot read data from the target PEB (an error @err happened). If the error 1024 * code is sane, then we treat this error as non-fatal. Otherwise the error is 1025 * fatal and UBI will be switched to R/O mode later. 1026 * 1027 * The idea is that we try not to switch to R/O mode if the read error is 1028 * something which suggests there was a real read problem. E.g., %-EIO. Or a 1029 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O 1030 * mode, simply because we do not know what happened at the MTD level, and we 1031 * cannot handle this. E.g., the underlying driver may have become crazy, and 1032 * it is safer to switch to R/O mode to preserve the data. 1033 * 1034 * And bear in mind, this is about reading from the target PEB, i.e. the PEB 1035 * which we have just written. 1036 */ 1037 static int is_error_sane(int err) 1038 { 1039 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || 1040 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) 1041 return 0; 1042 return 1; 1043 } 1044 1045 /** 1046 * ubi_eba_copy_leb - copy logical eraseblock. 1047 * @ubi: UBI device description object 1048 * @from: physical eraseblock number from where to copy 1049 * @to: physical eraseblock number where to copy 1050 * @vid_hdr: VID header of the @from physical eraseblock 1051 * 1052 * This function copies logical eraseblock from physical eraseblock @from to 1053 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 1054 * function. Returns: 1055 * o %0 in case of success; 1056 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; 1057 * o a negative error code in case of failure. 1058 */ 1059 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 1060 struct ubi_vid_hdr *vid_hdr) 1061 { 1062 int err, vol_id, lnum, data_size, aldata_size, idx; 1063 struct ubi_volume *vol; 1064 uint32_t crc; 1065 1066 vol_id = be32_to_cpu(vid_hdr->vol_id); 1067 lnum = be32_to_cpu(vid_hdr->lnum); 1068 1069 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 1070 1071 if (vid_hdr->vol_type == UBI_VID_STATIC) { 1072 data_size = be32_to_cpu(vid_hdr->data_size); 1073 aldata_size = ALIGN(data_size, ubi->min_io_size); 1074 } else 1075 data_size = aldata_size = 1076 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); 1077 1078 idx = vol_id2idx(ubi, vol_id); 1079 spin_lock(&ubi->volumes_lock); 1080 /* 1081 * Note, we may race with volume deletion, which means that the volume 1082 * this logical eraseblock belongs to might be being deleted. Since the 1083 * volume deletion un-maps all the volume's logical eraseblocks, it will 1084 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. 1085 */ 1086 vol = ubi->volumes[idx]; 1087 spin_unlock(&ubi->volumes_lock); 1088 if (!vol) { 1089 /* No need to do further work, cancel */ 1090 dbg_wl("volume %d is being removed, cancel", vol_id); 1091 return MOVE_CANCEL_RACE; 1092 } 1093 1094 /* 1095 * We do not want anybody to write to this logical eraseblock while we 1096 * are moving it, so lock it. 1097 * 1098 * Note, we are using non-waiting locking here, because we cannot sleep 1099 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is 1100 * unmapping the LEB which is mapped to the PEB we are going to move 1101 * (@from). This task locks the LEB and goes sleep in the 1102 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are 1103 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the 1104 * LEB is already locked, we just do not move it and return 1105 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because 1106 * we do not know the reasons of the contention - it may be just a 1107 * normal I/O on this LEB, so we want to re-try. 1108 */ 1109 err = leb_write_trylock(ubi, vol_id, lnum); 1110 if (err) { 1111 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); 1112 return MOVE_RETRY; 1113 } 1114 1115 /* 1116 * The LEB might have been put meanwhile, and the task which put it is 1117 * probably waiting on @ubi->move_mutex. No need to continue the work, 1118 * cancel it. 1119 */ 1120 if (vol->eba_tbl[lnum] != from) { 1121 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", 1122 vol_id, lnum, from, vol->eba_tbl[lnum]); 1123 err = MOVE_CANCEL_RACE; 1124 goto out_unlock_leb; 1125 } 1126 1127 /* 1128 * OK, now the LEB is locked and we can safely start moving it. Since 1129 * this function utilizes the @ubi->peb_buf buffer which is shared 1130 * with some other functions - we lock the buffer by taking the 1131 * @ubi->buf_mutex. 1132 */ 1133 mutex_lock(&ubi->buf_mutex); 1134 dbg_wl("read %d bytes of data", aldata_size); 1135 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); 1136 if (err && err != UBI_IO_BITFLIPS) { 1137 ubi_warn(ubi, "error %d while reading data from PEB %d", 1138 err, from); 1139 err = MOVE_SOURCE_RD_ERR; 1140 goto out_unlock_buf; 1141 } 1142 1143 /* 1144 * Now we have got to calculate how much data we have to copy. In 1145 * case of a static volume it is fairly easy - the VID header contains 1146 * the data size. In case of a dynamic volume it is more difficult - we 1147 * have to read the contents, cut 0xFF bytes from the end and copy only 1148 * the first part. We must do this to avoid writing 0xFF bytes as it 1149 * may have some side-effects. And not only this. It is important not 1150 * to include those 0xFFs to CRC because later the they may be filled 1151 * by data. 1152 */ 1153 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1154 aldata_size = data_size = 1155 ubi_calc_data_len(ubi, ubi->peb_buf, data_size); 1156 1157 cond_resched(); 1158 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); 1159 cond_resched(); 1160 1161 /* 1162 * It may turn out to be that the whole @from physical eraseblock 1163 * contains only 0xFF bytes. Then we have to only write the VID header 1164 * and do not write any data. This also means we should not set 1165 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1166 */ 1167 if (data_size > 0) { 1168 vid_hdr->copy_flag = 1; 1169 vid_hdr->data_size = cpu_to_be32(data_size); 1170 vid_hdr->data_crc = cpu_to_be32(crc); 1171 } 1172 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); 1173 1174 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1175 if (err) { 1176 if (err == -EIO) 1177 err = MOVE_TARGET_WR_ERR; 1178 goto out_unlock_buf; 1179 } 1180 1181 cond_resched(); 1182 1183 /* Read the VID header back and check if it was written correctly */ 1184 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1185 if (err) { 1186 if (err != UBI_IO_BITFLIPS) { 1187 ubi_warn(ubi, "error %d while reading VID header back from PEB %d", 1188 err, to); 1189 if (is_error_sane(err)) 1190 err = MOVE_TARGET_RD_ERR; 1191 } else 1192 err = MOVE_TARGET_BITFLIPS; 1193 goto out_unlock_buf; 1194 } 1195 1196 if (data_size > 0) { 1197 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); 1198 if (err) { 1199 if (err == -EIO) 1200 err = MOVE_TARGET_WR_ERR; 1201 goto out_unlock_buf; 1202 } 1203 1204 cond_resched(); 1205 1206 /* 1207 * We've written the data and are going to read it back to make 1208 * sure it was written correctly. 1209 */ 1210 memset(ubi->peb_buf, 0xFF, aldata_size); 1211 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size); 1212 if (err) { 1213 if (err != UBI_IO_BITFLIPS) { 1214 ubi_warn(ubi, "error %d while reading data back from PEB %d", 1215 err, to); 1216 if (is_error_sane(err)) 1217 err = MOVE_TARGET_RD_ERR; 1218 } else 1219 err = MOVE_TARGET_BITFLIPS; 1220 goto out_unlock_buf; 1221 } 1222 1223 cond_resched(); 1224 1225 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) { 1226 ubi_warn(ubi, "read data back from PEB %d and it is different", 1227 to); 1228 err = -EINVAL; 1229 goto out_unlock_buf; 1230 } 1231 } 1232 1233 ubi_assert(vol->eba_tbl[lnum] == from); 1234 down_read(&ubi->fm_eba_sem); 1235 vol->eba_tbl[lnum] = to; 1236 up_read(&ubi->fm_eba_sem); 1237 1238 out_unlock_buf: 1239 mutex_unlock(&ubi->buf_mutex); 1240 out_unlock_leb: 1241 leb_write_unlock(ubi, vol_id, lnum); 1242 return err; 1243 } 1244 1245 /** 1246 * print_rsvd_warning - warn about not having enough reserved PEBs. 1247 * @ubi: UBI device description object 1248 * 1249 * This is a helper function for 'ubi_eba_init()' which is called when UBI 1250 * cannot reserve enough PEBs for bad block handling. This function makes a 1251 * decision whether we have to print a warning or not. The algorithm is as 1252 * follows: 1253 * o if this is a new UBI image, then just print the warning 1254 * o if this is an UBI image which has already been used for some time, print 1255 * a warning only if we can reserve less than 10% of the expected amount of 1256 * the reserved PEB. 1257 * 1258 * The idea is that when UBI is used, PEBs become bad, and the reserved pool 1259 * of PEBs becomes smaller, which is normal and we do not want to scare users 1260 * with a warning every time they attach the MTD device. This was an issue 1261 * reported by real users. 1262 */ 1263 static void print_rsvd_warning(struct ubi_device *ubi, 1264 struct ubi_attach_info *ai) 1265 { 1266 /* 1267 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably 1268 * large number to distinguish between newly flashed and used images. 1269 */ 1270 if (ai->max_sqnum > (1 << 18)) { 1271 int min = ubi->beb_rsvd_level / 10; 1272 1273 if (!min) 1274 min = 1; 1275 if (ubi->beb_rsvd_pebs > min) 1276 return; 1277 } 1278 1279 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", 1280 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1281 if (ubi->corr_peb_count) 1282 ubi_warn(ubi, "%d PEBs are corrupted and not used", 1283 ubi->corr_peb_count); 1284 } 1285 1286 /** 1287 * self_check_eba - run a self check on the EBA table constructed by fastmap. 1288 * @ubi: UBI device description object 1289 * @ai_fastmap: UBI attach info object created by fastmap 1290 * @ai_scan: UBI attach info object created by scanning 1291 * 1292 * Returns < 0 in case of an internal error, 0 otherwise. 1293 * If a bad EBA table entry was found it will be printed out and 1294 * ubi_assert() triggers. 1295 */ 1296 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, 1297 struct ubi_attach_info *ai_scan) 1298 { 1299 int i, j, num_volumes, ret = 0; 1300 int **scan_eba, **fm_eba; 1301 struct ubi_ainf_volume *av; 1302 struct ubi_volume *vol; 1303 struct ubi_ainf_peb *aeb; 1304 struct rb_node *rb; 1305 1306 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1307 1308 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); 1309 if (!scan_eba) 1310 return -ENOMEM; 1311 1312 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); 1313 if (!fm_eba) { 1314 kfree(scan_eba); 1315 return -ENOMEM; 1316 } 1317 1318 for (i = 0; i < num_volumes; i++) { 1319 vol = ubi->volumes[i]; 1320 if (!vol) 1321 continue; 1322 1323 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), 1324 GFP_KERNEL); 1325 if (!scan_eba[i]) { 1326 ret = -ENOMEM; 1327 goto out_free; 1328 } 1329 1330 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), 1331 GFP_KERNEL); 1332 if (!fm_eba[i]) { 1333 ret = -ENOMEM; 1334 goto out_free; 1335 } 1336 1337 for (j = 0; j < vol->reserved_pebs; j++) 1338 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; 1339 1340 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); 1341 if (!av) 1342 continue; 1343 1344 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1345 scan_eba[i][aeb->lnum] = aeb->pnum; 1346 1347 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); 1348 if (!av) 1349 continue; 1350 1351 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) 1352 fm_eba[i][aeb->lnum] = aeb->pnum; 1353 1354 for (j = 0; j < vol->reserved_pebs; j++) { 1355 if (scan_eba[i][j] != fm_eba[i][j]) { 1356 if (scan_eba[i][j] == UBI_LEB_UNMAPPED || 1357 fm_eba[i][j] == UBI_LEB_UNMAPPED) 1358 continue; 1359 1360 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", 1361 vol->vol_id, i, fm_eba[i][j], 1362 scan_eba[i][j]); 1363 ubi_assert(0); 1364 } 1365 } 1366 } 1367 1368 out_free: 1369 for (i = 0; i < num_volumes; i++) { 1370 if (!ubi->volumes[i]) 1371 continue; 1372 1373 kfree(scan_eba[i]); 1374 kfree(fm_eba[i]); 1375 } 1376 1377 kfree(scan_eba); 1378 kfree(fm_eba); 1379 return ret; 1380 } 1381 1382 /** 1383 * ubi_eba_init - initialize the EBA sub-system using attaching information. 1384 * @ubi: UBI device description object 1385 * @ai: attaching information 1386 * 1387 * This function returns zero in case of success and a negative error code in 1388 * case of failure. 1389 */ 1390 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1391 { 1392 int i, j, err, num_volumes; 1393 struct ubi_ainf_volume *av; 1394 struct ubi_volume *vol; 1395 struct ubi_ainf_peb *aeb; 1396 struct rb_node *rb; 1397 1398 dbg_eba("initialize EBA sub-system"); 1399 1400 spin_lock_init(&ubi->ltree_lock); 1401 mutex_init(&ubi->alc_mutex); 1402 ubi->ltree = RB_ROOT; 1403 1404 ubi->global_sqnum = ai->max_sqnum + 1; 1405 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1406 1407 for (i = 0; i < num_volumes; i++) { 1408 vol = ubi->volumes[i]; 1409 if (!vol) 1410 continue; 1411 1412 cond_resched(); 1413 1414 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1415 GFP_KERNEL); 1416 if (!vol->eba_tbl) { 1417 err = -ENOMEM; 1418 goto out_free; 1419 } 1420 1421 for (j = 0; j < vol->reserved_pebs; j++) 1422 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1423 1424 av = ubi_find_av(ai, idx2vol_id(ubi, i)); 1425 if (!av) 1426 continue; 1427 1428 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { 1429 if (aeb->lnum >= vol->reserved_pebs) 1430 /* 1431 * This may happen in case of an unclean reboot 1432 * during re-size. 1433 */ 1434 ubi_move_aeb_to_list(av, aeb, &ai->erase); 1435 else 1436 vol->eba_tbl[aeb->lnum] = aeb->pnum; 1437 } 1438 } 1439 1440 if (ubi->avail_pebs < EBA_RESERVED_PEBS) { 1441 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1442 ubi->avail_pebs, EBA_RESERVED_PEBS); 1443 if (ubi->corr_peb_count) 1444 ubi_err(ubi, "%d PEBs are corrupted and not used", 1445 ubi->corr_peb_count); 1446 err = -ENOSPC; 1447 goto out_free; 1448 } 1449 ubi->avail_pebs -= EBA_RESERVED_PEBS; 1450 ubi->rsvd_pebs += EBA_RESERVED_PEBS; 1451 1452 if (ubi->bad_allowed) { 1453 ubi_calculate_reserved(ubi); 1454 1455 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1456 /* No enough free physical eraseblocks */ 1457 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1458 print_rsvd_warning(ubi, ai); 1459 } else 1460 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1461 1462 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1463 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1464 } 1465 1466 dbg_eba("EBA sub-system is initialized"); 1467 return 0; 1468 1469 out_free: 1470 for (i = 0; i < num_volumes; i++) { 1471 if (!ubi->volumes[i]) 1472 continue; 1473 kfree(ubi->volumes[i]->eba_tbl); 1474 ubi->volumes[i]->eba_tbl = NULL; 1475 } 1476 return err; 1477 } 1478