xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision 7dd65feb)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 static unsigned long long next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	kfree(le_free);
193 	return le;
194 }
195 
196 /**
197  * leb_read_lock - lock logical eraseblock for reading.
198  * @ubi: UBI device description object
199  * @vol_id: volume ID
200  * @lnum: logical eraseblock number
201  *
202  * This function locks a logical eraseblock for reading. Returns zero in case
203  * of success and a negative error code in case of failure.
204  */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 	struct ubi_ltree_entry *le;
208 
209 	le = ltree_add_entry(ubi, vol_id, lnum);
210 	if (IS_ERR(le))
211 		return PTR_ERR(le);
212 	down_read(&le->mutex);
213 	return 0;
214 }
215 
216 /**
217  * leb_read_unlock - unlock logical eraseblock.
218  * @ubi: UBI device description object
219  * @vol_id: volume ID
220  * @lnum: logical eraseblock number
221  */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 	struct ubi_ltree_entry *le;
225 
226 	spin_lock(&ubi->ltree_lock);
227 	le = ltree_lookup(ubi, vol_id, lnum);
228 	le->users -= 1;
229 	ubi_assert(le->users >= 0);
230 	up_read(&le->mutex);
231 	if (le->users == 0) {
232 		rb_erase(&le->rb, &ubi->ltree);
233 		kfree(le);
234 	}
235 	spin_unlock(&ubi->ltree_lock);
236 }
237 
238 /**
239  * leb_write_lock - lock logical eraseblock for writing.
240  * @ubi: UBI device description object
241  * @vol_id: volume ID
242  * @lnum: logical eraseblock number
243  *
244  * This function locks a logical eraseblock for writing. Returns zero in case
245  * of success and a negative error code in case of failure.
246  */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le;
250 
251 	le = ltree_add_entry(ubi, vol_id, lnum);
252 	if (IS_ERR(le))
253 		return PTR_ERR(le);
254 	down_write(&le->mutex);
255 	return 0;
256 }
257 
258 /**
259  * leb_write_lock - lock logical eraseblock for writing.
260  * @ubi: UBI device description object
261  * @vol_id: volume ID
262  * @lnum: logical eraseblock number
263  *
264  * This function locks a logical eraseblock for writing if there is no
265  * contention and does nothing if there is contention. Returns %0 in case of
266  * success, %1 in case of contention, and and a negative error code in case of
267  * failure.
268  */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 	struct ubi_ltree_entry *le;
272 
273 	le = ltree_add_entry(ubi, vol_id, lnum);
274 	if (IS_ERR(le))
275 		return PTR_ERR(le);
276 	if (down_write_trylock(&le->mutex))
277 		return 0;
278 
279 	/* Contention, cancel */
280 	spin_lock(&ubi->ltree_lock);
281 	le->users -= 1;
282 	ubi_assert(le->users >= 0);
283 	if (le->users == 0) {
284 		rb_erase(&le->rb, &ubi->ltree);
285 		kfree(le);
286 	}
287 	spin_unlock(&ubi->ltree_lock);
288 
289 	return 1;
290 }
291 
292 /**
293  * leb_write_unlock - unlock logical eraseblock.
294  * @ubi: UBI device description object
295  * @vol_id: volume ID
296  * @lnum: logical eraseblock number
297  */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 	struct ubi_ltree_entry *le;
301 
302 	spin_lock(&ubi->ltree_lock);
303 	le = ltree_lookup(ubi, vol_id, lnum);
304 	le->users -= 1;
305 	ubi_assert(le->users >= 0);
306 	up_write(&le->mutex);
307 	if (le->users == 0) {
308 		rb_erase(&le->rb, &ubi->ltree);
309 		kfree(le);
310 	}
311 	spin_unlock(&ubi->ltree_lock);
312 }
313 
314 /**
315  * ubi_eba_unmap_leb - un-map logical eraseblock.
316  * @ubi: UBI device description object
317  * @vol: volume description object
318  * @lnum: logical eraseblock number
319  *
320  * This function un-maps logical eraseblock @lnum and schedules corresponding
321  * physical eraseblock for erasure. Returns zero in case of success and a
322  * negative error code in case of failure.
323  */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 		      int lnum)
326 {
327 	int err, pnum, vol_id = vol->vol_id;
328 
329 	if (ubi->ro_mode)
330 		return -EROFS;
331 
332 	err = leb_write_lock(ubi, vol_id, lnum);
333 	if (err)
334 		return err;
335 
336 	pnum = vol->eba_tbl[lnum];
337 	if (pnum < 0)
338 		/* This logical eraseblock is already unmapped */
339 		goto out_unlock;
340 
341 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342 
343 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
344 	err = ubi_wl_put_peb(ubi, pnum, 0);
345 
346 out_unlock:
347 	leb_write_unlock(ubi, vol_id, lnum);
348 	return err;
349 }
350 
351 /**
352  * ubi_eba_read_leb - read data.
353  * @ubi: UBI device description object
354  * @vol: volume description object
355  * @lnum: logical eraseblock number
356  * @buf: buffer to store the read data
357  * @offset: offset from where to read
358  * @len: how many bytes to read
359  * @check: data CRC check flag
360  *
361  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
362  * bytes. The @check flag only makes sense for static volumes and forces
363  * eraseblock data CRC checking.
364  *
365  * In case of success this function returns zero. In case of a static volume,
366  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
367  * returned for any volume type if an ECC error was detected by the MTD device
368  * driver. Other negative error cored may be returned in case of other errors.
369  */
370 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
371 		     void *buf, int offset, int len, int check)
372 {
373 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
374 	struct ubi_vid_hdr *vid_hdr;
375 	uint32_t uninitialized_var(crc);
376 
377 	err = leb_read_lock(ubi, vol_id, lnum);
378 	if (err)
379 		return err;
380 
381 	pnum = vol->eba_tbl[lnum];
382 	if (pnum < 0) {
383 		/*
384 		 * The logical eraseblock is not mapped, fill the whole buffer
385 		 * with 0xFF bytes. The exception is static volumes for which
386 		 * it is an error to read unmapped logical eraseblocks.
387 		 */
388 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
389 			len, offset, vol_id, lnum);
390 		leb_read_unlock(ubi, vol_id, lnum);
391 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
392 		memset(buf, 0xFF, len);
393 		return 0;
394 	}
395 
396 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
397 		len, offset, vol_id, lnum, pnum);
398 
399 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
400 		check = 0;
401 
402 retry:
403 	if (check) {
404 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
405 		if (!vid_hdr) {
406 			err = -ENOMEM;
407 			goto out_unlock;
408 		}
409 
410 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
411 		if (err && err != UBI_IO_BITFLIPS) {
412 			if (err > 0) {
413 				/*
414 				 * The header is either absent or corrupted.
415 				 * The former case means there is a bug -
416 				 * switch to read-only mode just in case.
417 				 * The latter case means a real corruption - we
418 				 * may try to recover data. FIXME: but this is
419 				 * not implemented.
420 				 */
421 				if (err == UBI_IO_BAD_VID_HDR) {
422 					ubi_warn("corrupted VID header at PEB "
423 						 "%d, LEB %d:%d", pnum, vol_id,
424 						 lnum);
425 					err = -EBADMSG;
426 				} else
427 					ubi_ro_mode(ubi);
428 			}
429 			goto out_free;
430 		} else if (err == UBI_IO_BITFLIPS)
431 			scrub = 1;
432 
433 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
434 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
435 
436 		crc = be32_to_cpu(vid_hdr->data_crc);
437 		ubi_free_vid_hdr(ubi, vid_hdr);
438 	}
439 
440 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
441 	if (err) {
442 		if (err == UBI_IO_BITFLIPS) {
443 			scrub = 1;
444 			err = 0;
445 		} else if (err == -EBADMSG) {
446 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
447 				goto out_unlock;
448 			scrub = 1;
449 			if (!check) {
450 				ubi_msg("force data checking");
451 				check = 1;
452 				goto retry;
453 			}
454 		} else
455 			goto out_unlock;
456 	}
457 
458 	if (check) {
459 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
460 		if (crc1 != crc) {
461 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
462 				 crc1, crc);
463 			err = -EBADMSG;
464 			goto out_unlock;
465 		}
466 	}
467 
468 	if (scrub)
469 		err = ubi_wl_scrub_peb(ubi, pnum);
470 
471 	leb_read_unlock(ubi, vol_id, lnum);
472 	return err;
473 
474 out_free:
475 	ubi_free_vid_hdr(ubi, vid_hdr);
476 out_unlock:
477 	leb_read_unlock(ubi, vol_id, lnum);
478 	return err;
479 }
480 
481 /**
482  * recover_peb - recover from write failure.
483  * @ubi: UBI device description object
484  * @pnum: the physical eraseblock to recover
485  * @vol_id: volume ID
486  * @lnum: logical eraseblock number
487  * @buf: data which was not written because of the write failure
488  * @offset: offset of the failed write
489  * @len: how many bytes should have been written
490  *
491  * This function is called in case of a write failure and moves all good data
492  * from the potentially bad physical eraseblock to a good physical eraseblock.
493  * This function also writes the data which was not written due to the failure.
494  * Returns new physical eraseblock number in case of success, and a negative
495  * error code in case of failure.
496  */
497 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
498 		       const void *buf, int offset, int len)
499 {
500 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
501 	struct ubi_volume *vol = ubi->volumes[idx];
502 	struct ubi_vid_hdr *vid_hdr;
503 
504 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
505 	if (!vid_hdr)
506 		return -ENOMEM;
507 
508 retry:
509 	new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
510 	if (new_pnum < 0) {
511 		ubi_free_vid_hdr(ubi, vid_hdr);
512 		return new_pnum;
513 	}
514 
515 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
516 
517 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
518 	if (err && err != UBI_IO_BITFLIPS) {
519 		if (err > 0)
520 			err = -EIO;
521 		goto out_put;
522 	}
523 
524 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
525 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
526 	if (err)
527 		goto write_error;
528 
529 	data_size = offset + len;
530 	mutex_lock(&ubi->buf_mutex);
531 	memset(ubi->peb_buf1 + offset, 0xFF, len);
532 
533 	/* Read everything before the area where the write failure happened */
534 	if (offset > 0) {
535 		err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
536 		if (err && err != UBI_IO_BITFLIPS)
537 			goto out_unlock;
538 	}
539 
540 	memcpy(ubi->peb_buf1 + offset, buf, len);
541 
542 	err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
543 	if (err) {
544 		mutex_unlock(&ubi->buf_mutex);
545 		goto write_error;
546 	}
547 
548 	mutex_unlock(&ubi->buf_mutex);
549 	ubi_free_vid_hdr(ubi, vid_hdr);
550 
551 	vol->eba_tbl[lnum] = new_pnum;
552 	ubi_wl_put_peb(ubi, pnum, 1);
553 
554 	ubi_msg("data was successfully recovered");
555 	return 0;
556 
557 out_unlock:
558 	mutex_unlock(&ubi->buf_mutex);
559 out_put:
560 	ubi_wl_put_peb(ubi, new_pnum, 1);
561 	ubi_free_vid_hdr(ubi, vid_hdr);
562 	return err;
563 
564 write_error:
565 	/*
566 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
567 	 * get another one.
568 	 */
569 	ubi_warn("failed to write to PEB %d", new_pnum);
570 	ubi_wl_put_peb(ubi, new_pnum, 1);
571 	if (++tries > UBI_IO_RETRIES) {
572 		ubi_free_vid_hdr(ubi, vid_hdr);
573 		return err;
574 	}
575 	ubi_msg("try again");
576 	goto retry;
577 }
578 
579 /**
580  * ubi_eba_write_leb - write data to dynamic volume.
581  * @ubi: UBI device description object
582  * @vol: volume description object
583  * @lnum: logical eraseblock number
584  * @buf: the data to write
585  * @offset: offset within the logical eraseblock where to write
586  * @len: how many bytes to write
587  * @dtype: data type
588  *
589  * This function writes data to logical eraseblock @lnum of a dynamic volume
590  * @vol. Returns zero in case of success and a negative error code in case
591  * of failure. In case of error, it is possible that something was still
592  * written to the flash media, but may be some garbage.
593  */
594 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
595 		      const void *buf, int offset, int len, int dtype)
596 {
597 	int err, pnum, tries = 0, vol_id = vol->vol_id;
598 	struct ubi_vid_hdr *vid_hdr;
599 
600 	if (ubi->ro_mode)
601 		return -EROFS;
602 
603 	err = leb_write_lock(ubi, vol_id, lnum);
604 	if (err)
605 		return err;
606 
607 	pnum = vol->eba_tbl[lnum];
608 	if (pnum >= 0) {
609 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
610 			len, offset, vol_id, lnum, pnum);
611 
612 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
613 		if (err) {
614 			ubi_warn("failed to write data to PEB %d", pnum);
615 			if (err == -EIO && ubi->bad_allowed)
616 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
617 						  offset, len);
618 			if (err)
619 				ubi_ro_mode(ubi);
620 		}
621 		leb_write_unlock(ubi, vol_id, lnum);
622 		return err;
623 	}
624 
625 	/*
626 	 * The logical eraseblock is not mapped. We have to get a free physical
627 	 * eraseblock and write the volume identifier header there first.
628 	 */
629 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
630 	if (!vid_hdr) {
631 		leb_write_unlock(ubi, vol_id, lnum);
632 		return -ENOMEM;
633 	}
634 
635 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
636 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
637 	vid_hdr->vol_id = cpu_to_be32(vol_id);
638 	vid_hdr->lnum = cpu_to_be32(lnum);
639 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
640 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
641 
642 retry:
643 	pnum = ubi_wl_get_peb(ubi, dtype);
644 	if (pnum < 0) {
645 		ubi_free_vid_hdr(ubi, vid_hdr);
646 		leb_write_unlock(ubi, vol_id, lnum);
647 		return pnum;
648 	}
649 
650 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
651 		len, offset, vol_id, lnum, pnum);
652 
653 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
654 	if (err) {
655 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
656 			 vol_id, lnum, pnum);
657 		goto write_error;
658 	}
659 
660 	if (len) {
661 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
662 		if (err) {
663 			ubi_warn("failed to write %d bytes at offset %d of "
664 				 "LEB %d:%d, PEB %d", len, offset, vol_id,
665 				 lnum, pnum);
666 			goto write_error;
667 		}
668 	}
669 
670 	vol->eba_tbl[lnum] = pnum;
671 
672 	leb_write_unlock(ubi, vol_id, lnum);
673 	ubi_free_vid_hdr(ubi, vid_hdr);
674 	return 0;
675 
676 write_error:
677 	if (err != -EIO || !ubi->bad_allowed) {
678 		ubi_ro_mode(ubi);
679 		leb_write_unlock(ubi, vol_id, lnum);
680 		ubi_free_vid_hdr(ubi, vid_hdr);
681 		return err;
682 	}
683 
684 	/*
685 	 * Fortunately, this is the first write operation to this physical
686 	 * eraseblock, so just put it and request a new one. We assume that if
687 	 * this physical eraseblock went bad, the erase code will handle that.
688 	 */
689 	err = ubi_wl_put_peb(ubi, pnum, 1);
690 	if (err || ++tries > UBI_IO_RETRIES) {
691 		ubi_ro_mode(ubi);
692 		leb_write_unlock(ubi, vol_id, lnum);
693 		ubi_free_vid_hdr(ubi, vid_hdr);
694 		return err;
695 	}
696 
697 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
698 	ubi_msg("try another PEB");
699 	goto retry;
700 }
701 
702 /**
703  * ubi_eba_write_leb_st - write data to static volume.
704  * @ubi: UBI device description object
705  * @vol: volume description object
706  * @lnum: logical eraseblock number
707  * @buf: data to write
708  * @len: how many bytes to write
709  * @dtype: data type
710  * @used_ebs: how many logical eraseblocks will this volume contain
711  *
712  * This function writes data to logical eraseblock @lnum of static volume
713  * @vol. The @used_ebs argument should contain total number of logical
714  * eraseblock in this static volume.
715  *
716  * When writing to the last logical eraseblock, the @len argument doesn't have
717  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
718  * to the real data size, although the @buf buffer has to contain the
719  * alignment. In all other cases, @len has to be aligned.
720  *
721  * It is prohibited to write more than once to logical eraseblocks of static
722  * volumes. This function returns zero in case of success and a negative error
723  * code in case of failure.
724  */
725 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
726 			 int lnum, const void *buf, int len, int dtype,
727 			 int used_ebs)
728 {
729 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
730 	struct ubi_vid_hdr *vid_hdr;
731 	uint32_t crc;
732 
733 	if (ubi->ro_mode)
734 		return -EROFS;
735 
736 	if (lnum == used_ebs - 1)
737 		/* If this is the last LEB @len may be unaligned */
738 		len = ALIGN(data_size, ubi->min_io_size);
739 	else
740 		ubi_assert(!(len & (ubi->min_io_size - 1)));
741 
742 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
743 	if (!vid_hdr)
744 		return -ENOMEM;
745 
746 	err = leb_write_lock(ubi, vol_id, lnum);
747 	if (err) {
748 		ubi_free_vid_hdr(ubi, vid_hdr);
749 		return err;
750 	}
751 
752 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
753 	vid_hdr->vol_id = cpu_to_be32(vol_id);
754 	vid_hdr->lnum = cpu_to_be32(lnum);
755 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
756 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
757 
758 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
759 	vid_hdr->vol_type = UBI_VID_STATIC;
760 	vid_hdr->data_size = cpu_to_be32(data_size);
761 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
762 	vid_hdr->data_crc = cpu_to_be32(crc);
763 
764 retry:
765 	pnum = ubi_wl_get_peb(ubi, dtype);
766 	if (pnum < 0) {
767 		ubi_free_vid_hdr(ubi, vid_hdr);
768 		leb_write_unlock(ubi, vol_id, lnum);
769 		return pnum;
770 	}
771 
772 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
773 		len, vol_id, lnum, pnum, used_ebs);
774 
775 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
776 	if (err) {
777 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
778 			 vol_id, lnum, pnum);
779 		goto write_error;
780 	}
781 
782 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
783 	if (err) {
784 		ubi_warn("failed to write %d bytes of data to PEB %d",
785 			 len, pnum);
786 		goto write_error;
787 	}
788 
789 	ubi_assert(vol->eba_tbl[lnum] < 0);
790 	vol->eba_tbl[lnum] = pnum;
791 
792 	leb_write_unlock(ubi, vol_id, lnum);
793 	ubi_free_vid_hdr(ubi, vid_hdr);
794 	return 0;
795 
796 write_error:
797 	if (err != -EIO || !ubi->bad_allowed) {
798 		/*
799 		 * This flash device does not admit of bad eraseblocks or
800 		 * something nasty and unexpected happened. Switch to read-only
801 		 * mode just in case.
802 		 */
803 		ubi_ro_mode(ubi);
804 		leb_write_unlock(ubi, vol_id, lnum);
805 		ubi_free_vid_hdr(ubi, vid_hdr);
806 		return err;
807 	}
808 
809 	err = ubi_wl_put_peb(ubi, pnum, 1);
810 	if (err || ++tries > UBI_IO_RETRIES) {
811 		ubi_ro_mode(ubi);
812 		leb_write_unlock(ubi, vol_id, lnum);
813 		ubi_free_vid_hdr(ubi, vid_hdr);
814 		return err;
815 	}
816 
817 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
818 	ubi_msg("try another PEB");
819 	goto retry;
820 }
821 
822 /*
823  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
824  * @ubi: UBI device description object
825  * @vol: volume description object
826  * @lnum: logical eraseblock number
827  * @buf: data to write
828  * @len: how many bytes to write
829  * @dtype: data type
830  *
831  * This function changes the contents of a logical eraseblock atomically. @buf
832  * has to contain new logical eraseblock data, and @len - the length of the
833  * data, which has to be aligned. This function guarantees that in case of an
834  * unclean reboot the old contents is preserved. Returns zero in case of
835  * success and a negative error code in case of failure.
836  *
837  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
838  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
839  */
840 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
841 			      int lnum, const void *buf, int len, int dtype)
842 {
843 	int err, pnum, tries = 0, vol_id = vol->vol_id;
844 	struct ubi_vid_hdr *vid_hdr;
845 	uint32_t crc;
846 
847 	if (ubi->ro_mode)
848 		return -EROFS;
849 
850 	if (len == 0) {
851 		/*
852 		 * Special case when data length is zero. In this case the LEB
853 		 * has to be unmapped and mapped somewhere else.
854 		 */
855 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
856 		if (err)
857 			return err;
858 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
859 	}
860 
861 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
862 	if (!vid_hdr)
863 		return -ENOMEM;
864 
865 	mutex_lock(&ubi->alc_mutex);
866 	err = leb_write_lock(ubi, vol_id, lnum);
867 	if (err)
868 		goto out_mutex;
869 
870 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
871 	vid_hdr->vol_id = cpu_to_be32(vol_id);
872 	vid_hdr->lnum = cpu_to_be32(lnum);
873 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
874 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
875 
876 	crc = crc32(UBI_CRC32_INIT, buf, len);
877 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
878 	vid_hdr->data_size = cpu_to_be32(len);
879 	vid_hdr->copy_flag = 1;
880 	vid_hdr->data_crc = cpu_to_be32(crc);
881 
882 retry:
883 	pnum = ubi_wl_get_peb(ubi, dtype);
884 	if (pnum < 0) {
885 		err = pnum;
886 		goto out_leb_unlock;
887 	}
888 
889 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
890 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
891 
892 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
893 	if (err) {
894 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
895 			 vol_id, lnum, pnum);
896 		goto write_error;
897 	}
898 
899 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
900 	if (err) {
901 		ubi_warn("failed to write %d bytes of data to PEB %d",
902 			 len, pnum);
903 		goto write_error;
904 	}
905 
906 	if (vol->eba_tbl[lnum] >= 0) {
907 		err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0);
908 		if (err)
909 			goto out_leb_unlock;
910 	}
911 
912 	vol->eba_tbl[lnum] = pnum;
913 
914 out_leb_unlock:
915 	leb_write_unlock(ubi, vol_id, lnum);
916 out_mutex:
917 	mutex_unlock(&ubi->alc_mutex);
918 	ubi_free_vid_hdr(ubi, vid_hdr);
919 	return err;
920 
921 write_error:
922 	if (err != -EIO || !ubi->bad_allowed) {
923 		/*
924 		 * This flash device does not admit of bad eraseblocks or
925 		 * something nasty and unexpected happened. Switch to read-only
926 		 * mode just in case.
927 		 */
928 		ubi_ro_mode(ubi);
929 		goto out_leb_unlock;
930 	}
931 
932 	err = ubi_wl_put_peb(ubi, pnum, 1);
933 	if (err || ++tries > UBI_IO_RETRIES) {
934 		ubi_ro_mode(ubi);
935 		goto out_leb_unlock;
936 	}
937 
938 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
939 	ubi_msg("try another PEB");
940 	goto retry;
941 }
942 
943 /**
944  * is_error_sane - check whether a read error is sane.
945  * @err: code of the error happened during reading
946  *
947  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
948  * cannot read data from the target PEB (an error @err happened). If the error
949  * code is sane, then we treat this error as non-fatal. Otherwise the error is
950  * fatal and UBI will be switched to R/O mode later.
951  *
952  * The idea is that we try not to switch to R/O mode if the read error is
953  * something which suggests there was a real read problem. E.g., %-EIO. Or a
954  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
955  * mode, simply because we do not know what happened at the MTD level, and we
956  * cannot handle this. E.g., the underlying driver may have become crazy, and
957  * it is safer to switch to R/O mode to preserve the data.
958  *
959  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
960  * which we have just written.
961  */
962 static int is_error_sane(int err)
963 {
964 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_VID_HDR ||
965 	    err == -ETIMEDOUT)
966 		return 0;
967 	return 1;
968 }
969 
970 /**
971  * ubi_eba_copy_leb - copy logical eraseblock.
972  * @ubi: UBI device description object
973  * @from: physical eraseblock number from where to copy
974  * @to: physical eraseblock number where to copy
975  * @vid_hdr: VID header of the @from physical eraseblock
976  *
977  * This function copies logical eraseblock from physical eraseblock @from to
978  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
979  * function. Returns:
980  *   o %0 in case of success;
981  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_CANCEL_BITFLIPS, etc;
982  *   o a negative error code in case of failure.
983  */
984 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
985 		     struct ubi_vid_hdr *vid_hdr)
986 {
987 	int err, vol_id, lnum, data_size, aldata_size, idx;
988 	struct ubi_volume *vol;
989 	uint32_t crc;
990 
991 	vol_id = be32_to_cpu(vid_hdr->vol_id);
992 	lnum = be32_to_cpu(vid_hdr->lnum);
993 
994 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
995 
996 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
997 		data_size = be32_to_cpu(vid_hdr->data_size);
998 		aldata_size = ALIGN(data_size, ubi->min_io_size);
999 	} else
1000 		data_size = aldata_size =
1001 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1002 
1003 	idx = vol_id2idx(ubi, vol_id);
1004 	spin_lock(&ubi->volumes_lock);
1005 	/*
1006 	 * Note, we may race with volume deletion, which means that the volume
1007 	 * this logical eraseblock belongs to might be being deleted. Since the
1008 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1009 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1010 	 */
1011 	vol = ubi->volumes[idx];
1012 	spin_unlock(&ubi->volumes_lock);
1013 	if (!vol) {
1014 		/* No need to do further work, cancel */
1015 		dbg_wl("volume %d is being removed, cancel", vol_id);
1016 		return MOVE_CANCEL_RACE;
1017 	}
1018 
1019 	/*
1020 	 * We do not want anybody to write to this logical eraseblock while we
1021 	 * are moving it, so lock it.
1022 	 *
1023 	 * Note, we are using non-waiting locking here, because we cannot sleep
1024 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1025 	 * unmapping the LEB which is mapped to the PEB we are going to move
1026 	 * (@from). This task locks the LEB and goes sleep in the
1027 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1028 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1029 	 * LEB is already locked, we just do not move it and return
1030 	 * %MOVE_CANCEL_RACE, which means that UBI will re-try, but later.
1031 	 */
1032 	err = leb_write_trylock(ubi, vol_id, lnum);
1033 	if (err) {
1034 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1035 		return MOVE_CANCEL_RACE;
1036 	}
1037 
1038 	/*
1039 	 * The LEB might have been put meanwhile, and the task which put it is
1040 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1041 	 * cancel it.
1042 	 */
1043 	if (vol->eba_tbl[lnum] != from) {
1044 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1045 		       "PEB %d, cancel", vol_id, lnum, from,
1046 		       vol->eba_tbl[lnum]);
1047 		err = MOVE_CANCEL_RACE;
1048 		goto out_unlock_leb;
1049 	}
1050 
1051 	/*
1052 	 * OK, now the LEB is locked and we can safely start moving it. Since
1053 	 * this function utilizes the @ubi->peb_buf1 buffer which is shared
1054 	 * with some other functions - we lock the buffer by taking the
1055 	 * @ubi->buf_mutex.
1056 	 */
1057 	mutex_lock(&ubi->buf_mutex);
1058 	dbg_wl("read %d bytes of data", aldata_size);
1059 	err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1060 	if (err && err != UBI_IO_BITFLIPS) {
1061 		ubi_warn("error %d while reading data from PEB %d",
1062 			 err, from);
1063 		err = MOVE_SOURCE_RD_ERR;
1064 		goto out_unlock_buf;
1065 	}
1066 
1067 	/*
1068 	 * Now we have got to calculate how much data we have to copy. In
1069 	 * case of a static volume it is fairly easy - the VID header contains
1070 	 * the data size. In case of a dynamic volume it is more difficult - we
1071 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1072 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1073 	 * may have some side-effects. And not only this. It is important not
1074 	 * to include those 0xFFs to CRC because later the they may be filled
1075 	 * by data.
1076 	 */
1077 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1078 		aldata_size = data_size =
1079 			ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1080 
1081 	cond_resched();
1082 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1083 	cond_resched();
1084 
1085 	/*
1086 	 * It may turn out to be that the whole @from physical eraseblock
1087 	 * contains only 0xFF bytes. Then we have to only write the VID header
1088 	 * and do not write any data. This also means we should not set
1089 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1090 	 */
1091 	if (data_size > 0) {
1092 		vid_hdr->copy_flag = 1;
1093 		vid_hdr->data_size = cpu_to_be32(data_size);
1094 		vid_hdr->data_crc = cpu_to_be32(crc);
1095 	}
1096 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1097 
1098 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1099 	if (err) {
1100 		if (err == -EIO)
1101 			err = MOVE_TARGET_WR_ERR;
1102 		goto out_unlock_buf;
1103 	}
1104 
1105 	cond_resched();
1106 
1107 	/* Read the VID header back and check if it was written correctly */
1108 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1109 	if (err) {
1110 		if (err != UBI_IO_BITFLIPS) {
1111 			ubi_warn("error %d while reading VID header back from "
1112 				  "PEB %d", err, to);
1113 			if (is_error_sane(err))
1114 				err = MOVE_TARGET_RD_ERR;
1115 		} else
1116 			err = MOVE_CANCEL_BITFLIPS;
1117 		goto out_unlock_buf;
1118 	}
1119 
1120 	if (data_size > 0) {
1121 		err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1122 		if (err) {
1123 			if (err == -EIO)
1124 				err = MOVE_TARGET_WR_ERR;
1125 			goto out_unlock_buf;
1126 		}
1127 
1128 		cond_resched();
1129 
1130 		/*
1131 		 * We've written the data and are going to read it back to make
1132 		 * sure it was written correctly.
1133 		 */
1134 
1135 		err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1136 		if (err) {
1137 			if (err != UBI_IO_BITFLIPS) {
1138 				ubi_warn("error %d while reading data back "
1139 					 "from PEB %d", err, to);
1140 				if (is_error_sane(err))
1141 					err = MOVE_TARGET_RD_ERR;
1142 			} else
1143 				err = MOVE_CANCEL_BITFLIPS;
1144 			goto out_unlock_buf;
1145 		}
1146 
1147 		cond_resched();
1148 
1149 		if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1150 			ubi_warn("read data back from PEB %d and it is "
1151 				 "different", to);
1152 			err = -EINVAL;
1153 			goto out_unlock_buf;
1154 		}
1155 	}
1156 
1157 	ubi_assert(vol->eba_tbl[lnum] == from);
1158 	vol->eba_tbl[lnum] = to;
1159 
1160 out_unlock_buf:
1161 	mutex_unlock(&ubi->buf_mutex);
1162 out_unlock_leb:
1163 	leb_write_unlock(ubi, vol_id, lnum);
1164 	return err;
1165 }
1166 
1167 /**
1168  * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
1169  * @ubi: UBI device description object
1170  * @si: scanning information
1171  *
1172  * This function returns zero in case of success and a negative error code in
1173  * case of failure.
1174  */
1175 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1176 {
1177 	int i, j, err, num_volumes;
1178 	struct ubi_scan_volume *sv;
1179 	struct ubi_volume *vol;
1180 	struct ubi_scan_leb *seb;
1181 	struct rb_node *rb;
1182 
1183 	dbg_eba("initialize EBA sub-system");
1184 
1185 	spin_lock_init(&ubi->ltree_lock);
1186 	mutex_init(&ubi->alc_mutex);
1187 	ubi->ltree = RB_ROOT;
1188 
1189 	ubi->global_sqnum = si->max_sqnum + 1;
1190 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1191 
1192 	for (i = 0; i < num_volumes; i++) {
1193 		vol = ubi->volumes[i];
1194 		if (!vol)
1195 			continue;
1196 
1197 		cond_resched();
1198 
1199 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1200 				       GFP_KERNEL);
1201 		if (!vol->eba_tbl) {
1202 			err = -ENOMEM;
1203 			goto out_free;
1204 		}
1205 
1206 		for (j = 0; j < vol->reserved_pebs; j++)
1207 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1208 
1209 		sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1210 		if (!sv)
1211 			continue;
1212 
1213 		ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1214 			if (seb->lnum >= vol->reserved_pebs)
1215 				/*
1216 				 * This may happen in case of an unclean reboot
1217 				 * during re-size.
1218 				 */
1219 				ubi_scan_move_to_list(sv, seb, &si->erase);
1220 			vol->eba_tbl[seb->lnum] = seb->pnum;
1221 		}
1222 	}
1223 
1224 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1225 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1226 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1227 		err = -ENOSPC;
1228 		goto out_free;
1229 	}
1230 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1231 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1232 
1233 	if (ubi->bad_allowed) {
1234 		ubi_calculate_reserved(ubi);
1235 
1236 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1237 			/* No enough free physical eraseblocks */
1238 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1239 			ubi_warn("cannot reserve enough PEBs for bad PEB "
1240 				 "handling, reserved %d, need %d",
1241 				 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1242 		} else
1243 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1244 
1245 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1246 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1247 	}
1248 
1249 	dbg_eba("EBA sub-system is initialized");
1250 	return 0;
1251 
1252 out_free:
1253 	for (i = 0; i < num_volumes; i++) {
1254 		if (!ubi->volumes[i])
1255 			continue;
1256 		kfree(ubi->volumes[i]->eba_tbl);
1257 		ubi->volumes[i]->eba_tbl = NULL;
1258 	}
1259 	return err;
1260 }
1261