xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision 7587eb18)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	kfree(le_free);
193 	return le;
194 }
195 
196 /**
197  * leb_read_lock - lock logical eraseblock for reading.
198  * @ubi: UBI device description object
199  * @vol_id: volume ID
200  * @lnum: logical eraseblock number
201  *
202  * This function locks a logical eraseblock for reading. Returns zero in case
203  * of success and a negative error code in case of failure.
204  */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 	struct ubi_ltree_entry *le;
208 
209 	le = ltree_add_entry(ubi, vol_id, lnum);
210 	if (IS_ERR(le))
211 		return PTR_ERR(le);
212 	down_read(&le->mutex);
213 	return 0;
214 }
215 
216 /**
217  * leb_read_unlock - unlock logical eraseblock.
218  * @ubi: UBI device description object
219  * @vol_id: volume ID
220  * @lnum: logical eraseblock number
221  */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 	struct ubi_ltree_entry *le;
225 
226 	spin_lock(&ubi->ltree_lock);
227 	le = ltree_lookup(ubi, vol_id, lnum);
228 	le->users -= 1;
229 	ubi_assert(le->users >= 0);
230 	up_read(&le->mutex);
231 	if (le->users == 0) {
232 		rb_erase(&le->rb, &ubi->ltree);
233 		kfree(le);
234 	}
235 	spin_unlock(&ubi->ltree_lock);
236 }
237 
238 /**
239  * leb_write_lock - lock logical eraseblock for writing.
240  * @ubi: UBI device description object
241  * @vol_id: volume ID
242  * @lnum: logical eraseblock number
243  *
244  * This function locks a logical eraseblock for writing. Returns zero in case
245  * of success and a negative error code in case of failure.
246  */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le;
250 
251 	le = ltree_add_entry(ubi, vol_id, lnum);
252 	if (IS_ERR(le))
253 		return PTR_ERR(le);
254 	down_write(&le->mutex);
255 	return 0;
256 }
257 
258 /**
259  * leb_write_lock - lock logical eraseblock for writing.
260  * @ubi: UBI device description object
261  * @vol_id: volume ID
262  * @lnum: logical eraseblock number
263  *
264  * This function locks a logical eraseblock for writing if there is no
265  * contention and does nothing if there is contention. Returns %0 in case of
266  * success, %1 in case of contention, and and a negative error code in case of
267  * failure.
268  */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 	struct ubi_ltree_entry *le;
272 
273 	le = ltree_add_entry(ubi, vol_id, lnum);
274 	if (IS_ERR(le))
275 		return PTR_ERR(le);
276 	if (down_write_trylock(&le->mutex))
277 		return 0;
278 
279 	/* Contention, cancel */
280 	spin_lock(&ubi->ltree_lock);
281 	le->users -= 1;
282 	ubi_assert(le->users >= 0);
283 	if (le->users == 0) {
284 		rb_erase(&le->rb, &ubi->ltree);
285 		kfree(le);
286 	}
287 	spin_unlock(&ubi->ltree_lock);
288 
289 	return 1;
290 }
291 
292 /**
293  * leb_write_unlock - unlock logical eraseblock.
294  * @ubi: UBI device description object
295  * @vol_id: volume ID
296  * @lnum: logical eraseblock number
297  */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 	struct ubi_ltree_entry *le;
301 
302 	spin_lock(&ubi->ltree_lock);
303 	le = ltree_lookup(ubi, vol_id, lnum);
304 	le->users -= 1;
305 	ubi_assert(le->users >= 0);
306 	up_write(&le->mutex);
307 	if (le->users == 0) {
308 		rb_erase(&le->rb, &ubi->ltree);
309 		kfree(le);
310 	}
311 	spin_unlock(&ubi->ltree_lock);
312 }
313 
314 /**
315  * ubi_eba_unmap_leb - un-map logical eraseblock.
316  * @ubi: UBI device description object
317  * @vol: volume description object
318  * @lnum: logical eraseblock number
319  *
320  * This function un-maps logical eraseblock @lnum and schedules corresponding
321  * physical eraseblock for erasure. Returns zero in case of success and a
322  * negative error code in case of failure.
323  */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 		      int lnum)
326 {
327 	int err, pnum, vol_id = vol->vol_id;
328 
329 	if (ubi->ro_mode)
330 		return -EROFS;
331 
332 	err = leb_write_lock(ubi, vol_id, lnum);
333 	if (err)
334 		return err;
335 
336 	pnum = vol->eba_tbl[lnum];
337 	if (pnum < 0)
338 		/* This logical eraseblock is already unmapped */
339 		goto out_unlock;
340 
341 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342 
343 	down_read(&ubi->fm_eba_sem);
344 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 	up_read(&ubi->fm_eba_sem);
346 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347 
348 out_unlock:
349 	leb_write_unlock(ubi, vol_id, lnum);
350 	return err;
351 }
352 
353 /**
354  * ubi_eba_read_leb - read data.
355  * @ubi: UBI device description object
356  * @vol: volume description object
357  * @lnum: logical eraseblock number
358  * @buf: buffer to store the read data
359  * @offset: offset from where to read
360  * @len: how many bytes to read
361  * @check: data CRC check flag
362  *
363  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364  * bytes. The @check flag only makes sense for static volumes and forces
365  * eraseblock data CRC checking.
366  *
367  * In case of success this function returns zero. In case of a static volume,
368  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369  * returned for any volume type if an ECC error was detected by the MTD device
370  * driver. Other negative error cored may be returned in case of other errors.
371  */
372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 		     void *buf, int offset, int len, int check)
374 {
375 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 	struct ubi_vid_hdr *vid_hdr;
377 	uint32_t uninitialized_var(crc);
378 
379 	err = leb_read_lock(ubi, vol_id, lnum);
380 	if (err)
381 		return err;
382 
383 	pnum = vol->eba_tbl[lnum];
384 	if (pnum < 0) {
385 		/*
386 		 * The logical eraseblock is not mapped, fill the whole buffer
387 		 * with 0xFF bytes. The exception is static volumes for which
388 		 * it is an error to read unmapped logical eraseblocks.
389 		 */
390 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 			len, offset, vol_id, lnum);
392 		leb_read_unlock(ubi, vol_id, lnum);
393 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 		memset(buf, 0xFF, len);
395 		return 0;
396 	}
397 
398 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 		len, offset, vol_id, lnum, pnum);
400 
401 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 		check = 0;
403 
404 retry:
405 	if (check) {
406 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 		if (!vid_hdr) {
408 			err = -ENOMEM;
409 			goto out_unlock;
410 		}
411 
412 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 		if (err && err != UBI_IO_BITFLIPS) {
414 			if (err > 0) {
415 				/*
416 				 * The header is either absent or corrupted.
417 				 * The former case means there is a bug -
418 				 * switch to read-only mode just in case.
419 				 * The latter case means a real corruption - we
420 				 * may try to recover data. FIXME: but this is
421 				 * not implemented.
422 				 */
423 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 				    err == UBI_IO_BAD_HDR) {
425 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
426 						 pnum, vol_id, lnum);
427 					err = -EBADMSG;
428 				} else {
429 					/*
430 					 * Ending up here in the non-Fastmap case
431 					 * is a clear bug as the VID header had to
432 					 * be present at scan time to have it referenced.
433 					 * With fastmap the story is more complicated.
434 					 * Fastmap has the mapping info without the need
435 					 * of a full scan. So the LEB could have been
436 					 * unmapped, Fastmap cannot know this and keeps
437 					 * the LEB referenced.
438 					 * This is valid and works as the layer above UBI
439 					 * has to do bookkeeping about used/referenced
440 					 * LEBs in any case.
441 					 */
442 					if (ubi->fast_attach) {
443 						err = -EBADMSG;
444 					} else {
445 						err = -EINVAL;
446 						ubi_ro_mode(ubi);
447 					}
448 				}
449 			}
450 			goto out_free;
451 		} else if (err == UBI_IO_BITFLIPS)
452 			scrub = 1;
453 
454 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
455 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
456 
457 		crc = be32_to_cpu(vid_hdr->data_crc);
458 		ubi_free_vid_hdr(ubi, vid_hdr);
459 	}
460 
461 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
462 	if (err) {
463 		if (err == UBI_IO_BITFLIPS)
464 			scrub = 1;
465 		else if (mtd_is_eccerr(err)) {
466 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
467 				goto out_unlock;
468 			scrub = 1;
469 			if (!check) {
470 				ubi_msg(ubi, "force data checking");
471 				check = 1;
472 				goto retry;
473 			}
474 		} else
475 			goto out_unlock;
476 	}
477 
478 	if (check) {
479 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
480 		if (crc1 != crc) {
481 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
482 				 crc1, crc);
483 			err = -EBADMSG;
484 			goto out_unlock;
485 		}
486 	}
487 
488 	if (scrub)
489 		err = ubi_wl_scrub_peb(ubi, pnum);
490 
491 	leb_read_unlock(ubi, vol_id, lnum);
492 	return err;
493 
494 out_free:
495 	ubi_free_vid_hdr(ubi, vid_hdr);
496 out_unlock:
497 	leb_read_unlock(ubi, vol_id, lnum);
498 	return err;
499 }
500 
501 /**
502  * ubi_eba_read_leb_sg - read data into a scatter gather list.
503  * @ubi: UBI device description object
504  * @vol: volume description object
505  * @lnum: logical eraseblock number
506  * @sgl: UBI scatter gather list to store the read data
507  * @offset: offset from where to read
508  * @len: how many bytes to read
509  * @check: data CRC check flag
510  *
511  * This function works exactly like ubi_eba_read_leb(). But instead of
512  * storing the read data into a buffer it writes to an UBI scatter gather
513  * list.
514  */
515 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
516 			struct ubi_sgl *sgl, int lnum, int offset, int len,
517 			int check)
518 {
519 	int to_read;
520 	int ret;
521 	struct scatterlist *sg;
522 
523 	for (;;) {
524 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
525 		sg = &sgl->sg[sgl->list_pos];
526 		if (len < sg->length - sgl->page_pos)
527 			to_read = len;
528 		else
529 			to_read = sg->length - sgl->page_pos;
530 
531 		ret = ubi_eba_read_leb(ubi, vol, lnum,
532 				       sg_virt(sg) + sgl->page_pos, offset,
533 				       to_read, check);
534 		if (ret < 0)
535 			return ret;
536 
537 		offset += to_read;
538 		len -= to_read;
539 		if (!len) {
540 			sgl->page_pos += to_read;
541 			if (sgl->page_pos == sg->length) {
542 				sgl->list_pos++;
543 				sgl->page_pos = 0;
544 			}
545 
546 			break;
547 		}
548 
549 		sgl->list_pos++;
550 		sgl->page_pos = 0;
551 	}
552 
553 	return ret;
554 }
555 
556 /**
557  * recover_peb - recover from write failure.
558  * @ubi: UBI device description object
559  * @pnum: the physical eraseblock to recover
560  * @vol_id: volume ID
561  * @lnum: logical eraseblock number
562  * @buf: data which was not written because of the write failure
563  * @offset: offset of the failed write
564  * @len: how many bytes should have been written
565  *
566  * This function is called in case of a write failure and moves all good data
567  * from the potentially bad physical eraseblock to a good physical eraseblock.
568  * This function also writes the data which was not written due to the failure.
569  * Returns new physical eraseblock number in case of success, and a negative
570  * error code in case of failure.
571  */
572 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
573 		       const void *buf, int offset, int len)
574 {
575 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
576 	struct ubi_volume *vol = ubi->volumes[idx];
577 	struct ubi_vid_hdr *vid_hdr;
578 
579 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
580 	if (!vid_hdr)
581 		return -ENOMEM;
582 
583 retry:
584 	new_pnum = ubi_wl_get_peb(ubi);
585 	if (new_pnum < 0) {
586 		ubi_free_vid_hdr(ubi, vid_hdr);
587 		up_read(&ubi->fm_eba_sem);
588 		return new_pnum;
589 	}
590 
591 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
592 		pnum, new_pnum);
593 
594 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
595 	if (err && err != UBI_IO_BITFLIPS) {
596 		if (err > 0)
597 			err = -EIO;
598 		up_read(&ubi->fm_eba_sem);
599 		goto out_put;
600 	}
601 
602 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
603 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
604 	if (err) {
605 		up_read(&ubi->fm_eba_sem);
606 		goto write_error;
607 	}
608 
609 	data_size = offset + len;
610 	mutex_lock(&ubi->buf_mutex);
611 	memset(ubi->peb_buf + offset, 0xFF, len);
612 
613 	/* Read everything before the area where the write failure happened */
614 	if (offset > 0) {
615 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
616 		if (err && err != UBI_IO_BITFLIPS) {
617 			up_read(&ubi->fm_eba_sem);
618 			goto out_unlock;
619 		}
620 	}
621 
622 	memcpy(ubi->peb_buf + offset, buf, len);
623 
624 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
625 	if (err) {
626 		mutex_unlock(&ubi->buf_mutex);
627 		up_read(&ubi->fm_eba_sem);
628 		goto write_error;
629 	}
630 
631 	mutex_unlock(&ubi->buf_mutex);
632 	ubi_free_vid_hdr(ubi, vid_hdr);
633 
634 	vol->eba_tbl[lnum] = new_pnum;
635 	up_read(&ubi->fm_eba_sem);
636 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
637 
638 	ubi_msg(ubi, "data was successfully recovered");
639 	return 0;
640 
641 out_unlock:
642 	mutex_unlock(&ubi->buf_mutex);
643 out_put:
644 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
645 	ubi_free_vid_hdr(ubi, vid_hdr);
646 	return err;
647 
648 write_error:
649 	/*
650 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
651 	 * get another one.
652 	 */
653 	ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
654 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
655 	if (++tries > UBI_IO_RETRIES) {
656 		ubi_free_vid_hdr(ubi, vid_hdr);
657 		return err;
658 	}
659 	ubi_msg(ubi, "try again");
660 	goto retry;
661 }
662 
663 /**
664  * ubi_eba_write_leb - write data to dynamic volume.
665  * @ubi: UBI device description object
666  * @vol: volume description object
667  * @lnum: logical eraseblock number
668  * @buf: the data to write
669  * @offset: offset within the logical eraseblock where to write
670  * @len: how many bytes to write
671  *
672  * This function writes data to logical eraseblock @lnum of a dynamic volume
673  * @vol. Returns zero in case of success and a negative error code in case
674  * of failure. In case of error, it is possible that something was still
675  * written to the flash media, but may be some garbage.
676  */
677 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
678 		      const void *buf, int offset, int len)
679 {
680 	int err, pnum, tries = 0, vol_id = vol->vol_id;
681 	struct ubi_vid_hdr *vid_hdr;
682 
683 	if (ubi->ro_mode)
684 		return -EROFS;
685 
686 	err = leb_write_lock(ubi, vol_id, lnum);
687 	if (err)
688 		return err;
689 
690 	pnum = vol->eba_tbl[lnum];
691 	if (pnum >= 0) {
692 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
693 			len, offset, vol_id, lnum, pnum);
694 
695 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
696 		if (err) {
697 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
698 			if (err == -EIO && ubi->bad_allowed)
699 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
700 						  offset, len);
701 			if (err)
702 				ubi_ro_mode(ubi);
703 		}
704 		leb_write_unlock(ubi, vol_id, lnum);
705 		return err;
706 	}
707 
708 	/*
709 	 * The logical eraseblock is not mapped. We have to get a free physical
710 	 * eraseblock and write the volume identifier header there first.
711 	 */
712 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
713 	if (!vid_hdr) {
714 		leb_write_unlock(ubi, vol_id, lnum);
715 		return -ENOMEM;
716 	}
717 
718 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
719 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
720 	vid_hdr->vol_id = cpu_to_be32(vol_id);
721 	vid_hdr->lnum = cpu_to_be32(lnum);
722 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
723 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
724 
725 retry:
726 	pnum = ubi_wl_get_peb(ubi);
727 	if (pnum < 0) {
728 		ubi_free_vid_hdr(ubi, vid_hdr);
729 		leb_write_unlock(ubi, vol_id, lnum);
730 		up_read(&ubi->fm_eba_sem);
731 		return pnum;
732 	}
733 
734 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
735 		len, offset, vol_id, lnum, pnum);
736 
737 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
738 	if (err) {
739 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
740 			 vol_id, lnum, pnum);
741 		up_read(&ubi->fm_eba_sem);
742 		goto write_error;
743 	}
744 
745 	if (len) {
746 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
747 		if (err) {
748 			ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
749 				 len, offset, vol_id, lnum, pnum);
750 			up_read(&ubi->fm_eba_sem);
751 			goto write_error;
752 		}
753 	}
754 
755 	vol->eba_tbl[lnum] = pnum;
756 	up_read(&ubi->fm_eba_sem);
757 
758 	leb_write_unlock(ubi, vol_id, lnum);
759 	ubi_free_vid_hdr(ubi, vid_hdr);
760 	return 0;
761 
762 write_error:
763 	if (err != -EIO || !ubi->bad_allowed) {
764 		ubi_ro_mode(ubi);
765 		leb_write_unlock(ubi, vol_id, lnum);
766 		ubi_free_vid_hdr(ubi, vid_hdr);
767 		return err;
768 	}
769 
770 	/*
771 	 * Fortunately, this is the first write operation to this physical
772 	 * eraseblock, so just put it and request a new one. We assume that if
773 	 * this physical eraseblock went bad, the erase code will handle that.
774 	 */
775 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
776 	if (err || ++tries > UBI_IO_RETRIES) {
777 		ubi_ro_mode(ubi);
778 		leb_write_unlock(ubi, vol_id, lnum);
779 		ubi_free_vid_hdr(ubi, vid_hdr);
780 		return err;
781 	}
782 
783 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
784 	ubi_msg(ubi, "try another PEB");
785 	goto retry;
786 }
787 
788 /**
789  * ubi_eba_write_leb_st - write data to static volume.
790  * @ubi: UBI device description object
791  * @vol: volume description object
792  * @lnum: logical eraseblock number
793  * @buf: data to write
794  * @len: how many bytes to write
795  * @used_ebs: how many logical eraseblocks will this volume contain
796  *
797  * This function writes data to logical eraseblock @lnum of static volume
798  * @vol. The @used_ebs argument should contain total number of logical
799  * eraseblock in this static volume.
800  *
801  * When writing to the last logical eraseblock, the @len argument doesn't have
802  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
803  * to the real data size, although the @buf buffer has to contain the
804  * alignment. In all other cases, @len has to be aligned.
805  *
806  * It is prohibited to write more than once to logical eraseblocks of static
807  * volumes. This function returns zero in case of success and a negative error
808  * code in case of failure.
809  */
810 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
811 			 int lnum, const void *buf, int len, int used_ebs)
812 {
813 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
814 	struct ubi_vid_hdr *vid_hdr;
815 	uint32_t crc;
816 
817 	if (ubi->ro_mode)
818 		return -EROFS;
819 
820 	if (lnum == used_ebs - 1)
821 		/* If this is the last LEB @len may be unaligned */
822 		len = ALIGN(data_size, ubi->min_io_size);
823 	else
824 		ubi_assert(!(len & (ubi->min_io_size - 1)));
825 
826 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
827 	if (!vid_hdr)
828 		return -ENOMEM;
829 
830 	err = leb_write_lock(ubi, vol_id, lnum);
831 	if (err) {
832 		ubi_free_vid_hdr(ubi, vid_hdr);
833 		return err;
834 	}
835 
836 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
837 	vid_hdr->vol_id = cpu_to_be32(vol_id);
838 	vid_hdr->lnum = cpu_to_be32(lnum);
839 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
840 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
841 
842 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
843 	vid_hdr->vol_type = UBI_VID_STATIC;
844 	vid_hdr->data_size = cpu_to_be32(data_size);
845 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
846 	vid_hdr->data_crc = cpu_to_be32(crc);
847 
848 retry:
849 	pnum = ubi_wl_get_peb(ubi);
850 	if (pnum < 0) {
851 		ubi_free_vid_hdr(ubi, vid_hdr);
852 		leb_write_unlock(ubi, vol_id, lnum);
853 		up_read(&ubi->fm_eba_sem);
854 		return pnum;
855 	}
856 
857 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
858 		len, vol_id, lnum, pnum, used_ebs);
859 
860 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
861 	if (err) {
862 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
863 			 vol_id, lnum, pnum);
864 		up_read(&ubi->fm_eba_sem);
865 		goto write_error;
866 	}
867 
868 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
869 	if (err) {
870 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
871 			 len, pnum);
872 		up_read(&ubi->fm_eba_sem);
873 		goto write_error;
874 	}
875 
876 	ubi_assert(vol->eba_tbl[lnum] < 0);
877 	vol->eba_tbl[lnum] = pnum;
878 	up_read(&ubi->fm_eba_sem);
879 
880 	leb_write_unlock(ubi, vol_id, lnum);
881 	ubi_free_vid_hdr(ubi, vid_hdr);
882 	return 0;
883 
884 write_error:
885 	if (err != -EIO || !ubi->bad_allowed) {
886 		/*
887 		 * This flash device does not admit of bad eraseblocks or
888 		 * something nasty and unexpected happened. Switch to read-only
889 		 * mode just in case.
890 		 */
891 		ubi_ro_mode(ubi);
892 		leb_write_unlock(ubi, vol_id, lnum);
893 		ubi_free_vid_hdr(ubi, vid_hdr);
894 		return err;
895 	}
896 
897 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
898 	if (err || ++tries > UBI_IO_RETRIES) {
899 		ubi_ro_mode(ubi);
900 		leb_write_unlock(ubi, vol_id, lnum);
901 		ubi_free_vid_hdr(ubi, vid_hdr);
902 		return err;
903 	}
904 
905 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
906 	ubi_msg(ubi, "try another PEB");
907 	goto retry;
908 }
909 
910 /*
911  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
912  * @ubi: UBI device description object
913  * @vol: volume description object
914  * @lnum: logical eraseblock number
915  * @buf: data to write
916  * @len: how many bytes to write
917  *
918  * This function changes the contents of a logical eraseblock atomically. @buf
919  * has to contain new logical eraseblock data, and @len - the length of the
920  * data, which has to be aligned. This function guarantees that in case of an
921  * unclean reboot the old contents is preserved. Returns zero in case of
922  * success and a negative error code in case of failure.
923  *
924  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
925  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
926  */
927 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
928 			      int lnum, const void *buf, int len)
929 {
930 	int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
931 	struct ubi_vid_hdr *vid_hdr;
932 	uint32_t crc;
933 
934 	if (ubi->ro_mode)
935 		return -EROFS;
936 
937 	if (len == 0) {
938 		/*
939 		 * Special case when data length is zero. In this case the LEB
940 		 * has to be unmapped and mapped somewhere else.
941 		 */
942 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
943 		if (err)
944 			return err;
945 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
946 	}
947 
948 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
949 	if (!vid_hdr)
950 		return -ENOMEM;
951 
952 	mutex_lock(&ubi->alc_mutex);
953 	err = leb_write_lock(ubi, vol_id, lnum);
954 	if (err)
955 		goto out_mutex;
956 
957 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
958 	vid_hdr->vol_id = cpu_to_be32(vol_id);
959 	vid_hdr->lnum = cpu_to_be32(lnum);
960 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
961 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
962 
963 	crc = crc32(UBI_CRC32_INIT, buf, len);
964 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
965 	vid_hdr->data_size = cpu_to_be32(len);
966 	vid_hdr->copy_flag = 1;
967 	vid_hdr->data_crc = cpu_to_be32(crc);
968 
969 retry:
970 	pnum = ubi_wl_get_peb(ubi);
971 	if (pnum < 0) {
972 		err = pnum;
973 		up_read(&ubi->fm_eba_sem);
974 		goto out_leb_unlock;
975 	}
976 
977 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
978 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
979 
980 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
981 	if (err) {
982 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
983 			 vol_id, lnum, pnum);
984 		up_read(&ubi->fm_eba_sem);
985 		goto write_error;
986 	}
987 
988 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
989 	if (err) {
990 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
991 			 len, pnum);
992 		up_read(&ubi->fm_eba_sem);
993 		goto write_error;
994 	}
995 
996 	old_pnum = vol->eba_tbl[lnum];
997 	vol->eba_tbl[lnum] = pnum;
998 	up_read(&ubi->fm_eba_sem);
999 
1000 	if (old_pnum >= 0) {
1001 		err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
1002 		if (err)
1003 			goto out_leb_unlock;
1004 	}
1005 
1006 out_leb_unlock:
1007 	leb_write_unlock(ubi, vol_id, lnum);
1008 out_mutex:
1009 	mutex_unlock(&ubi->alc_mutex);
1010 	ubi_free_vid_hdr(ubi, vid_hdr);
1011 	return err;
1012 
1013 write_error:
1014 	if (err != -EIO || !ubi->bad_allowed) {
1015 		/*
1016 		 * This flash device does not admit of bad eraseblocks or
1017 		 * something nasty and unexpected happened. Switch to read-only
1018 		 * mode just in case.
1019 		 */
1020 		ubi_ro_mode(ubi);
1021 		goto out_leb_unlock;
1022 	}
1023 
1024 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1025 	if (err || ++tries > UBI_IO_RETRIES) {
1026 		ubi_ro_mode(ubi);
1027 		goto out_leb_unlock;
1028 	}
1029 
1030 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1031 	ubi_msg(ubi, "try another PEB");
1032 	goto retry;
1033 }
1034 
1035 /**
1036  * is_error_sane - check whether a read error is sane.
1037  * @err: code of the error happened during reading
1038  *
1039  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1040  * cannot read data from the target PEB (an error @err happened). If the error
1041  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1042  * fatal and UBI will be switched to R/O mode later.
1043  *
1044  * The idea is that we try not to switch to R/O mode if the read error is
1045  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1046  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1047  * mode, simply because we do not know what happened at the MTD level, and we
1048  * cannot handle this. E.g., the underlying driver may have become crazy, and
1049  * it is safer to switch to R/O mode to preserve the data.
1050  *
1051  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1052  * which we have just written.
1053  */
1054 static int is_error_sane(int err)
1055 {
1056 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1057 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1058 		return 0;
1059 	return 1;
1060 }
1061 
1062 /**
1063  * ubi_eba_copy_leb - copy logical eraseblock.
1064  * @ubi: UBI device description object
1065  * @from: physical eraseblock number from where to copy
1066  * @to: physical eraseblock number where to copy
1067  * @vid_hdr: VID header of the @from physical eraseblock
1068  *
1069  * This function copies logical eraseblock from physical eraseblock @from to
1070  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1071  * function. Returns:
1072  *   o %0 in case of success;
1073  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1074  *   o a negative error code in case of failure.
1075  */
1076 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1077 		     struct ubi_vid_hdr *vid_hdr)
1078 {
1079 	int err, vol_id, lnum, data_size, aldata_size, idx;
1080 	struct ubi_volume *vol;
1081 	uint32_t crc;
1082 
1083 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1084 	lnum = be32_to_cpu(vid_hdr->lnum);
1085 
1086 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1087 
1088 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1089 		data_size = be32_to_cpu(vid_hdr->data_size);
1090 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1091 	} else
1092 		data_size = aldata_size =
1093 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1094 
1095 	idx = vol_id2idx(ubi, vol_id);
1096 	spin_lock(&ubi->volumes_lock);
1097 	/*
1098 	 * Note, we may race with volume deletion, which means that the volume
1099 	 * this logical eraseblock belongs to might be being deleted. Since the
1100 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1101 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1102 	 */
1103 	vol = ubi->volumes[idx];
1104 	spin_unlock(&ubi->volumes_lock);
1105 	if (!vol) {
1106 		/* No need to do further work, cancel */
1107 		dbg_wl("volume %d is being removed, cancel", vol_id);
1108 		return MOVE_CANCEL_RACE;
1109 	}
1110 
1111 	/*
1112 	 * We do not want anybody to write to this logical eraseblock while we
1113 	 * are moving it, so lock it.
1114 	 *
1115 	 * Note, we are using non-waiting locking here, because we cannot sleep
1116 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1117 	 * unmapping the LEB which is mapped to the PEB we are going to move
1118 	 * (@from). This task locks the LEB and goes sleep in the
1119 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1120 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1121 	 * LEB is already locked, we just do not move it and return
1122 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1123 	 * we do not know the reasons of the contention - it may be just a
1124 	 * normal I/O on this LEB, so we want to re-try.
1125 	 */
1126 	err = leb_write_trylock(ubi, vol_id, lnum);
1127 	if (err) {
1128 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1129 		return MOVE_RETRY;
1130 	}
1131 
1132 	/*
1133 	 * The LEB might have been put meanwhile, and the task which put it is
1134 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1135 	 * cancel it.
1136 	 */
1137 	if (vol->eba_tbl[lnum] != from) {
1138 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1139 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1140 		err = MOVE_CANCEL_RACE;
1141 		goto out_unlock_leb;
1142 	}
1143 
1144 	/*
1145 	 * OK, now the LEB is locked and we can safely start moving it. Since
1146 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1147 	 * with some other functions - we lock the buffer by taking the
1148 	 * @ubi->buf_mutex.
1149 	 */
1150 	mutex_lock(&ubi->buf_mutex);
1151 	dbg_wl("read %d bytes of data", aldata_size);
1152 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1153 	if (err && err != UBI_IO_BITFLIPS) {
1154 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1155 			 err, from);
1156 		err = MOVE_SOURCE_RD_ERR;
1157 		goto out_unlock_buf;
1158 	}
1159 
1160 	/*
1161 	 * Now we have got to calculate how much data we have to copy. In
1162 	 * case of a static volume it is fairly easy - the VID header contains
1163 	 * the data size. In case of a dynamic volume it is more difficult - we
1164 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1165 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1166 	 * may have some side-effects. And not only this. It is important not
1167 	 * to include those 0xFFs to CRC because later the they may be filled
1168 	 * by data.
1169 	 */
1170 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1171 		aldata_size = data_size =
1172 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1173 
1174 	cond_resched();
1175 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1176 	cond_resched();
1177 
1178 	/*
1179 	 * It may turn out to be that the whole @from physical eraseblock
1180 	 * contains only 0xFF bytes. Then we have to only write the VID header
1181 	 * and do not write any data. This also means we should not set
1182 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1183 	 */
1184 	if (data_size > 0) {
1185 		vid_hdr->copy_flag = 1;
1186 		vid_hdr->data_size = cpu_to_be32(data_size);
1187 		vid_hdr->data_crc = cpu_to_be32(crc);
1188 	}
1189 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1190 
1191 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1192 	if (err) {
1193 		if (err == -EIO)
1194 			err = MOVE_TARGET_WR_ERR;
1195 		goto out_unlock_buf;
1196 	}
1197 
1198 	cond_resched();
1199 
1200 	/* Read the VID header back and check if it was written correctly */
1201 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1202 	if (err) {
1203 		if (err != UBI_IO_BITFLIPS) {
1204 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1205 				 err, to);
1206 			if (is_error_sane(err))
1207 				err = MOVE_TARGET_RD_ERR;
1208 		} else
1209 			err = MOVE_TARGET_BITFLIPS;
1210 		goto out_unlock_buf;
1211 	}
1212 
1213 	if (data_size > 0) {
1214 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1215 		if (err) {
1216 			if (err == -EIO)
1217 				err = MOVE_TARGET_WR_ERR;
1218 			goto out_unlock_buf;
1219 		}
1220 
1221 		cond_resched();
1222 	}
1223 
1224 	ubi_assert(vol->eba_tbl[lnum] == from);
1225 	down_read(&ubi->fm_eba_sem);
1226 	vol->eba_tbl[lnum] = to;
1227 	up_read(&ubi->fm_eba_sem);
1228 
1229 out_unlock_buf:
1230 	mutex_unlock(&ubi->buf_mutex);
1231 out_unlock_leb:
1232 	leb_write_unlock(ubi, vol_id, lnum);
1233 	return err;
1234 }
1235 
1236 /**
1237  * print_rsvd_warning - warn about not having enough reserved PEBs.
1238  * @ubi: UBI device description object
1239  *
1240  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1241  * cannot reserve enough PEBs for bad block handling. This function makes a
1242  * decision whether we have to print a warning or not. The algorithm is as
1243  * follows:
1244  *   o if this is a new UBI image, then just print the warning
1245  *   o if this is an UBI image which has already been used for some time, print
1246  *     a warning only if we can reserve less than 10% of the expected amount of
1247  *     the reserved PEB.
1248  *
1249  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1250  * of PEBs becomes smaller, which is normal and we do not want to scare users
1251  * with a warning every time they attach the MTD device. This was an issue
1252  * reported by real users.
1253  */
1254 static void print_rsvd_warning(struct ubi_device *ubi,
1255 			       struct ubi_attach_info *ai)
1256 {
1257 	/*
1258 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1259 	 * large number to distinguish between newly flashed and used images.
1260 	 */
1261 	if (ai->max_sqnum > (1 << 18)) {
1262 		int min = ubi->beb_rsvd_level / 10;
1263 
1264 		if (!min)
1265 			min = 1;
1266 		if (ubi->beb_rsvd_pebs > min)
1267 			return;
1268 	}
1269 
1270 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1271 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1272 	if (ubi->corr_peb_count)
1273 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1274 			 ubi->corr_peb_count);
1275 }
1276 
1277 /**
1278  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1279  * @ubi: UBI device description object
1280  * @ai_fastmap: UBI attach info object created by fastmap
1281  * @ai_scan: UBI attach info object created by scanning
1282  *
1283  * Returns < 0 in case of an internal error, 0 otherwise.
1284  * If a bad EBA table entry was found it will be printed out and
1285  * ubi_assert() triggers.
1286  */
1287 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1288 		   struct ubi_attach_info *ai_scan)
1289 {
1290 	int i, j, num_volumes, ret = 0;
1291 	int **scan_eba, **fm_eba;
1292 	struct ubi_ainf_volume *av;
1293 	struct ubi_volume *vol;
1294 	struct ubi_ainf_peb *aeb;
1295 	struct rb_node *rb;
1296 
1297 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1298 
1299 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1300 	if (!scan_eba)
1301 		return -ENOMEM;
1302 
1303 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1304 	if (!fm_eba) {
1305 		kfree(scan_eba);
1306 		return -ENOMEM;
1307 	}
1308 
1309 	for (i = 0; i < num_volumes; i++) {
1310 		vol = ubi->volumes[i];
1311 		if (!vol)
1312 			continue;
1313 
1314 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1315 				      GFP_KERNEL);
1316 		if (!scan_eba[i]) {
1317 			ret = -ENOMEM;
1318 			goto out_free;
1319 		}
1320 
1321 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1322 				    GFP_KERNEL);
1323 		if (!fm_eba[i]) {
1324 			ret = -ENOMEM;
1325 			goto out_free;
1326 		}
1327 
1328 		for (j = 0; j < vol->reserved_pebs; j++)
1329 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1330 
1331 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1332 		if (!av)
1333 			continue;
1334 
1335 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1336 			scan_eba[i][aeb->lnum] = aeb->pnum;
1337 
1338 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1339 		if (!av)
1340 			continue;
1341 
1342 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1343 			fm_eba[i][aeb->lnum] = aeb->pnum;
1344 
1345 		for (j = 0; j < vol->reserved_pebs; j++) {
1346 			if (scan_eba[i][j] != fm_eba[i][j]) {
1347 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1348 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1349 					continue;
1350 
1351 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1352 					vol->vol_id, j, fm_eba[i][j],
1353 					scan_eba[i][j]);
1354 				ubi_assert(0);
1355 			}
1356 		}
1357 	}
1358 
1359 out_free:
1360 	for (i = 0; i < num_volumes; i++) {
1361 		if (!ubi->volumes[i])
1362 			continue;
1363 
1364 		kfree(scan_eba[i]);
1365 		kfree(fm_eba[i]);
1366 	}
1367 
1368 	kfree(scan_eba);
1369 	kfree(fm_eba);
1370 	return ret;
1371 }
1372 
1373 /**
1374  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1375  * @ubi: UBI device description object
1376  * @ai: attaching information
1377  *
1378  * This function returns zero in case of success and a negative error code in
1379  * case of failure.
1380  */
1381 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1382 {
1383 	int i, j, err, num_volumes;
1384 	struct ubi_ainf_volume *av;
1385 	struct ubi_volume *vol;
1386 	struct ubi_ainf_peb *aeb;
1387 	struct rb_node *rb;
1388 
1389 	dbg_eba("initialize EBA sub-system");
1390 
1391 	spin_lock_init(&ubi->ltree_lock);
1392 	mutex_init(&ubi->alc_mutex);
1393 	ubi->ltree = RB_ROOT;
1394 
1395 	ubi->global_sqnum = ai->max_sqnum + 1;
1396 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1397 
1398 	for (i = 0; i < num_volumes; i++) {
1399 		vol = ubi->volumes[i];
1400 		if (!vol)
1401 			continue;
1402 
1403 		cond_resched();
1404 
1405 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1406 				       GFP_KERNEL);
1407 		if (!vol->eba_tbl) {
1408 			err = -ENOMEM;
1409 			goto out_free;
1410 		}
1411 
1412 		for (j = 0; j < vol->reserved_pebs; j++)
1413 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1414 
1415 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1416 		if (!av)
1417 			continue;
1418 
1419 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1420 			if (aeb->lnum >= vol->reserved_pebs)
1421 				/*
1422 				 * This may happen in case of an unclean reboot
1423 				 * during re-size.
1424 				 */
1425 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1426 			else
1427 				vol->eba_tbl[aeb->lnum] = aeb->pnum;
1428 		}
1429 	}
1430 
1431 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1432 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1433 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1434 		if (ubi->corr_peb_count)
1435 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1436 				ubi->corr_peb_count);
1437 		err = -ENOSPC;
1438 		goto out_free;
1439 	}
1440 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1441 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1442 
1443 	if (ubi->bad_allowed) {
1444 		ubi_calculate_reserved(ubi);
1445 
1446 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1447 			/* No enough free physical eraseblocks */
1448 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1449 			print_rsvd_warning(ubi, ai);
1450 		} else
1451 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1452 
1453 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1454 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1455 	}
1456 
1457 	dbg_eba("EBA sub-system is initialized");
1458 	return 0;
1459 
1460 out_free:
1461 	for (i = 0; i < num_volumes; i++) {
1462 		if (!ubi->volumes[i])
1463 			continue;
1464 		kfree(ubi->volumes[i]->eba_tbl);
1465 		ubi->volumes[i]->eba_tbl = NULL;
1466 	}
1467 	return err;
1468 }
1469