xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision 7490ca1e)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 static unsigned long long next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	kfree(le_free);
193 	return le;
194 }
195 
196 /**
197  * leb_read_lock - lock logical eraseblock for reading.
198  * @ubi: UBI device description object
199  * @vol_id: volume ID
200  * @lnum: logical eraseblock number
201  *
202  * This function locks a logical eraseblock for reading. Returns zero in case
203  * of success and a negative error code in case of failure.
204  */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 	struct ubi_ltree_entry *le;
208 
209 	le = ltree_add_entry(ubi, vol_id, lnum);
210 	if (IS_ERR(le))
211 		return PTR_ERR(le);
212 	down_read(&le->mutex);
213 	return 0;
214 }
215 
216 /**
217  * leb_read_unlock - unlock logical eraseblock.
218  * @ubi: UBI device description object
219  * @vol_id: volume ID
220  * @lnum: logical eraseblock number
221  */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 	struct ubi_ltree_entry *le;
225 
226 	spin_lock(&ubi->ltree_lock);
227 	le = ltree_lookup(ubi, vol_id, lnum);
228 	le->users -= 1;
229 	ubi_assert(le->users >= 0);
230 	up_read(&le->mutex);
231 	if (le->users == 0) {
232 		rb_erase(&le->rb, &ubi->ltree);
233 		kfree(le);
234 	}
235 	spin_unlock(&ubi->ltree_lock);
236 }
237 
238 /**
239  * leb_write_lock - lock logical eraseblock for writing.
240  * @ubi: UBI device description object
241  * @vol_id: volume ID
242  * @lnum: logical eraseblock number
243  *
244  * This function locks a logical eraseblock for writing. Returns zero in case
245  * of success and a negative error code in case of failure.
246  */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le;
250 
251 	le = ltree_add_entry(ubi, vol_id, lnum);
252 	if (IS_ERR(le))
253 		return PTR_ERR(le);
254 	down_write(&le->mutex);
255 	return 0;
256 }
257 
258 /**
259  * leb_write_lock - lock logical eraseblock for writing.
260  * @ubi: UBI device description object
261  * @vol_id: volume ID
262  * @lnum: logical eraseblock number
263  *
264  * This function locks a logical eraseblock for writing if there is no
265  * contention and does nothing if there is contention. Returns %0 in case of
266  * success, %1 in case of contention, and and a negative error code in case of
267  * failure.
268  */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 	struct ubi_ltree_entry *le;
272 
273 	le = ltree_add_entry(ubi, vol_id, lnum);
274 	if (IS_ERR(le))
275 		return PTR_ERR(le);
276 	if (down_write_trylock(&le->mutex))
277 		return 0;
278 
279 	/* Contention, cancel */
280 	spin_lock(&ubi->ltree_lock);
281 	le->users -= 1;
282 	ubi_assert(le->users >= 0);
283 	if (le->users == 0) {
284 		rb_erase(&le->rb, &ubi->ltree);
285 		kfree(le);
286 	}
287 	spin_unlock(&ubi->ltree_lock);
288 
289 	return 1;
290 }
291 
292 /**
293  * leb_write_unlock - unlock logical eraseblock.
294  * @ubi: UBI device description object
295  * @vol_id: volume ID
296  * @lnum: logical eraseblock number
297  */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 	struct ubi_ltree_entry *le;
301 
302 	spin_lock(&ubi->ltree_lock);
303 	le = ltree_lookup(ubi, vol_id, lnum);
304 	le->users -= 1;
305 	ubi_assert(le->users >= 0);
306 	up_write(&le->mutex);
307 	if (le->users == 0) {
308 		rb_erase(&le->rb, &ubi->ltree);
309 		kfree(le);
310 	}
311 	spin_unlock(&ubi->ltree_lock);
312 }
313 
314 /**
315  * ubi_eba_unmap_leb - un-map logical eraseblock.
316  * @ubi: UBI device description object
317  * @vol: volume description object
318  * @lnum: logical eraseblock number
319  *
320  * This function un-maps logical eraseblock @lnum and schedules corresponding
321  * physical eraseblock for erasure. Returns zero in case of success and a
322  * negative error code in case of failure.
323  */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 		      int lnum)
326 {
327 	int err, pnum, vol_id = vol->vol_id;
328 
329 	if (ubi->ro_mode)
330 		return -EROFS;
331 
332 	err = leb_write_lock(ubi, vol_id, lnum);
333 	if (err)
334 		return err;
335 
336 	pnum = vol->eba_tbl[lnum];
337 	if (pnum < 0)
338 		/* This logical eraseblock is already unmapped */
339 		goto out_unlock;
340 
341 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342 
343 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
344 	err = ubi_wl_put_peb(ubi, pnum, 0);
345 
346 out_unlock:
347 	leb_write_unlock(ubi, vol_id, lnum);
348 	return err;
349 }
350 
351 /**
352  * ubi_eba_read_leb - read data.
353  * @ubi: UBI device description object
354  * @vol: volume description object
355  * @lnum: logical eraseblock number
356  * @buf: buffer to store the read data
357  * @offset: offset from where to read
358  * @len: how many bytes to read
359  * @check: data CRC check flag
360  *
361  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
362  * bytes. The @check flag only makes sense for static volumes and forces
363  * eraseblock data CRC checking.
364  *
365  * In case of success this function returns zero. In case of a static volume,
366  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
367  * returned for any volume type if an ECC error was detected by the MTD device
368  * driver. Other negative error cored may be returned in case of other errors.
369  */
370 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
371 		     void *buf, int offset, int len, int check)
372 {
373 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
374 	struct ubi_vid_hdr *vid_hdr;
375 	uint32_t uninitialized_var(crc);
376 
377 	err = leb_read_lock(ubi, vol_id, lnum);
378 	if (err)
379 		return err;
380 
381 	pnum = vol->eba_tbl[lnum];
382 	if (pnum < 0) {
383 		/*
384 		 * The logical eraseblock is not mapped, fill the whole buffer
385 		 * with 0xFF bytes. The exception is static volumes for which
386 		 * it is an error to read unmapped logical eraseblocks.
387 		 */
388 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
389 			len, offset, vol_id, lnum);
390 		leb_read_unlock(ubi, vol_id, lnum);
391 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
392 		memset(buf, 0xFF, len);
393 		return 0;
394 	}
395 
396 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
397 		len, offset, vol_id, lnum, pnum);
398 
399 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
400 		check = 0;
401 
402 retry:
403 	if (check) {
404 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
405 		if (!vid_hdr) {
406 			err = -ENOMEM;
407 			goto out_unlock;
408 		}
409 
410 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
411 		if (err && err != UBI_IO_BITFLIPS) {
412 			if (err > 0) {
413 				/*
414 				 * The header is either absent or corrupted.
415 				 * The former case means there is a bug -
416 				 * switch to read-only mode just in case.
417 				 * The latter case means a real corruption - we
418 				 * may try to recover data. FIXME: but this is
419 				 * not implemented.
420 				 */
421 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
422 				    err == UBI_IO_BAD_HDR) {
423 					ubi_warn("corrupted VID header at PEB "
424 						 "%d, LEB %d:%d", pnum, vol_id,
425 						 lnum);
426 					err = -EBADMSG;
427 				} else
428 					ubi_ro_mode(ubi);
429 			}
430 			goto out_free;
431 		} else if (err == UBI_IO_BITFLIPS)
432 			scrub = 1;
433 
434 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
435 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
436 
437 		crc = be32_to_cpu(vid_hdr->data_crc);
438 		ubi_free_vid_hdr(ubi, vid_hdr);
439 	}
440 
441 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
442 	if (err) {
443 		if (err == UBI_IO_BITFLIPS) {
444 			scrub = 1;
445 			err = 0;
446 		} else if (mtd_is_eccerr(err)) {
447 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
448 				goto out_unlock;
449 			scrub = 1;
450 			if (!check) {
451 				ubi_msg("force data checking");
452 				check = 1;
453 				goto retry;
454 			}
455 		} else
456 			goto out_unlock;
457 	}
458 
459 	if (check) {
460 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
461 		if (crc1 != crc) {
462 			ubi_warn("CRC error: calculated %#08x, must be %#08x",
463 				 crc1, crc);
464 			err = -EBADMSG;
465 			goto out_unlock;
466 		}
467 	}
468 
469 	if (scrub)
470 		err = ubi_wl_scrub_peb(ubi, pnum);
471 
472 	leb_read_unlock(ubi, vol_id, lnum);
473 	return err;
474 
475 out_free:
476 	ubi_free_vid_hdr(ubi, vid_hdr);
477 out_unlock:
478 	leb_read_unlock(ubi, vol_id, lnum);
479 	return err;
480 }
481 
482 /**
483  * recover_peb - recover from write failure.
484  * @ubi: UBI device description object
485  * @pnum: the physical eraseblock to recover
486  * @vol_id: volume ID
487  * @lnum: logical eraseblock number
488  * @buf: data which was not written because of the write failure
489  * @offset: offset of the failed write
490  * @len: how many bytes should have been written
491  *
492  * This function is called in case of a write failure and moves all good data
493  * from the potentially bad physical eraseblock to a good physical eraseblock.
494  * This function also writes the data which was not written due to the failure.
495  * Returns new physical eraseblock number in case of success, and a negative
496  * error code in case of failure.
497  */
498 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
499 		       const void *buf, int offset, int len)
500 {
501 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
502 	struct ubi_volume *vol = ubi->volumes[idx];
503 	struct ubi_vid_hdr *vid_hdr;
504 
505 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
506 	if (!vid_hdr)
507 		return -ENOMEM;
508 
509 retry:
510 	new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
511 	if (new_pnum < 0) {
512 		ubi_free_vid_hdr(ubi, vid_hdr);
513 		return new_pnum;
514 	}
515 
516 	ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
517 
518 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
519 	if (err && err != UBI_IO_BITFLIPS) {
520 		if (err > 0)
521 			err = -EIO;
522 		goto out_put;
523 	}
524 
525 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
526 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
527 	if (err)
528 		goto write_error;
529 
530 	data_size = offset + len;
531 	mutex_lock(&ubi->buf_mutex);
532 	memset(ubi->peb_buf1 + offset, 0xFF, len);
533 
534 	/* Read everything before the area where the write failure happened */
535 	if (offset > 0) {
536 		err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
537 		if (err && err != UBI_IO_BITFLIPS)
538 			goto out_unlock;
539 	}
540 
541 	memcpy(ubi->peb_buf1 + offset, buf, len);
542 
543 	err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
544 	if (err) {
545 		mutex_unlock(&ubi->buf_mutex);
546 		goto write_error;
547 	}
548 
549 	mutex_unlock(&ubi->buf_mutex);
550 	ubi_free_vid_hdr(ubi, vid_hdr);
551 
552 	vol->eba_tbl[lnum] = new_pnum;
553 	ubi_wl_put_peb(ubi, pnum, 1);
554 
555 	ubi_msg("data was successfully recovered");
556 	return 0;
557 
558 out_unlock:
559 	mutex_unlock(&ubi->buf_mutex);
560 out_put:
561 	ubi_wl_put_peb(ubi, new_pnum, 1);
562 	ubi_free_vid_hdr(ubi, vid_hdr);
563 	return err;
564 
565 write_error:
566 	/*
567 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
568 	 * get another one.
569 	 */
570 	ubi_warn("failed to write to PEB %d", new_pnum);
571 	ubi_wl_put_peb(ubi, new_pnum, 1);
572 	if (++tries > UBI_IO_RETRIES) {
573 		ubi_free_vid_hdr(ubi, vid_hdr);
574 		return err;
575 	}
576 	ubi_msg("try again");
577 	goto retry;
578 }
579 
580 /**
581  * ubi_eba_write_leb - write data to dynamic volume.
582  * @ubi: UBI device description object
583  * @vol: volume description object
584  * @lnum: logical eraseblock number
585  * @buf: the data to write
586  * @offset: offset within the logical eraseblock where to write
587  * @len: how many bytes to write
588  * @dtype: data type
589  *
590  * This function writes data to logical eraseblock @lnum of a dynamic volume
591  * @vol. Returns zero in case of success and a negative error code in case
592  * of failure. In case of error, it is possible that something was still
593  * written to the flash media, but may be some garbage.
594  */
595 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
596 		      const void *buf, int offset, int len, int dtype)
597 {
598 	int err, pnum, tries = 0, vol_id = vol->vol_id;
599 	struct ubi_vid_hdr *vid_hdr;
600 
601 	if (ubi->ro_mode)
602 		return -EROFS;
603 
604 	err = leb_write_lock(ubi, vol_id, lnum);
605 	if (err)
606 		return err;
607 
608 	pnum = vol->eba_tbl[lnum];
609 	if (pnum >= 0) {
610 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
611 			len, offset, vol_id, lnum, pnum);
612 
613 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
614 		if (err) {
615 			ubi_warn("failed to write data to PEB %d", pnum);
616 			if (err == -EIO && ubi->bad_allowed)
617 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
618 						  offset, len);
619 			if (err)
620 				ubi_ro_mode(ubi);
621 		}
622 		leb_write_unlock(ubi, vol_id, lnum);
623 		return err;
624 	}
625 
626 	/*
627 	 * The logical eraseblock is not mapped. We have to get a free physical
628 	 * eraseblock and write the volume identifier header there first.
629 	 */
630 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
631 	if (!vid_hdr) {
632 		leb_write_unlock(ubi, vol_id, lnum);
633 		return -ENOMEM;
634 	}
635 
636 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
637 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
638 	vid_hdr->vol_id = cpu_to_be32(vol_id);
639 	vid_hdr->lnum = cpu_to_be32(lnum);
640 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
641 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
642 
643 retry:
644 	pnum = ubi_wl_get_peb(ubi, dtype);
645 	if (pnum < 0) {
646 		ubi_free_vid_hdr(ubi, vid_hdr);
647 		leb_write_unlock(ubi, vol_id, lnum);
648 		return pnum;
649 	}
650 
651 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
652 		len, offset, vol_id, lnum, pnum);
653 
654 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
655 	if (err) {
656 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
657 			 vol_id, lnum, pnum);
658 		goto write_error;
659 	}
660 
661 	if (len) {
662 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
663 		if (err) {
664 			ubi_warn("failed to write %d bytes at offset %d of "
665 				 "LEB %d:%d, PEB %d", len, offset, vol_id,
666 				 lnum, pnum);
667 			goto write_error;
668 		}
669 	}
670 
671 	vol->eba_tbl[lnum] = pnum;
672 
673 	leb_write_unlock(ubi, vol_id, lnum);
674 	ubi_free_vid_hdr(ubi, vid_hdr);
675 	return 0;
676 
677 write_error:
678 	if (err != -EIO || !ubi->bad_allowed) {
679 		ubi_ro_mode(ubi);
680 		leb_write_unlock(ubi, vol_id, lnum);
681 		ubi_free_vid_hdr(ubi, vid_hdr);
682 		return err;
683 	}
684 
685 	/*
686 	 * Fortunately, this is the first write operation to this physical
687 	 * eraseblock, so just put it and request a new one. We assume that if
688 	 * this physical eraseblock went bad, the erase code will handle that.
689 	 */
690 	err = ubi_wl_put_peb(ubi, pnum, 1);
691 	if (err || ++tries > UBI_IO_RETRIES) {
692 		ubi_ro_mode(ubi);
693 		leb_write_unlock(ubi, vol_id, lnum);
694 		ubi_free_vid_hdr(ubi, vid_hdr);
695 		return err;
696 	}
697 
698 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
699 	ubi_msg("try another PEB");
700 	goto retry;
701 }
702 
703 /**
704  * ubi_eba_write_leb_st - write data to static volume.
705  * @ubi: UBI device description object
706  * @vol: volume description object
707  * @lnum: logical eraseblock number
708  * @buf: data to write
709  * @len: how many bytes to write
710  * @dtype: data type
711  * @used_ebs: how many logical eraseblocks will this volume contain
712  *
713  * This function writes data to logical eraseblock @lnum of static volume
714  * @vol. The @used_ebs argument should contain total number of logical
715  * eraseblock in this static volume.
716  *
717  * When writing to the last logical eraseblock, the @len argument doesn't have
718  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
719  * to the real data size, although the @buf buffer has to contain the
720  * alignment. In all other cases, @len has to be aligned.
721  *
722  * It is prohibited to write more than once to logical eraseblocks of static
723  * volumes. This function returns zero in case of success and a negative error
724  * code in case of failure.
725  */
726 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
727 			 int lnum, const void *buf, int len, int dtype,
728 			 int used_ebs)
729 {
730 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
731 	struct ubi_vid_hdr *vid_hdr;
732 	uint32_t crc;
733 
734 	if (ubi->ro_mode)
735 		return -EROFS;
736 
737 	if (lnum == used_ebs - 1)
738 		/* If this is the last LEB @len may be unaligned */
739 		len = ALIGN(data_size, ubi->min_io_size);
740 	else
741 		ubi_assert(!(len & (ubi->min_io_size - 1)));
742 
743 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
744 	if (!vid_hdr)
745 		return -ENOMEM;
746 
747 	err = leb_write_lock(ubi, vol_id, lnum);
748 	if (err) {
749 		ubi_free_vid_hdr(ubi, vid_hdr);
750 		return err;
751 	}
752 
753 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
754 	vid_hdr->vol_id = cpu_to_be32(vol_id);
755 	vid_hdr->lnum = cpu_to_be32(lnum);
756 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
757 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
758 
759 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
760 	vid_hdr->vol_type = UBI_VID_STATIC;
761 	vid_hdr->data_size = cpu_to_be32(data_size);
762 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
763 	vid_hdr->data_crc = cpu_to_be32(crc);
764 
765 retry:
766 	pnum = ubi_wl_get_peb(ubi, dtype);
767 	if (pnum < 0) {
768 		ubi_free_vid_hdr(ubi, vid_hdr);
769 		leb_write_unlock(ubi, vol_id, lnum);
770 		return pnum;
771 	}
772 
773 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
774 		len, vol_id, lnum, pnum, used_ebs);
775 
776 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
777 	if (err) {
778 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
779 			 vol_id, lnum, pnum);
780 		goto write_error;
781 	}
782 
783 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
784 	if (err) {
785 		ubi_warn("failed to write %d bytes of data to PEB %d",
786 			 len, pnum);
787 		goto write_error;
788 	}
789 
790 	ubi_assert(vol->eba_tbl[lnum] < 0);
791 	vol->eba_tbl[lnum] = pnum;
792 
793 	leb_write_unlock(ubi, vol_id, lnum);
794 	ubi_free_vid_hdr(ubi, vid_hdr);
795 	return 0;
796 
797 write_error:
798 	if (err != -EIO || !ubi->bad_allowed) {
799 		/*
800 		 * This flash device does not admit of bad eraseblocks or
801 		 * something nasty and unexpected happened. Switch to read-only
802 		 * mode just in case.
803 		 */
804 		ubi_ro_mode(ubi);
805 		leb_write_unlock(ubi, vol_id, lnum);
806 		ubi_free_vid_hdr(ubi, vid_hdr);
807 		return err;
808 	}
809 
810 	err = ubi_wl_put_peb(ubi, pnum, 1);
811 	if (err || ++tries > UBI_IO_RETRIES) {
812 		ubi_ro_mode(ubi);
813 		leb_write_unlock(ubi, vol_id, lnum);
814 		ubi_free_vid_hdr(ubi, vid_hdr);
815 		return err;
816 	}
817 
818 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
819 	ubi_msg("try another PEB");
820 	goto retry;
821 }
822 
823 /*
824  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
825  * @ubi: UBI device description object
826  * @vol: volume description object
827  * @lnum: logical eraseblock number
828  * @buf: data to write
829  * @len: how many bytes to write
830  * @dtype: data type
831  *
832  * This function changes the contents of a logical eraseblock atomically. @buf
833  * has to contain new logical eraseblock data, and @len - the length of the
834  * data, which has to be aligned. This function guarantees that in case of an
835  * unclean reboot the old contents is preserved. Returns zero in case of
836  * success and a negative error code in case of failure.
837  *
838  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
839  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
840  */
841 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
842 			      int lnum, const void *buf, int len, int dtype)
843 {
844 	int err, pnum, tries = 0, vol_id = vol->vol_id;
845 	struct ubi_vid_hdr *vid_hdr;
846 	uint32_t crc;
847 
848 	if (ubi->ro_mode)
849 		return -EROFS;
850 
851 	if (len == 0) {
852 		/*
853 		 * Special case when data length is zero. In this case the LEB
854 		 * has to be unmapped and mapped somewhere else.
855 		 */
856 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
857 		if (err)
858 			return err;
859 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
860 	}
861 
862 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
863 	if (!vid_hdr)
864 		return -ENOMEM;
865 
866 	mutex_lock(&ubi->alc_mutex);
867 	err = leb_write_lock(ubi, vol_id, lnum);
868 	if (err)
869 		goto out_mutex;
870 
871 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
872 	vid_hdr->vol_id = cpu_to_be32(vol_id);
873 	vid_hdr->lnum = cpu_to_be32(lnum);
874 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
875 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
876 
877 	crc = crc32(UBI_CRC32_INIT, buf, len);
878 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
879 	vid_hdr->data_size = cpu_to_be32(len);
880 	vid_hdr->copy_flag = 1;
881 	vid_hdr->data_crc = cpu_to_be32(crc);
882 
883 retry:
884 	pnum = ubi_wl_get_peb(ubi, dtype);
885 	if (pnum < 0) {
886 		err = pnum;
887 		goto out_leb_unlock;
888 	}
889 
890 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
891 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
892 
893 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
894 	if (err) {
895 		ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
896 			 vol_id, lnum, pnum);
897 		goto write_error;
898 	}
899 
900 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
901 	if (err) {
902 		ubi_warn("failed to write %d bytes of data to PEB %d",
903 			 len, pnum);
904 		goto write_error;
905 	}
906 
907 	if (vol->eba_tbl[lnum] >= 0) {
908 		err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0);
909 		if (err)
910 			goto out_leb_unlock;
911 	}
912 
913 	vol->eba_tbl[lnum] = pnum;
914 
915 out_leb_unlock:
916 	leb_write_unlock(ubi, vol_id, lnum);
917 out_mutex:
918 	mutex_unlock(&ubi->alc_mutex);
919 	ubi_free_vid_hdr(ubi, vid_hdr);
920 	return err;
921 
922 write_error:
923 	if (err != -EIO || !ubi->bad_allowed) {
924 		/*
925 		 * This flash device does not admit of bad eraseblocks or
926 		 * something nasty and unexpected happened. Switch to read-only
927 		 * mode just in case.
928 		 */
929 		ubi_ro_mode(ubi);
930 		goto out_leb_unlock;
931 	}
932 
933 	err = ubi_wl_put_peb(ubi, pnum, 1);
934 	if (err || ++tries > UBI_IO_RETRIES) {
935 		ubi_ro_mode(ubi);
936 		goto out_leb_unlock;
937 	}
938 
939 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
940 	ubi_msg("try another PEB");
941 	goto retry;
942 }
943 
944 /**
945  * is_error_sane - check whether a read error is sane.
946  * @err: code of the error happened during reading
947  *
948  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
949  * cannot read data from the target PEB (an error @err happened). If the error
950  * code is sane, then we treat this error as non-fatal. Otherwise the error is
951  * fatal and UBI will be switched to R/O mode later.
952  *
953  * The idea is that we try not to switch to R/O mode if the read error is
954  * something which suggests there was a real read problem. E.g., %-EIO. Or a
955  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
956  * mode, simply because we do not know what happened at the MTD level, and we
957  * cannot handle this. E.g., the underlying driver may have become crazy, and
958  * it is safer to switch to R/O mode to preserve the data.
959  *
960  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
961  * which we have just written.
962  */
963 static int is_error_sane(int err)
964 {
965 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
966 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
967 		return 0;
968 	return 1;
969 }
970 
971 /**
972  * ubi_eba_copy_leb - copy logical eraseblock.
973  * @ubi: UBI device description object
974  * @from: physical eraseblock number from where to copy
975  * @to: physical eraseblock number where to copy
976  * @vid_hdr: VID header of the @from physical eraseblock
977  *
978  * This function copies logical eraseblock from physical eraseblock @from to
979  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
980  * function. Returns:
981  *   o %0 in case of success;
982  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_CANCEL_BITFLIPS, etc;
983  *   o a negative error code in case of failure.
984  */
985 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
986 		     struct ubi_vid_hdr *vid_hdr)
987 {
988 	int err, vol_id, lnum, data_size, aldata_size, idx;
989 	struct ubi_volume *vol;
990 	uint32_t crc;
991 
992 	vol_id = be32_to_cpu(vid_hdr->vol_id);
993 	lnum = be32_to_cpu(vid_hdr->lnum);
994 
995 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
996 
997 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
998 		data_size = be32_to_cpu(vid_hdr->data_size);
999 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1000 	} else
1001 		data_size = aldata_size =
1002 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1003 
1004 	idx = vol_id2idx(ubi, vol_id);
1005 	spin_lock(&ubi->volumes_lock);
1006 	/*
1007 	 * Note, we may race with volume deletion, which means that the volume
1008 	 * this logical eraseblock belongs to might be being deleted. Since the
1009 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1010 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1011 	 */
1012 	vol = ubi->volumes[idx];
1013 	spin_unlock(&ubi->volumes_lock);
1014 	if (!vol) {
1015 		/* No need to do further work, cancel */
1016 		dbg_wl("volume %d is being removed, cancel", vol_id);
1017 		return MOVE_CANCEL_RACE;
1018 	}
1019 
1020 	/*
1021 	 * We do not want anybody to write to this logical eraseblock while we
1022 	 * are moving it, so lock it.
1023 	 *
1024 	 * Note, we are using non-waiting locking here, because we cannot sleep
1025 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1026 	 * unmapping the LEB which is mapped to the PEB we are going to move
1027 	 * (@from). This task locks the LEB and goes sleep in the
1028 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1029 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1030 	 * LEB is already locked, we just do not move it and return
1031 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1032 	 * we do not know the reasons of the contention - it may be just a
1033 	 * normal I/O on this LEB, so we want to re-try.
1034 	 */
1035 	err = leb_write_trylock(ubi, vol_id, lnum);
1036 	if (err) {
1037 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1038 		return MOVE_RETRY;
1039 	}
1040 
1041 	/*
1042 	 * The LEB might have been put meanwhile, and the task which put it is
1043 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1044 	 * cancel it.
1045 	 */
1046 	if (vol->eba_tbl[lnum] != from) {
1047 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1048 		       "PEB %d, cancel", vol_id, lnum, from,
1049 		       vol->eba_tbl[lnum]);
1050 		err = MOVE_CANCEL_RACE;
1051 		goto out_unlock_leb;
1052 	}
1053 
1054 	/*
1055 	 * OK, now the LEB is locked and we can safely start moving it. Since
1056 	 * this function utilizes the @ubi->peb_buf1 buffer which is shared
1057 	 * with some other functions - we lock the buffer by taking the
1058 	 * @ubi->buf_mutex.
1059 	 */
1060 	mutex_lock(&ubi->buf_mutex);
1061 	dbg_wl("read %d bytes of data", aldata_size);
1062 	err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1063 	if (err && err != UBI_IO_BITFLIPS) {
1064 		ubi_warn("error %d while reading data from PEB %d",
1065 			 err, from);
1066 		err = MOVE_SOURCE_RD_ERR;
1067 		goto out_unlock_buf;
1068 	}
1069 
1070 	/*
1071 	 * Now we have got to calculate how much data we have to copy. In
1072 	 * case of a static volume it is fairly easy - the VID header contains
1073 	 * the data size. In case of a dynamic volume it is more difficult - we
1074 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1075 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1076 	 * may have some side-effects. And not only this. It is important not
1077 	 * to include those 0xFFs to CRC because later the they may be filled
1078 	 * by data.
1079 	 */
1080 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1081 		aldata_size = data_size =
1082 			ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1083 
1084 	cond_resched();
1085 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1086 	cond_resched();
1087 
1088 	/*
1089 	 * It may turn out to be that the whole @from physical eraseblock
1090 	 * contains only 0xFF bytes. Then we have to only write the VID header
1091 	 * and do not write any data. This also means we should not set
1092 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1093 	 */
1094 	if (data_size > 0) {
1095 		vid_hdr->copy_flag = 1;
1096 		vid_hdr->data_size = cpu_to_be32(data_size);
1097 		vid_hdr->data_crc = cpu_to_be32(crc);
1098 	}
1099 	vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1100 
1101 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1102 	if (err) {
1103 		if (err == -EIO)
1104 			err = MOVE_TARGET_WR_ERR;
1105 		goto out_unlock_buf;
1106 	}
1107 
1108 	cond_resched();
1109 
1110 	/* Read the VID header back and check if it was written correctly */
1111 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1112 	if (err) {
1113 		if (err != UBI_IO_BITFLIPS) {
1114 			ubi_warn("error %d while reading VID header back from "
1115 				  "PEB %d", err, to);
1116 			if (is_error_sane(err))
1117 				err = MOVE_TARGET_RD_ERR;
1118 		} else
1119 			err = MOVE_CANCEL_BITFLIPS;
1120 		goto out_unlock_buf;
1121 	}
1122 
1123 	if (data_size > 0) {
1124 		err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1125 		if (err) {
1126 			if (err == -EIO)
1127 				err = MOVE_TARGET_WR_ERR;
1128 			goto out_unlock_buf;
1129 		}
1130 
1131 		cond_resched();
1132 
1133 		/*
1134 		 * We've written the data and are going to read it back to make
1135 		 * sure it was written correctly.
1136 		 */
1137 
1138 		err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1139 		if (err) {
1140 			if (err != UBI_IO_BITFLIPS) {
1141 				ubi_warn("error %d while reading data back "
1142 					 "from PEB %d", err, to);
1143 				if (is_error_sane(err))
1144 					err = MOVE_TARGET_RD_ERR;
1145 			} else
1146 				err = MOVE_CANCEL_BITFLIPS;
1147 			goto out_unlock_buf;
1148 		}
1149 
1150 		cond_resched();
1151 
1152 		if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1153 			ubi_warn("read data back from PEB %d and it is "
1154 				 "different", to);
1155 			err = -EINVAL;
1156 			goto out_unlock_buf;
1157 		}
1158 	}
1159 
1160 	ubi_assert(vol->eba_tbl[lnum] == from);
1161 	vol->eba_tbl[lnum] = to;
1162 
1163 out_unlock_buf:
1164 	mutex_unlock(&ubi->buf_mutex);
1165 out_unlock_leb:
1166 	leb_write_unlock(ubi, vol_id, lnum);
1167 	return err;
1168 }
1169 
1170 /**
1171  * print_rsvd_warning - warn about not having enough reserved PEBs.
1172  * @ubi: UBI device description object
1173  *
1174  * This is a helper function for 'ubi_eba_init_scan()' which is called when UBI
1175  * cannot reserve enough PEBs for bad block handling. This function makes a
1176  * decision whether we have to print a warning or not. The algorithm is as
1177  * follows:
1178  *   o if this is a new UBI image, then just print the warning
1179  *   o if this is an UBI image which has already been used for some time, print
1180  *     a warning only if we can reserve less than 10% of the expected amount of
1181  *     the reserved PEB.
1182  *
1183  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1184  * of PEBs becomes smaller, which is normal and we do not want to scare users
1185  * with a warning every time they attach the MTD device. This was an issue
1186  * reported by real users.
1187  */
1188 static void print_rsvd_warning(struct ubi_device *ubi,
1189 			       struct ubi_scan_info *si)
1190 {
1191 	/*
1192 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1193 	 * large number to distinguish between newly flashed and used images.
1194 	 */
1195 	if (si->max_sqnum > (1 << 18)) {
1196 		int min = ubi->beb_rsvd_level / 10;
1197 
1198 		if (!min)
1199 			min = 1;
1200 		if (ubi->beb_rsvd_pebs > min)
1201 			return;
1202 	}
1203 
1204 	ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d,"
1205 		 " need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1206 	if (ubi->corr_peb_count)
1207 		ubi_warn("%d PEBs are corrupted and not used",
1208 			ubi->corr_peb_count);
1209 }
1210 
1211 /**
1212  * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
1213  * @ubi: UBI device description object
1214  * @si: scanning information
1215  *
1216  * This function returns zero in case of success and a negative error code in
1217  * case of failure.
1218  */
1219 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1220 {
1221 	int i, j, err, num_volumes;
1222 	struct ubi_scan_volume *sv;
1223 	struct ubi_volume *vol;
1224 	struct ubi_scan_leb *seb;
1225 	struct rb_node *rb;
1226 
1227 	dbg_eba("initialize EBA sub-system");
1228 
1229 	spin_lock_init(&ubi->ltree_lock);
1230 	mutex_init(&ubi->alc_mutex);
1231 	ubi->ltree = RB_ROOT;
1232 
1233 	ubi->global_sqnum = si->max_sqnum + 1;
1234 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1235 
1236 	for (i = 0; i < num_volumes; i++) {
1237 		vol = ubi->volumes[i];
1238 		if (!vol)
1239 			continue;
1240 
1241 		cond_resched();
1242 
1243 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1244 				       GFP_KERNEL);
1245 		if (!vol->eba_tbl) {
1246 			err = -ENOMEM;
1247 			goto out_free;
1248 		}
1249 
1250 		for (j = 0; j < vol->reserved_pebs; j++)
1251 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1252 
1253 		sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1254 		if (!sv)
1255 			continue;
1256 
1257 		ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1258 			if (seb->lnum >= vol->reserved_pebs)
1259 				/*
1260 				 * This may happen in case of an unclean reboot
1261 				 * during re-size.
1262 				 */
1263 				ubi_scan_move_to_list(sv, seb, &si->erase);
1264 			vol->eba_tbl[seb->lnum] = seb->pnum;
1265 		}
1266 	}
1267 
1268 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1269 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1270 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1271 		if (ubi->corr_peb_count)
1272 			ubi_err("%d PEBs are corrupted and not used",
1273 				ubi->corr_peb_count);
1274 		err = -ENOSPC;
1275 		goto out_free;
1276 	}
1277 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1278 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1279 
1280 	if (ubi->bad_allowed) {
1281 		ubi_calculate_reserved(ubi);
1282 
1283 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1284 			/* No enough free physical eraseblocks */
1285 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1286 			print_rsvd_warning(ubi, si);
1287 		} else
1288 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1289 
1290 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1291 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1292 	}
1293 
1294 	dbg_eba("EBA sub-system is initialized");
1295 	return 0;
1296 
1297 out_free:
1298 	for (i = 0; i < num_volumes; i++) {
1299 		if (!ubi->volumes[i])
1300 			continue;
1301 		kfree(ubi->volumes[i]->eba_tbl);
1302 		ubi->volumes[i]->eba_tbl = NULL;
1303 	}
1304 	return err;
1305 }
1306