1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) unit. 23 * 24 * This unit is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA unit implements per-logical eraseblock locking. Before accessing a 31 * logical eraseblock it is locked for reading or writing. The per-logical 32 * eraseblock locking is implemented by means of the lock tree. The lock tree 33 * is an RB-tree which refers all the currently locked logical eraseblocks. The 34 * lock tree elements are &struct ltree_entry objects. They are indexed by 35 * (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /** 50 * struct ltree_entry - an entry in the lock tree. 51 * @rb: links RB-tree nodes 52 * @vol_id: volume ID of the locked logical eraseblock 53 * @lnum: locked logical eraseblock number 54 * @users: how many tasks are using this logical eraseblock or wait for it 55 * @mutex: read/write mutex to implement read/write access serialization to 56 * the (@vol_id, @lnum) logical eraseblock 57 * 58 * When a logical eraseblock is being locked - corresponding &struct ltree_entry 59 * object is inserted to the lock tree (@ubi->ltree). 60 */ 61 struct ltree_entry { 62 struct rb_node rb; 63 int vol_id; 64 int lnum; 65 int users; 66 struct rw_semaphore mutex; 67 }; 68 69 /* Slab cache for lock-tree entries */ 70 static struct kmem_cache *ltree_slab; 71 72 /** 73 * next_sqnum - get next sequence number. 74 * @ubi: UBI device description object 75 * 76 * This function returns next sequence number to use, which is just the current 77 * global sequence counter value. It also increases the global sequence 78 * counter. 79 */ 80 static unsigned long long next_sqnum(struct ubi_device *ubi) 81 { 82 unsigned long long sqnum; 83 84 spin_lock(&ubi->ltree_lock); 85 sqnum = ubi->global_sqnum++; 86 spin_unlock(&ubi->ltree_lock); 87 88 return sqnum; 89 } 90 91 /** 92 * ubi_get_compat - get compatibility flags of a volume. 93 * @ubi: UBI device description object 94 * @vol_id: volume ID 95 * 96 * This function returns compatibility flags for an internal volume. User 97 * volumes have no compatibility flags, so %0 is returned. 98 */ 99 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 100 { 101 if (vol_id == UBI_LAYOUT_VOL_ID) 102 return UBI_LAYOUT_VOLUME_COMPAT; 103 return 0; 104 } 105 106 /** 107 * ltree_lookup - look up the lock tree. 108 * @ubi: UBI device description object 109 * @vol_id: volume ID 110 * @lnum: logical eraseblock number 111 * 112 * This function returns a pointer to the corresponding &struct ltree_entry 113 * object if the logical eraseblock is locked and %NULL if it is not. 114 * @ubi->ltree_lock has to be locked. 115 */ 116 static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 117 int lnum) 118 { 119 struct rb_node *p; 120 121 p = ubi->ltree.rb_node; 122 while (p) { 123 struct ltree_entry *le; 124 125 le = rb_entry(p, struct ltree_entry, rb); 126 127 if (vol_id < le->vol_id) 128 p = p->rb_left; 129 else if (vol_id > le->vol_id) 130 p = p->rb_right; 131 else { 132 if (lnum < le->lnum) 133 p = p->rb_left; 134 else if (lnum > le->lnum) 135 p = p->rb_right; 136 else 137 return le; 138 } 139 } 140 141 return NULL; 142 } 143 144 /** 145 * ltree_add_entry - add new entry to the lock tree. 146 * @ubi: UBI device description object 147 * @vol_id: volume ID 148 * @lnum: logical eraseblock number 149 * 150 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 151 * lock tree. If such entry is already there, its usage counter is increased. 152 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 153 * failed. 154 */ 155 static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id, 156 int lnum) 157 { 158 struct ltree_entry *le, *le1, *le_free; 159 160 le = kmem_cache_alloc(ltree_slab, GFP_KERNEL); 161 if (!le) 162 return ERR_PTR(-ENOMEM); 163 164 le->vol_id = vol_id; 165 le->lnum = lnum; 166 167 spin_lock(&ubi->ltree_lock); 168 le1 = ltree_lookup(ubi, vol_id, lnum); 169 170 if (le1) { 171 /* 172 * This logical eraseblock is already locked. The newly 173 * allocated lock entry is not needed. 174 */ 175 le_free = le; 176 le = le1; 177 } else { 178 struct rb_node **p, *parent = NULL; 179 180 /* 181 * No lock entry, add the newly allocated one to the 182 * @ubi->ltree RB-tree. 183 */ 184 le_free = NULL; 185 186 p = &ubi->ltree.rb_node; 187 while (*p) { 188 parent = *p; 189 le1 = rb_entry(parent, struct ltree_entry, rb); 190 191 if (vol_id < le1->vol_id) 192 p = &(*p)->rb_left; 193 else if (vol_id > le1->vol_id) 194 p = &(*p)->rb_right; 195 else { 196 ubi_assert(lnum != le1->lnum); 197 if (lnum < le1->lnum) 198 p = &(*p)->rb_left; 199 else 200 p = &(*p)->rb_right; 201 } 202 } 203 204 rb_link_node(&le->rb, parent, p); 205 rb_insert_color(&le->rb, &ubi->ltree); 206 } 207 le->users += 1; 208 spin_unlock(&ubi->ltree_lock); 209 210 if (le_free) 211 kmem_cache_free(ltree_slab, le_free); 212 213 return le; 214 } 215 216 /** 217 * leb_read_lock - lock logical eraseblock for reading. 218 * @ubi: UBI device description object 219 * @vol_id: volume ID 220 * @lnum: logical eraseblock number 221 * 222 * This function locks a logical eraseblock for reading. Returns zero in case 223 * of success and a negative error code in case of failure. 224 */ 225 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 226 { 227 struct ltree_entry *le; 228 229 le = ltree_add_entry(ubi, vol_id, lnum); 230 if (IS_ERR(le)) 231 return PTR_ERR(le); 232 down_read(&le->mutex); 233 return 0; 234 } 235 236 /** 237 * leb_read_unlock - unlock logical eraseblock. 238 * @ubi: UBI device description object 239 * @vol_id: volume ID 240 * @lnum: logical eraseblock number 241 */ 242 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 243 { 244 int free = 0; 245 struct ltree_entry *le; 246 247 spin_lock(&ubi->ltree_lock); 248 le = ltree_lookup(ubi, vol_id, lnum); 249 le->users -= 1; 250 ubi_assert(le->users >= 0); 251 if (le->users == 0) { 252 rb_erase(&le->rb, &ubi->ltree); 253 free = 1; 254 } 255 spin_unlock(&ubi->ltree_lock); 256 257 up_read(&le->mutex); 258 if (free) 259 kmem_cache_free(ltree_slab, le); 260 } 261 262 /** 263 * leb_write_lock - lock logical eraseblock for writing. 264 * @ubi: UBI device description object 265 * @vol_id: volume ID 266 * @lnum: logical eraseblock number 267 * 268 * This function locks a logical eraseblock for writing. Returns zero in case 269 * of success and a negative error code in case of failure. 270 */ 271 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 272 { 273 struct ltree_entry *le; 274 275 le = ltree_add_entry(ubi, vol_id, lnum); 276 if (IS_ERR(le)) 277 return PTR_ERR(le); 278 down_write(&le->mutex); 279 return 0; 280 } 281 282 /** 283 * leb_write_unlock - unlock logical eraseblock. 284 * @ubi: UBI device description object 285 * @vol_id: volume ID 286 * @lnum: logical eraseblock number 287 */ 288 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 289 { 290 int free; 291 struct ltree_entry *le; 292 293 spin_lock(&ubi->ltree_lock); 294 le = ltree_lookup(ubi, vol_id, lnum); 295 le->users -= 1; 296 ubi_assert(le->users >= 0); 297 if (le->users == 0) { 298 rb_erase(&le->rb, &ubi->ltree); 299 free = 1; 300 } else 301 free = 0; 302 spin_unlock(&ubi->ltree_lock); 303 304 up_write(&le->mutex); 305 if (free) 306 kmem_cache_free(ltree_slab, le); 307 } 308 309 /** 310 * ubi_eba_unmap_leb - un-map logical eraseblock. 311 * @ubi: UBI device description object 312 * @vol_id: volume ID 313 * @lnum: logical eraseblock number 314 * 315 * This function un-maps logical eraseblock @lnum and schedules corresponding 316 * physical eraseblock for erasure. Returns zero in case of success and a 317 * negative error code in case of failure. 318 */ 319 int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum) 320 { 321 int idx = vol_id2idx(ubi, vol_id), err, pnum; 322 struct ubi_volume *vol = ubi->volumes[idx]; 323 324 if (ubi->ro_mode) 325 return -EROFS; 326 327 err = leb_write_lock(ubi, vol_id, lnum); 328 if (err) 329 return err; 330 331 pnum = vol->eba_tbl[lnum]; 332 if (pnum < 0) 333 /* This logical eraseblock is already unmapped */ 334 goto out_unlock; 335 336 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 337 338 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 339 err = ubi_wl_put_peb(ubi, pnum, 0); 340 341 out_unlock: 342 leb_write_unlock(ubi, vol_id, lnum); 343 return err; 344 } 345 346 /** 347 * ubi_eba_read_leb - read data. 348 * @ubi: UBI device description object 349 * @vol_id: volume ID 350 * @lnum: logical eraseblock number 351 * @buf: buffer to store the read data 352 * @offset: offset from where to read 353 * @len: how many bytes to read 354 * @check: data CRC check flag 355 * 356 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 357 * bytes. The @check flag only makes sense for static volumes and forces 358 * eraseblock data CRC checking. 359 * 360 * In case of success this function returns zero. In case of a static volume, 361 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 362 * returned for any volume type if an ECC error was detected by the MTD device 363 * driver. Other negative error cored may be returned in case of other errors. 364 */ 365 int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf, 366 int offset, int len, int check) 367 { 368 int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id); 369 struct ubi_vid_hdr *vid_hdr; 370 struct ubi_volume *vol = ubi->volumes[idx]; 371 uint32_t crc, crc1; 372 373 err = leb_read_lock(ubi, vol_id, lnum); 374 if (err) 375 return err; 376 377 pnum = vol->eba_tbl[lnum]; 378 if (pnum < 0) { 379 /* 380 * The logical eraseblock is not mapped, fill the whole buffer 381 * with 0xFF bytes. The exception is static volumes for which 382 * it is an error to read unmapped logical eraseblocks. 383 */ 384 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 385 len, offset, vol_id, lnum); 386 leb_read_unlock(ubi, vol_id, lnum); 387 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 388 memset(buf, 0xFF, len); 389 return 0; 390 } 391 392 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 393 len, offset, vol_id, lnum, pnum); 394 395 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 396 check = 0; 397 398 retry: 399 if (check) { 400 vid_hdr = ubi_zalloc_vid_hdr(ubi); 401 if (!vid_hdr) { 402 err = -ENOMEM; 403 goto out_unlock; 404 } 405 406 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 407 if (err && err != UBI_IO_BITFLIPS) { 408 if (err > 0) { 409 /* 410 * The header is either absent or corrupted. 411 * The former case means there is a bug - 412 * switch to read-only mode just in case. 413 * The latter case means a real corruption - we 414 * may try to recover data. FIXME: but this is 415 * not implemented. 416 */ 417 if (err == UBI_IO_BAD_VID_HDR) { 418 ubi_warn("bad VID header at PEB %d, LEB" 419 "%d:%d", pnum, vol_id, lnum); 420 err = -EBADMSG; 421 } else 422 ubi_ro_mode(ubi); 423 } 424 goto out_free; 425 } else if (err == UBI_IO_BITFLIPS) 426 scrub = 1; 427 428 ubi_assert(lnum < ubi32_to_cpu(vid_hdr->used_ebs)); 429 ubi_assert(len == ubi32_to_cpu(vid_hdr->data_size)); 430 431 crc = ubi32_to_cpu(vid_hdr->data_crc); 432 ubi_free_vid_hdr(ubi, vid_hdr); 433 } 434 435 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 436 if (err) { 437 if (err == UBI_IO_BITFLIPS) { 438 scrub = 1; 439 err = 0; 440 } else if (err == -EBADMSG) { 441 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 442 goto out_unlock; 443 scrub = 1; 444 if (!check) { 445 ubi_msg("force data checking"); 446 check = 1; 447 goto retry; 448 } 449 } else 450 goto out_unlock; 451 } 452 453 if (check) { 454 crc1 = crc32(UBI_CRC32_INIT, buf, len); 455 if (crc1 != crc) { 456 ubi_warn("CRC error: calculated %#08x, must be %#08x", 457 crc1, crc); 458 err = -EBADMSG; 459 goto out_unlock; 460 } 461 } 462 463 if (scrub) 464 err = ubi_wl_scrub_peb(ubi, pnum); 465 466 leb_read_unlock(ubi, vol_id, lnum); 467 return err; 468 469 out_free: 470 ubi_free_vid_hdr(ubi, vid_hdr); 471 out_unlock: 472 leb_read_unlock(ubi, vol_id, lnum); 473 return err; 474 } 475 476 /** 477 * recover_peb - recover from write failure. 478 * @ubi: UBI device description object 479 * @pnum: the physical eraseblock to recover 480 * @vol_id: volume ID 481 * @lnum: logical eraseblock number 482 * @buf: data which was not written because of the write failure 483 * @offset: offset of the failed write 484 * @len: how many bytes should have been written 485 * 486 * This function is called in case of a write failure and moves all good data 487 * from the potentially bad physical eraseblock to a good physical eraseblock. 488 * This function also writes the data which was not written due to the failure. 489 * Returns new physical eraseblock number in case of success, and a negative 490 * error code in case of failure. 491 */ 492 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 493 const void *buf, int offset, int len) 494 { 495 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 496 struct ubi_volume *vol = ubi->volumes[idx]; 497 struct ubi_vid_hdr *vid_hdr; 498 unsigned char *new_buf; 499 500 vid_hdr = ubi_zalloc_vid_hdr(ubi); 501 if (!vid_hdr) { 502 return -ENOMEM; 503 } 504 505 retry: 506 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); 507 if (new_pnum < 0) { 508 ubi_free_vid_hdr(ubi, vid_hdr); 509 return new_pnum; 510 } 511 512 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); 513 514 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 515 if (err && err != UBI_IO_BITFLIPS) { 516 if (err > 0) 517 err = -EIO; 518 goto out_put; 519 } 520 521 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 522 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 523 if (err) 524 goto write_error; 525 526 data_size = offset + len; 527 new_buf = kmalloc(data_size, GFP_KERNEL); 528 if (!new_buf) { 529 err = -ENOMEM; 530 goto out_put; 531 } 532 memset(new_buf + offset, 0xFF, len); 533 534 /* Read everything before the area where the write failure happened */ 535 if (offset > 0) { 536 err = ubi_io_read_data(ubi, new_buf, pnum, 0, offset); 537 if (err && err != UBI_IO_BITFLIPS) { 538 kfree(new_buf); 539 goto out_put; 540 } 541 } 542 543 memcpy(new_buf + offset, buf, len); 544 545 err = ubi_io_write_data(ubi, new_buf, new_pnum, 0, data_size); 546 if (err) { 547 kfree(new_buf); 548 goto write_error; 549 } 550 551 kfree(new_buf); 552 ubi_free_vid_hdr(ubi, vid_hdr); 553 554 vol->eba_tbl[lnum] = new_pnum; 555 ubi_wl_put_peb(ubi, pnum, 1); 556 557 ubi_msg("data was successfully recovered"); 558 return 0; 559 560 out_put: 561 ubi_wl_put_peb(ubi, new_pnum, 1); 562 ubi_free_vid_hdr(ubi, vid_hdr); 563 return err; 564 565 write_error: 566 /* 567 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 568 * get another one. 569 */ 570 ubi_warn("failed to write to PEB %d", new_pnum); 571 ubi_wl_put_peb(ubi, new_pnum, 1); 572 if (++tries > UBI_IO_RETRIES) { 573 ubi_free_vid_hdr(ubi, vid_hdr); 574 return err; 575 } 576 ubi_msg("try again"); 577 goto retry; 578 } 579 580 /** 581 * ubi_eba_write_leb - write data to dynamic volume. 582 * @ubi: UBI device description object 583 * @vol_id: volume ID 584 * @lnum: logical eraseblock number 585 * @buf: the data to write 586 * @offset: offset within the logical eraseblock where to write 587 * @len: how many bytes to write 588 * @dtype: data type 589 * 590 * This function writes data to logical eraseblock @lnum of a dynamic volume 591 * @vol_id. Returns zero in case of success and a negative error code in case 592 * of failure. In case of error, it is possible that something was still 593 * written to the flash media, but may be some garbage. 594 */ 595 int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum, 596 const void *buf, int offset, int len, int dtype) 597 { 598 int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0; 599 struct ubi_volume *vol = ubi->volumes[idx]; 600 struct ubi_vid_hdr *vid_hdr; 601 602 if (ubi->ro_mode) 603 return -EROFS; 604 605 err = leb_write_lock(ubi, vol_id, lnum); 606 if (err) 607 return err; 608 609 pnum = vol->eba_tbl[lnum]; 610 if (pnum >= 0) { 611 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 612 len, offset, vol_id, lnum, pnum); 613 614 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 615 if (err) { 616 ubi_warn("failed to write data to PEB %d", pnum); 617 if (err == -EIO && ubi->bad_allowed) 618 err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len); 619 if (err) 620 ubi_ro_mode(ubi); 621 } 622 leb_write_unlock(ubi, vol_id, lnum); 623 return err; 624 } 625 626 /* 627 * The logical eraseblock is not mapped. We have to get a free physical 628 * eraseblock and write the volume identifier header there first. 629 */ 630 vid_hdr = ubi_zalloc_vid_hdr(ubi); 631 if (!vid_hdr) { 632 leb_write_unlock(ubi, vol_id, lnum); 633 return -ENOMEM; 634 } 635 636 vid_hdr->vol_type = UBI_VID_DYNAMIC; 637 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 638 vid_hdr->vol_id = cpu_to_ubi32(vol_id); 639 vid_hdr->lnum = cpu_to_ubi32(lnum); 640 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 641 vid_hdr->data_pad = cpu_to_ubi32(vol->data_pad); 642 643 retry: 644 pnum = ubi_wl_get_peb(ubi, dtype); 645 if (pnum < 0) { 646 ubi_free_vid_hdr(ubi, vid_hdr); 647 leb_write_unlock(ubi, vol_id, lnum); 648 return pnum; 649 } 650 651 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 652 len, offset, vol_id, lnum, pnum); 653 654 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 655 if (err) { 656 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 657 vol_id, lnum, pnum); 658 goto write_error; 659 } 660 661 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 662 if (err) { 663 ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, " 664 "PEB %d", len, offset, vol_id, lnum, pnum); 665 goto write_error; 666 } 667 668 vol->eba_tbl[lnum] = pnum; 669 670 leb_write_unlock(ubi, vol_id, lnum); 671 ubi_free_vid_hdr(ubi, vid_hdr); 672 return 0; 673 674 write_error: 675 if (err != -EIO || !ubi->bad_allowed) { 676 ubi_ro_mode(ubi); 677 leb_write_unlock(ubi, vol_id, lnum); 678 ubi_free_vid_hdr(ubi, vid_hdr); 679 return err; 680 } 681 682 /* 683 * Fortunately, this is the first write operation to this physical 684 * eraseblock, so just put it and request a new one. We assume that if 685 * this physical eraseblock went bad, the erase code will handle that. 686 */ 687 err = ubi_wl_put_peb(ubi, pnum, 1); 688 if (err || ++tries > UBI_IO_RETRIES) { 689 ubi_ro_mode(ubi); 690 leb_write_unlock(ubi, vol_id, lnum); 691 ubi_free_vid_hdr(ubi, vid_hdr); 692 return err; 693 } 694 695 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 696 ubi_msg("try another PEB"); 697 goto retry; 698 } 699 700 /** 701 * ubi_eba_write_leb_st - write data to static volume. 702 * @ubi: UBI device description object 703 * @vol_id: volume ID 704 * @lnum: logical eraseblock number 705 * @buf: data to write 706 * @len: how many bytes to write 707 * @dtype: data type 708 * @used_ebs: how many logical eraseblocks will this volume contain 709 * 710 * This function writes data to logical eraseblock @lnum of static volume 711 * @vol_id. The @used_ebs argument should contain total number of logical 712 * eraseblock in this static volume. 713 * 714 * When writing to the last logical eraseblock, the @len argument doesn't have 715 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 716 * to the real data size, although the @buf buffer has to contain the 717 * alignment. In all other cases, @len has to be aligned. 718 * 719 * It is prohibited to write more then once to logical eraseblocks of static 720 * volumes. This function returns zero in case of success and a negative error 721 * code in case of failure. 722 */ 723 int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum, 724 const void *buf, int len, int dtype, int used_ebs) 725 { 726 int err, pnum, tries = 0, data_size = len; 727 int idx = vol_id2idx(ubi, vol_id); 728 struct ubi_volume *vol = ubi->volumes[idx]; 729 struct ubi_vid_hdr *vid_hdr; 730 uint32_t crc; 731 732 if (ubi->ro_mode) 733 return -EROFS; 734 735 if (lnum == used_ebs - 1) 736 /* If this is the last LEB @len may be unaligned */ 737 len = ALIGN(data_size, ubi->min_io_size); 738 else 739 ubi_assert(len % ubi->min_io_size == 0); 740 741 vid_hdr = ubi_zalloc_vid_hdr(ubi); 742 if (!vid_hdr) 743 return -ENOMEM; 744 745 err = leb_write_lock(ubi, vol_id, lnum); 746 if (err) { 747 ubi_free_vid_hdr(ubi, vid_hdr); 748 return err; 749 } 750 751 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 752 vid_hdr->vol_id = cpu_to_ubi32(vol_id); 753 vid_hdr->lnum = cpu_to_ubi32(lnum); 754 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 755 vid_hdr->data_pad = cpu_to_ubi32(vol->data_pad); 756 757 crc = crc32(UBI_CRC32_INIT, buf, data_size); 758 vid_hdr->vol_type = UBI_VID_STATIC; 759 vid_hdr->data_size = cpu_to_ubi32(data_size); 760 vid_hdr->used_ebs = cpu_to_ubi32(used_ebs); 761 vid_hdr->data_crc = cpu_to_ubi32(crc); 762 763 retry: 764 pnum = ubi_wl_get_peb(ubi, dtype); 765 if (pnum < 0) { 766 ubi_free_vid_hdr(ubi, vid_hdr); 767 leb_write_unlock(ubi, vol_id, lnum); 768 return pnum; 769 } 770 771 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 772 len, vol_id, lnum, pnum, used_ebs); 773 774 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 775 if (err) { 776 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 777 vol_id, lnum, pnum); 778 goto write_error; 779 } 780 781 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 782 if (err) { 783 ubi_warn("failed to write %d bytes of data to PEB %d", 784 len, pnum); 785 goto write_error; 786 } 787 788 ubi_assert(vol->eba_tbl[lnum] < 0); 789 vol->eba_tbl[lnum] = pnum; 790 791 leb_write_unlock(ubi, vol_id, lnum); 792 ubi_free_vid_hdr(ubi, vid_hdr); 793 return 0; 794 795 write_error: 796 if (err != -EIO || !ubi->bad_allowed) { 797 /* 798 * This flash device does not admit of bad eraseblocks or 799 * something nasty and unexpected happened. Switch to read-only 800 * mode just in case. 801 */ 802 ubi_ro_mode(ubi); 803 leb_write_unlock(ubi, vol_id, lnum); 804 ubi_free_vid_hdr(ubi, vid_hdr); 805 return err; 806 } 807 808 err = ubi_wl_put_peb(ubi, pnum, 1); 809 if (err || ++tries > UBI_IO_RETRIES) { 810 ubi_ro_mode(ubi); 811 leb_write_unlock(ubi, vol_id, lnum); 812 ubi_free_vid_hdr(ubi, vid_hdr); 813 return err; 814 } 815 816 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 817 ubi_msg("try another PEB"); 818 goto retry; 819 } 820 821 /* 822 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 823 * @ubi: UBI device description object 824 * @vol_id: volume ID 825 * @lnum: logical eraseblock number 826 * @buf: data to write 827 * @len: how many bytes to write 828 * @dtype: data type 829 * 830 * This function changes the contents of a logical eraseblock atomically. @buf 831 * has to contain new logical eraseblock data, and @len - the length of the 832 * data, which has to be aligned. This function guarantees that in case of an 833 * unclean reboot the old contents is preserved. Returns zero in case of 834 * success and a negative error code in case of failure. 835 */ 836 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum, 837 const void *buf, int len, int dtype) 838 { 839 int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id); 840 struct ubi_volume *vol = ubi->volumes[idx]; 841 struct ubi_vid_hdr *vid_hdr; 842 uint32_t crc; 843 844 if (ubi->ro_mode) 845 return -EROFS; 846 847 vid_hdr = ubi_zalloc_vid_hdr(ubi); 848 if (!vid_hdr) 849 return -ENOMEM; 850 851 err = leb_write_lock(ubi, vol_id, lnum); 852 if (err) { 853 ubi_free_vid_hdr(ubi, vid_hdr); 854 return err; 855 } 856 857 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 858 vid_hdr->vol_id = cpu_to_ubi32(vol_id); 859 vid_hdr->lnum = cpu_to_ubi32(lnum); 860 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 861 vid_hdr->data_pad = cpu_to_ubi32(vol->data_pad); 862 863 crc = crc32(UBI_CRC32_INIT, buf, len); 864 vid_hdr->vol_type = UBI_VID_STATIC; 865 vid_hdr->data_size = cpu_to_ubi32(len); 866 vid_hdr->copy_flag = 1; 867 vid_hdr->data_crc = cpu_to_ubi32(crc); 868 869 retry: 870 pnum = ubi_wl_get_peb(ubi, dtype); 871 if (pnum < 0) { 872 ubi_free_vid_hdr(ubi, vid_hdr); 873 leb_write_unlock(ubi, vol_id, lnum); 874 return pnum; 875 } 876 877 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 878 vol_id, lnum, vol->eba_tbl[lnum], pnum); 879 880 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 881 if (err) { 882 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 883 vol_id, lnum, pnum); 884 goto write_error; 885 } 886 887 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 888 if (err) { 889 ubi_warn("failed to write %d bytes of data to PEB %d", 890 len, pnum); 891 goto write_error; 892 } 893 894 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1); 895 if (err) { 896 ubi_free_vid_hdr(ubi, vid_hdr); 897 leb_write_unlock(ubi, vol_id, lnum); 898 return err; 899 } 900 901 vol->eba_tbl[lnum] = pnum; 902 leb_write_unlock(ubi, vol_id, lnum); 903 ubi_free_vid_hdr(ubi, vid_hdr); 904 return 0; 905 906 write_error: 907 if (err != -EIO || !ubi->bad_allowed) { 908 /* 909 * This flash device does not admit of bad eraseblocks or 910 * something nasty and unexpected happened. Switch to read-only 911 * mode just in case. 912 */ 913 ubi_ro_mode(ubi); 914 leb_write_unlock(ubi, vol_id, lnum); 915 ubi_free_vid_hdr(ubi, vid_hdr); 916 return err; 917 } 918 919 err = ubi_wl_put_peb(ubi, pnum, 1); 920 if (err || ++tries > UBI_IO_RETRIES) { 921 ubi_ro_mode(ubi); 922 leb_write_unlock(ubi, vol_id, lnum); 923 ubi_free_vid_hdr(ubi, vid_hdr); 924 return err; 925 } 926 927 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 928 ubi_msg("try another PEB"); 929 goto retry; 930 } 931 932 /** 933 * ltree_entry_ctor - lock tree entries slab cache constructor. 934 * @obj: the lock-tree entry to construct 935 * @cache: the lock tree entry slab cache 936 * @flags: constructor flags 937 */ 938 static void ltree_entry_ctor(void *obj, struct kmem_cache *cache, 939 unsigned long flags) 940 { 941 struct ltree_entry *le = obj; 942 943 le->users = 0; 944 init_rwsem(&le->mutex); 945 } 946 947 /** 948 * ubi_eba_copy_leb - copy logical eraseblock. 949 * @ubi: UBI device description object 950 * @from: physical eraseblock number from where to copy 951 * @to: physical eraseblock number where to copy 952 * @vid_hdr: VID header of the @from physical eraseblock 953 * 954 * This function copies logical eraseblock from physical eraseblock @from to 955 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 956 * function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation 957 * was canceled because bit-flips were detected at the target PEB, and a 958 * negative error code in case of failure. 959 */ 960 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 961 struct ubi_vid_hdr *vid_hdr) 962 { 963 int err, vol_id, lnum, data_size, aldata_size, pnum, idx; 964 struct ubi_volume *vol; 965 uint32_t crc; 966 void *buf, *buf1 = NULL; 967 968 vol_id = ubi32_to_cpu(vid_hdr->vol_id); 969 lnum = ubi32_to_cpu(vid_hdr->lnum); 970 971 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 972 973 if (vid_hdr->vol_type == UBI_VID_STATIC) { 974 data_size = ubi32_to_cpu(vid_hdr->data_size); 975 aldata_size = ALIGN(data_size, ubi->min_io_size); 976 } else 977 data_size = aldata_size = 978 ubi->leb_size - ubi32_to_cpu(vid_hdr->data_pad); 979 980 buf = kmalloc(aldata_size, GFP_KERNEL); 981 if (!buf) 982 return -ENOMEM; 983 984 /* 985 * We do not want anybody to write to this logical eraseblock while we 986 * are moving it, so we lock it. 987 */ 988 err = leb_write_lock(ubi, vol_id, lnum); 989 if (err) { 990 kfree(buf); 991 return err; 992 } 993 994 /* 995 * But the logical eraseblock might have been put by this time. 996 * Cancel if it is true. 997 */ 998 idx = vol_id2idx(ubi, vol_id); 999 1000 /* 1001 * We may race with volume deletion/re-size, so we have to hold 1002 * @ubi->volumes_lock. 1003 */ 1004 spin_lock(&ubi->volumes_lock); 1005 vol = ubi->volumes[idx]; 1006 if (!vol) { 1007 dbg_eba("volume %d was removed meanwhile", vol_id); 1008 spin_unlock(&ubi->volumes_lock); 1009 goto out_unlock; 1010 } 1011 1012 pnum = vol->eba_tbl[lnum]; 1013 if (pnum != from) { 1014 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to " 1015 "PEB %d, cancel", vol_id, lnum, from, pnum); 1016 spin_unlock(&ubi->volumes_lock); 1017 goto out_unlock; 1018 } 1019 spin_unlock(&ubi->volumes_lock); 1020 1021 /* OK, now the LEB is locked and we can safely start moving it */ 1022 1023 dbg_eba("read %d bytes of data", aldata_size); 1024 err = ubi_io_read_data(ubi, buf, from, 0, aldata_size); 1025 if (err && err != UBI_IO_BITFLIPS) { 1026 ubi_warn("error %d while reading data from PEB %d", 1027 err, from); 1028 goto out_unlock; 1029 } 1030 1031 /* 1032 * Now we have got to calculate how much data we have to to copy. In 1033 * case of a static volume it is fairly easy - the VID header contains 1034 * the data size. In case of a dynamic volume it is more difficult - we 1035 * have to read the contents, cut 0xFF bytes from the end and copy only 1036 * the first part. We must do this to avoid writing 0xFF bytes as it 1037 * may have some side-effects. And not only this. It is important not 1038 * to include those 0xFFs to CRC because later the they may be filled 1039 * by data. 1040 */ 1041 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1042 aldata_size = data_size = 1043 ubi_calc_data_len(ubi, buf, data_size); 1044 1045 cond_resched(); 1046 crc = crc32(UBI_CRC32_INIT, buf, data_size); 1047 cond_resched(); 1048 1049 /* 1050 * It may turn out to me that the whole @from physical eraseblock 1051 * contains only 0xFF bytes. Then we have to only write the VID header 1052 * and do not write any data. This also means we should not set 1053 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1054 */ 1055 if (data_size > 0) { 1056 vid_hdr->copy_flag = 1; 1057 vid_hdr->data_size = cpu_to_ubi32(data_size); 1058 vid_hdr->data_crc = cpu_to_ubi32(crc); 1059 } 1060 vid_hdr->sqnum = cpu_to_ubi64(next_sqnum(ubi)); 1061 1062 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1063 if (err) 1064 goto out_unlock; 1065 1066 cond_resched(); 1067 1068 /* Read the VID header back and check if it was written correctly */ 1069 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1070 if (err) { 1071 if (err != UBI_IO_BITFLIPS) 1072 ubi_warn("cannot read VID header back from PEB %d", to); 1073 goto out_unlock; 1074 } 1075 1076 if (data_size > 0) { 1077 err = ubi_io_write_data(ubi, buf, to, 0, aldata_size); 1078 if (err) 1079 goto out_unlock; 1080 1081 /* 1082 * We've written the data and are going to read it back to make 1083 * sure it was written correctly. 1084 */ 1085 buf1 = kmalloc(aldata_size, GFP_KERNEL); 1086 if (!buf1) { 1087 err = -ENOMEM; 1088 goto out_unlock; 1089 } 1090 1091 cond_resched(); 1092 1093 err = ubi_io_read_data(ubi, buf1, to, 0, aldata_size); 1094 if (err) { 1095 if (err != UBI_IO_BITFLIPS) 1096 ubi_warn("cannot read data back from PEB %d", 1097 to); 1098 goto out_unlock; 1099 } 1100 1101 cond_resched(); 1102 1103 if (memcmp(buf, buf1, aldata_size)) { 1104 ubi_warn("read data back from PEB %d - it is different", 1105 to); 1106 goto out_unlock; 1107 } 1108 } 1109 1110 ubi_assert(vol->eba_tbl[lnum] == from); 1111 vol->eba_tbl[lnum] = to; 1112 1113 leb_write_unlock(ubi, vol_id, lnum); 1114 kfree(buf); 1115 kfree(buf1); 1116 1117 return 0; 1118 1119 out_unlock: 1120 leb_write_unlock(ubi, vol_id, lnum); 1121 kfree(buf); 1122 kfree(buf1); 1123 return err; 1124 } 1125 1126 /** 1127 * ubi_eba_init_scan - initialize the EBA unit using scanning information. 1128 * @ubi: UBI device description object 1129 * @si: scanning information 1130 * 1131 * This function returns zero in case of success and a negative error code in 1132 * case of failure. 1133 */ 1134 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1135 { 1136 int i, j, err, num_volumes; 1137 struct ubi_scan_volume *sv; 1138 struct ubi_volume *vol; 1139 struct ubi_scan_leb *seb; 1140 struct rb_node *rb; 1141 1142 dbg_eba("initialize EBA unit"); 1143 1144 spin_lock_init(&ubi->ltree_lock); 1145 ubi->ltree = RB_ROOT; 1146 1147 if (ubi_devices_cnt == 0) { 1148 ltree_slab = kmem_cache_create("ubi_ltree_slab", 1149 sizeof(struct ltree_entry), 0, 1150 0, <ree_entry_ctor, NULL); 1151 if (!ltree_slab) 1152 return -ENOMEM; 1153 } 1154 1155 ubi->global_sqnum = si->max_sqnum + 1; 1156 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1157 1158 for (i = 0; i < num_volumes; i++) { 1159 vol = ubi->volumes[i]; 1160 if (!vol) 1161 continue; 1162 1163 cond_resched(); 1164 1165 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1166 GFP_KERNEL); 1167 if (!vol->eba_tbl) { 1168 err = -ENOMEM; 1169 goto out_free; 1170 } 1171 1172 for (j = 0; j < vol->reserved_pebs; j++) 1173 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1174 1175 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); 1176 if (!sv) 1177 continue; 1178 1179 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 1180 if (seb->lnum >= vol->reserved_pebs) 1181 /* 1182 * This may happen in case of an unclean reboot 1183 * during re-size. 1184 */ 1185 ubi_scan_move_to_list(sv, seb, &si->erase); 1186 vol->eba_tbl[seb->lnum] = seb->pnum; 1187 } 1188 } 1189 1190 if (ubi->bad_allowed) { 1191 ubi_calculate_reserved(ubi); 1192 1193 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1194 /* No enough free physical eraseblocks */ 1195 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1196 ubi_warn("cannot reserve enough PEBs for bad PEB " 1197 "handling, reserved %d, need %d", 1198 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1199 } else 1200 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1201 1202 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1203 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1204 } 1205 1206 dbg_eba("EBA unit is initialized"); 1207 return 0; 1208 1209 out_free: 1210 for (i = 0; i < num_volumes; i++) { 1211 if (!ubi->volumes[i]) 1212 continue; 1213 kfree(ubi->volumes[i]->eba_tbl); 1214 } 1215 if (ubi_devices_cnt == 0) 1216 kmem_cache_destroy(ltree_slab); 1217 return err; 1218 } 1219 1220 /** 1221 * ubi_eba_close - close EBA unit. 1222 * @ubi: UBI device description object 1223 */ 1224 void ubi_eba_close(const struct ubi_device *ubi) 1225 { 1226 int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1227 1228 dbg_eba("close EBA unit"); 1229 1230 for (i = 0; i < num_volumes; i++) { 1231 if (!ubi->volumes[i]) 1232 continue; 1233 kfree(ubi->volumes[i]->eba_tbl); 1234 } 1235 if (ubi_devices_cnt == 1) 1236 kmem_cache_destroy(ltree_slab); 1237 } 1238