1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * The UBI Eraseblock Association (EBA) sub-system. 23 * 24 * This sub-system is responsible for I/O to/from logical eraseblock. 25 * 26 * Although in this implementation the EBA table is fully kept and managed in 27 * RAM, which assumes poor scalability, it might be (partially) maintained on 28 * flash in future implementations. 29 * 30 * The EBA sub-system implements per-logical eraseblock locking. Before 31 * accessing a logical eraseblock it is locked for reading or writing. The 32 * per-logical eraseblock locking is implemented by means of the lock tree. The 33 * lock tree is an RB-tree which refers all the currently locked logical 34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. 35 * They are indexed by (@vol_id, @lnum) pairs. 36 * 37 * EBA also maintains the global sequence counter which is incremented each 38 * time a logical eraseblock is mapped to a physical eraseblock and it is 39 * stored in the volume identifier header. This means that each VID header has 40 * a unique sequence number. The sequence number is only increased an we assume 41 * 64 bits is enough to never overflow. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/crc32.h> 46 #include <linux/err.h> 47 #include "ubi.h" 48 49 /* Number of physical eraseblocks reserved for atomic LEB change operation */ 50 #define EBA_RESERVED_PEBS 1 51 52 /** 53 * next_sqnum - get next sequence number. 54 * @ubi: UBI device description object 55 * 56 * This function returns next sequence number to use, which is just the current 57 * global sequence counter value. It also increases the global sequence 58 * counter. 59 */ 60 static unsigned long long next_sqnum(struct ubi_device *ubi) 61 { 62 unsigned long long sqnum; 63 64 spin_lock(&ubi->ltree_lock); 65 sqnum = ubi->global_sqnum++; 66 spin_unlock(&ubi->ltree_lock); 67 68 return sqnum; 69 } 70 71 /** 72 * ubi_get_compat - get compatibility flags of a volume. 73 * @ubi: UBI device description object 74 * @vol_id: volume ID 75 * 76 * This function returns compatibility flags for an internal volume. User 77 * volumes have no compatibility flags, so %0 is returned. 78 */ 79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) 80 { 81 if (vol_id == UBI_LAYOUT_VOLUME_ID) 82 return UBI_LAYOUT_VOLUME_COMPAT; 83 return 0; 84 } 85 86 /** 87 * ltree_lookup - look up the lock tree. 88 * @ubi: UBI device description object 89 * @vol_id: volume ID 90 * @lnum: logical eraseblock number 91 * 92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry 93 * object if the logical eraseblock is locked and %NULL if it is not. 94 * @ubi->ltree_lock has to be locked. 95 */ 96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, 97 int lnum) 98 { 99 struct rb_node *p; 100 101 p = ubi->ltree.rb_node; 102 while (p) { 103 struct ubi_ltree_entry *le; 104 105 le = rb_entry(p, struct ubi_ltree_entry, rb); 106 107 if (vol_id < le->vol_id) 108 p = p->rb_left; 109 else if (vol_id > le->vol_id) 110 p = p->rb_right; 111 else { 112 if (lnum < le->lnum) 113 p = p->rb_left; 114 else if (lnum > le->lnum) 115 p = p->rb_right; 116 else 117 return le; 118 } 119 } 120 121 return NULL; 122 } 123 124 /** 125 * ltree_add_entry - add new entry to the lock tree. 126 * @ubi: UBI device description object 127 * @vol_id: volume ID 128 * @lnum: logical eraseblock number 129 * 130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the 131 * lock tree. If such entry is already there, its usage counter is increased. 132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation 133 * failed. 134 */ 135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, 136 int vol_id, int lnum) 137 { 138 struct ubi_ltree_entry *le, *le1, *le_free; 139 140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); 141 if (!le) 142 return ERR_PTR(-ENOMEM); 143 144 le->users = 0; 145 init_rwsem(&le->mutex); 146 le->vol_id = vol_id; 147 le->lnum = lnum; 148 149 spin_lock(&ubi->ltree_lock); 150 le1 = ltree_lookup(ubi, vol_id, lnum); 151 152 if (le1) { 153 /* 154 * This logical eraseblock is already locked. The newly 155 * allocated lock entry is not needed. 156 */ 157 le_free = le; 158 le = le1; 159 } else { 160 struct rb_node **p, *parent = NULL; 161 162 /* 163 * No lock entry, add the newly allocated one to the 164 * @ubi->ltree RB-tree. 165 */ 166 le_free = NULL; 167 168 p = &ubi->ltree.rb_node; 169 while (*p) { 170 parent = *p; 171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb); 172 173 if (vol_id < le1->vol_id) 174 p = &(*p)->rb_left; 175 else if (vol_id > le1->vol_id) 176 p = &(*p)->rb_right; 177 else { 178 ubi_assert(lnum != le1->lnum); 179 if (lnum < le1->lnum) 180 p = &(*p)->rb_left; 181 else 182 p = &(*p)->rb_right; 183 } 184 } 185 186 rb_link_node(&le->rb, parent, p); 187 rb_insert_color(&le->rb, &ubi->ltree); 188 } 189 le->users += 1; 190 spin_unlock(&ubi->ltree_lock); 191 192 kfree(le_free); 193 return le; 194 } 195 196 /** 197 * leb_read_lock - lock logical eraseblock for reading. 198 * @ubi: UBI device description object 199 * @vol_id: volume ID 200 * @lnum: logical eraseblock number 201 * 202 * This function locks a logical eraseblock for reading. Returns zero in case 203 * of success and a negative error code in case of failure. 204 */ 205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) 206 { 207 struct ubi_ltree_entry *le; 208 209 le = ltree_add_entry(ubi, vol_id, lnum); 210 if (IS_ERR(le)) 211 return PTR_ERR(le); 212 down_read(&le->mutex); 213 return 0; 214 } 215 216 /** 217 * leb_read_unlock - unlock logical eraseblock. 218 * @ubi: UBI device description object 219 * @vol_id: volume ID 220 * @lnum: logical eraseblock number 221 */ 222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) 223 { 224 struct ubi_ltree_entry *le; 225 226 spin_lock(&ubi->ltree_lock); 227 le = ltree_lookup(ubi, vol_id, lnum); 228 le->users -= 1; 229 ubi_assert(le->users >= 0); 230 up_read(&le->mutex); 231 if (le->users == 0) { 232 rb_erase(&le->rb, &ubi->ltree); 233 kfree(le); 234 } 235 spin_unlock(&ubi->ltree_lock); 236 } 237 238 /** 239 * leb_write_lock - lock logical eraseblock for writing. 240 * @ubi: UBI device description object 241 * @vol_id: volume ID 242 * @lnum: logical eraseblock number 243 * 244 * This function locks a logical eraseblock for writing. Returns zero in case 245 * of success and a negative error code in case of failure. 246 */ 247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) 248 { 249 struct ubi_ltree_entry *le; 250 251 le = ltree_add_entry(ubi, vol_id, lnum); 252 if (IS_ERR(le)) 253 return PTR_ERR(le); 254 down_write(&le->mutex); 255 return 0; 256 } 257 258 /** 259 * leb_write_lock - lock logical eraseblock for writing. 260 * @ubi: UBI device description object 261 * @vol_id: volume ID 262 * @lnum: logical eraseblock number 263 * 264 * This function locks a logical eraseblock for writing if there is no 265 * contention and does nothing if there is contention. Returns %0 in case of 266 * success, %1 in case of contention, and and a negative error code in case of 267 * failure. 268 */ 269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) 270 { 271 struct ubi_ltree_entry *le; 272 273 le = ltree_add_entry(ubi, vol_id, lnum); 274 if (IS_ERR(le)) 275 return PTR_ERR(le); 276 if (down_write_trylock(&le->mutex)) 277 return 0; 278 279 /* Contention, cancel */ 280 spin_lock(&ubi->ltree_lock); 281 le->users -= 1; 282 ubi_assert(le->users >= 0); 283 if (le->users == 0) { 284 rb_erase(&le->rb, &ubi->ltree); 285 kfree(le); 286 } 287 spin_unlock(&ubi->ltree_lock); 288 289 return 1; 290 } 291 292 /** 293 * leb_write_unlock - unlock logical eraseblock. 294 * @ubi: UBI device description object 295 * @vol_id: volume ID 296 * @lnum: logical eraseblock number 297 */ 298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) 299 { 300 struct ubi_ltree_entry *le; 301 302 spin_lock(&ubi->ltree_lock); 303 le = ltree_lookup(ubi, vol_id, lnum); 304 le->users -= 1; 305 ubi_assert(le->users >= 0); 306 up_write(&le->mutex); 307 if (le->users == 0) { 308 rb_erase(&le->rb, &ubi->ltree); 309 kfree(le); 310 } 311 spin_unlock(&ubi->ltree_lock); 312 } 313 314 /** 315 * ubi_eba_unmap_leb - un-map logical eraseblock. 316 * @ubi: UBI device description object 317 * @vol: volume description object 318 * @lnum: logical eraseblock number 319 * 320 * This function un-maps logical eraseblock @lnum and schedules corresponding 321 * physical eraseblock for erasure. Returns zero in case of success and a 322 * negative error code in case of failure. 323 */ 324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, 325 int lnum) 326 { 327 int err, pnum, vol_id = vol->vol_id; 328 329 if (ubi->ro_mode) 330 return -EROFS; 331 332 err = leb_write_lock(ubi, vol_id, lnum); 333 if (err) 334 return err; 335 336 pnum = vol->eba_tbl[lnum]; 337 if (pnum < 0) 338 /* This logical eraseblock is already unmapped */ 339 goto out_unlock; 340 341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); 342 343 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; 344 err = ubi_wl_put_peb(ubi, pnum, 0); 345 346 out_unlock: 347 leb_write_unlock(ubi, vol_id, lnum); 348 return err; 349 } 350 351 /** 352 * ubi_eba_read_leb - read data. 353 * @ubi: UBI device description object 354 * @vol: volume description object 355 * @lnum: logical eraseblock number 356 * @buf: buffer to store the read data 357 * @offset: offset from where to read 358 * @len: how many bytes to read 359 * @check: data CRC check flag 360 * 361 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF 362 * bytes. The @check flag only makes sense for static volumes and forces 363 * eraseblock data CRC checking. 364 * 365 * In case of success this function returns zero. In case of a static volume, 366 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be 367 * returned for any volume type if an ECC error was detected by the MTD device 368 * driver. Other negative error cored may be returned in case of other errors. 369 */ 370 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 371 void *buf, int offset, int len, int check) 372 { 373 int err, pnum, scrub = 0, vol_id = vol->vol_id; 374 struct ubi_vid_hdr *vid_hdr; 375 uint32_t uninitialized_var(crc); 376 377 err = leb_read_lock(ubi, vol_id, lnum); 378 if (err) 379 return err; 380 381 pnum = vol->eba_tbl[lnum]; 382 if (pnum < 0) { 383 /* 384 * The logical eraseblock is not mapped, fill the whole buffer 385 * with 0xFF bytes. The exception is static volumes for which 386 * it is an error to read unmapped logical eraseblocks. 387 */ 388 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", 389 len, offset, vol_id, lnum); 390 leb_read_unlock(ubi, vol_id, lnum); 391 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); 392 memset(buf, 0xFF, len); 393 return 0; 394 } 395 396 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", 397 len, offset, vol_id, lnum, pnum); 398 399 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 400 check = 0; 401 402 retry: 403 if (check) { 404 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 405 if (!vid_hdr) { 406 err = -ENOMEM; 407 goto out_unlock; 408 } 409 410 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 411 if (err && err != UBI_IO_BITFLIPS) { 412 if (err > 0) { 413 /* 414 * The header is either absent or corrupted. 415 * The former case means there is a bug - 416 * switch to read-only mode just in case. 417 * The latter case means a real corruption - we 418 * may try to recover data. FIXME: but this is 419 * not implemented. 420 */ 421 if (err == UBI_IO_BAD_HDR_EBADMSG || 422 err == UBI_IO_BAD_HDR) { 423 ubi_warn("corrupted VID header at PEB " 424 "%d, LEB %d:%d", pnum, vol_id, 425 lnum); 426 err = -EBADMSG; 427 } else 428 ubi_ro_mode(ubi); 429 } 430 goto out_free; 431 } else if (err == UBI_IO_BITFLIPS) 432 scrub = 1; 433 434 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); 435 ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); 436 437 crc = be32_to_cpu(vid_hdr->data_crc); 438 ubi_free_vid_hdr(ubi, vid_hdr); 439 } 440 441 err = ubi_io_read_data(ubi, buf, pnum, offset, len); 442 if (err) { 443 if (err == UBI_IO_BITFLIPS) { 444 scrub = 1; 445 err = 0; 446 } else if (err == -EBADMSG) { 447 if (vol->vol_type == UBI_DYNAMIC_VOLUME) 448 goto out_unlock; 449 scrub = 1; 450 if (!check) { 451 ubi_msg("force data checking"); 452 check = 1; 453 goto retry; 454 } 455 } else 456 goto out_unlock; 457 } 458 459 if (check) { 460 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); 461 if (crc1 != crc) { 462 ubi_warn("CRC error: calculated %#08x, must be %#08x", 463 crc1, crc); 464 err = -EBADMSG; 465 goto out_unlock; 466 } 467 } 468 469 if (scrub) 470 err = ubi_wl_scrub_peb(ubi, pnum); 471 472 leb_read_unlock(ubi, vol_id, lnum); 473 return err; 474 475 out_free: 476 ubi_free_vid_hdr(ubi, vid_hdr); 477 out_unlock: 478 leb_read_unlock(ubi, vol_id, lnum); 479 return err; 480 } 481 482 /** 483 * recover_peb - recover from write failure. 484 * @ubi: UBI device description object 485 * @pnum: the physical eraseblock to recover 486 * @vol_id: volume ID 487 * @lnum: logical eraseblock number 488 * @buf: data which was not written because of the write failure 489 * @offset: offset of the failed write 490 * @len: how many bytes should have been written 491 * 492 * This function is called in case of a write failure and moves all good data 493 * from the potentially bad physical eraseblock to a good physical eraseblock. 494 * This function also writes the data which was not written due to the failure. 495 * Returns new physical eraseblock number in case of success, and a negative 496 * error code in case of failure. 497 */ 498 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, 499 const void *buf, int offset, int len) 500 { 501 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; 502 struct ubi_volume *vol = ubi->volumes[idx]; 503 struct ubi_vid_hdr *vid_hdr; 504 505 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 506 if (!vid_hdr) 507 return -ENOMEM; 508 509 retry: 510 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN); 511 if (new_pnum < 0) { 512 ubi_free_vid_hdr(ubi, vid_hdr); 513 return new_pnum; 514 } 515 516 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum); 517 518 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); 519 if (err && err != UBI_IO_BITFLIPS) { 520 if (err > 0) 521 err = -EIO; 522 goto out_put; 523 } 524 525 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 526 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); 527 if (err) 528 goto write_error; 529 530 data_size = offset + len; 531 mutex_lock(&ubi->buf_mutex); 532 memset(ubi->peb_buf1 + offset, 0xFF, len); 533 534 /* Read everything before the area where the write failure happened */ 535 if (offset > 0) { 536 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset); 537 if (err && err != UBI_IO_BITFLIPS) 538 goto out_unlock; 539 } 540 541 memcpy(ubi->peb_buf1 + offset, buf, len); 542 543 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size); 544 if (err) { 545 mutex_unlock(&ubi->buf_mutex); 546 goto write_error; 547 } 548 549 mutex_unlock(&ubi->buf_mutex); 550 ubi_free_vid_hdr(ubi, vid_hdr); 551 552 vol->eba_tbl[lnum] = new_pnum; 553 ubi_wl_put_peb(ubi, pnum, 1); 554 555 ubi_msg("data was successfully recovered"); 556 return 0; 557 558 out_unlock: 559 mutex_unlock(&ubi->buf_mutex); 560 out_put: 561 ubi_wl_put_peb(ubi, new_pnum, 1); 562 ubi_free_vid_hdr(ubi, vid_hdr); 563 return err; 564 565 write_error: 566 /* 567 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to 568 * get another one. 569 */ 570 ubi_warn("failed to write to PEB %d", new_pnum); 571 ubi_wl_put_peb(ubi, new_pnum, 1); 572 if (++tries > UBI_IO_RETRIES) { 573 ubi_free_vid_hdr(ubi, vid_hdr); 574 return err; 575 } 576 ubi_msg("try again"); 577 goto retry; 578 } 579 580 /** 581 * ubi_eba_write_leb - write data to dynamic volume. 582 * @ubi: UBI device description object 583 * @vol: volume description object 584 * @lnum: logical eraseblock number 585 * @buf: the data to write 586 * @offset: offset within the logical eraseblock where to write 587 * @len: how many bytes to write 588 * @dtype: data type 589 * 590 * This function writes data to logical eraseblock @lnum of a dynamic volume 591 * @vol. Returns zero in case of success and a negative error code in case 592 * of failure. In case of error, it is possible that something was still 593 * written to the flash media, but may be some garbage. 594 */ 595 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, 596 const void *buf, int offset, int len, int dtype) 597 { 598 int err, pnum, tries = 0, vol_id = vol->vol_id; 599 struct ubi_vid_hdr *vid_hdr; 600 601 if (ubi->ro_mode) 602 return -EROFS; 603 604 err = leb_write_lock(ubi, vol_id, lnum); 605 if (err) 606 return err; 607 608 pnum = vol->eba_tbl[lnum]; 609 if (pnum >= 0) { 610 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", 611 len, offset, vol_id, lnum, pnum); 612 613 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 614 if (err) { 615 ubi_warn("failed to write data to PEB %d", pnum); 616 if (err == -EIO && ubi->bad_allowed) 617 err = recover_peb(ubi, pnum, vol_id, lnum, buf, 618 offset, len); 619 if (err) 620 ubi_ro_mode(ubi); 621 } 622 leb_write_unlock(ubi, vol_id, lnum); 623 return err; 624 } 625 626 /* 627 * The logical eraseblock is not mapped. We have to get a free physical 628 * eraseblock and write the volume identifier header there first. 629 */ 630 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 631 if (!vid_hdr) { 632 leb_write_unlock(ubi, vol_id, lnum); 633 return -ENOMEM; 634 } 635 636 vid_hdr->vol_type = UBI_VID_DYNAMIC; 637 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 638 vid_hdr->vol_id = cpu_to_be32(vol_id); 639 vid_hdr->lnum = cpu_to_be32(lnum); 640 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 641 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 642 643 retry: 644 pnum = ubi_wl_get_peb(ubi, dtype); 645 if (pnum < 0) { 646 ubi_free_vid_hdr(ubi, vid_hdr); 647 leb_write_unlock(ubi, vol_id, lnum); 648 return pnum; 649 } 650 651 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", 652 len, offset, vol_id, lnum, pnum); 653 654 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 655 if (err) { 656 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 657 vol_id, lnum, pnum); 658 goto write_error; 659 } 660 661 if (len) { 662 err = ubi_io_write_data(ubi, buf, pnum, offset, len); 663 if (err) { 664 ubi_warn("failed to write %d bytes at offset %d of " 665 "LEB %d:%d, PEB %d", len, offset, vol_id, 666 lnum, pnum); 667 goto write_error; 668 } 669 } 670 671 vol->eba_tbl[lnum] = pnum; 672 673 leb_write_unlock(ubi, vol_id, lnum); 674 ubi_free_vid_hdr(ubi, vid_hdr); 675 return 0; 676 677 write_error: 678 if (err != -EIO || !ubi->bad_allowed) { 679 ubi_ro_mode(ubi); 680 leb_write_unlock(ubi, vol_id, lnum); 681 ubi_free_vid_hdr(ubi, vid_hdr); 682 return err; 683 } 684 685 /* 686 * Fortunately, this is the first write operation to this physical 687 * eraseblock, so just put it and request a new one. We assume that if 688 * this physical eraseblock went bad, the erase code will handle that. 689 */ 690 err = ubi_wl_put_peb(ubi, pnum, 1); 691 if (err || ++tries > UBI_IO_RETRIES) { 692 ubi_ro_mode(ubi); 693 leb_write_unlock(ubi, vol_id, lnum); 694 ubi_free_vid_hdr(ubi, vid_hdr); 695 return err; 696 } 697 698 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 699 ubi_msg("try another PEB"); 700 goto retry; 701 } 702 703 /** 704 * ubi_eba_write_leb_st - write data to static volume. 705 * @ubi: UBI device description object 706 * @vol: volume description object 707 * @lnum: logical eraseblock number 708 * @buf: data to write 709 * @len: how many bytes to write 710 * @dtype: data type 711 * @used_ebs: how many logical eraseblocks will this volume contain 712 * 713 * This function writes data to logical eraseblock @lnum of static volume 714 * @vol. The @used_ebs argument should contain total number of logical 715 * eraseblock in this static volume. 716 * 717 * When writing to the last logical eraseblock, the @len argument doesn't have 718 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent 719 * to the real data size, although the @buf buffer has to contain the 720 * alignment. In all other cases, @len has to be aligned. 721 * 722 * It is prohibited to write more than once to logical eraseblocks of static 723 * volumes. This function returns zero in case of success and a negative error 724 * code in case of failure. 725 */ 726 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, 727 int lnum, const void *buf, int len, int dtype, 728 int used_ebs) 729 { 730 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; 731 struct ubi_vid_hdr *vid_hdr; 732 uint32_t crc; 733 734 if (ubi->ro_mode) 735 return -EROFS; 736 737 if (lnum == used_ebs - 1) 738 /* If this is the last LEB @len may be unaligned */ 739 len = ALIGN(data_size, ubi->min_io_size); 740 else 741 ubi_assert(!(len & (ubi->min_io_size - 1))); 742 743 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 744 if (!vid_hdr) 745 return -ENOMEM; 746 747 err = leb_write_lock(ubi, vol_id, lnum); 748 if (err) { 749 ubi_free_vid_hdr(ubi, vid_hdr); 750 return err; 751 } 752 753 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 754 vid_hdr->vol_id = cpu_to_be32(vol_id); 755 vid_hdr->lnum = cpu_to_be32(lnum); 756 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 757 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 758 759 crc = crc32(UBI_CRC32_INIT, buf, data_size); 760 vid_hdr->vol_type = UBI_VID_STATIC; 761 vid_hdr->data_size = cpu_to_be32(data_size); 762 vid_hdr->used_ebs = cpu_to_be32(used_ebs); 763 vid_hdr->data_crc = cpu_to_be32(crc); 764 765 retry: 766 pnum = ubi_wl_get_peb(ubi, dtype); 767 if (pnum < 0) { 768 ubi_free_vid_hdr(ubi, vid_hdr); 769 leb_write_unlock(ubi, vol_id, lnum); 770 return pnum; 771 } 772 773 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", 774 len, vol_id, lnum, pnum, used_ebs); 775 776 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 777 if (err) { 778 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 779 vol_id, lnum, pnum); 780 goto write_error; 781 } 782 783 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 784 if (err) { 785 ubi_warn("failed to write %d bytes of data to PEB %d", 786 len, pnum); 787 goto write_error; 788 } 789 790 ubi_assert(vol->eba_tbl[lnum] < 0); 791 vol->eba_tbl[lnum] = pnum; 792 793 leb_write_unlock(ubi, vol_id, lnum); 794 ubi_free_vid_hdr(ubi, vid_hdr); 795 return 0; 796 797 write_error: 798 if (err != -EIO || !ubi->bad_allowed) { 799 /* 800 * This flash device does not admit of bad eraseblocks or 801 * something nasty and unexpected happened. Switch to read-only 802 * mode just in case. 803 */ 804 ubi_ro_mode(ubi); 805 leb_write_unlock(ubi, vol_id, lnum); 806 ubi_free_vid_hdr(ubi, vid_hdr); 807 return err; 808 } 809 810 err = ubi_wl_put_peb(ubi, pnum, 1); 811 if (err || ++tries > UBI_IO_RETRIES) { 812 ubi_ro_mode(ubi); 813 leb_write_unlock(ubi, vol_id, lnum); 814 ubi_free_vid_hdr(ubi, vid_hdr); 815 return err; 816 } 817 818 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 819 ubi_msg("try another PEB"); 820 goto retry; 821 } 822 823 /* 824 * ubi_eba_atomic_leb_change - change logical eraseblock atomically. 825 * @ubi: UBI device description object 826 * @vol: volume description object 827 * @lnum: logical eraseblock number 828 * @buf: data to write 829 * @len: how many bytes to write 830 * @dtype: data type 831 * 832 * This function changes the contents of a logical eraseblock atomically. @buf 833 * has to contain new logical eraseblock data, and @len - the length of the 834 * data, which has to be aligned. This function guarantees that in case of an 835 * unclean reboot the old contents is preserved. Returns zero in case of 836 * success and a negative error code in case of failure. 837 * 838 * UBI reserves one LEB for the "atomic LEB change" operation, so only one 839 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. 840 */ 841 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, 842 int lnum, const void *buf, int len, int dtype) 843 { 844 int err, pnum, tries = 0, vol_id = vol->vol_id; 845 struct ubi_vid_hdr *vid_hdr; 846 uint32_t crc; 847 848 if (ubi->ro_mode) 849 return -EROFS; 850 851 if (len == 0) { 852 /* 853 * Special case when data length is zero. In this case the LEB 854 * has to be unmapped and mapped somewhere else. 855 */ 856 err = ubi_eba_unmap_leb(ubi, vol, lnum); 857 if (err) 858 return err; 859 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype); 860 } 861 862 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 863 if (!vid_hdr) 864 return -ENOMEM; 865 866 mutex_lock(&ubi->alc_mutex); 867 err = leb_write_lock(ubi, vol_id, lnum); 868 if (err) 869 goto out_mutex; 870 871 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 872 vid_hdr->vol_id = cpu_to_be32(vol_id); 873 vid_hdr->lnum = cpu_to_be32(lnum); 874 vid_hdr->compat = ubi_get_compat(ubi, vol_id); 875 vid_hdr->data_pad = cpu_to_be32(vol->data_pad); 876 877 crc = crc32(UBI_CRC32_INIT, buf, len); 878 vid_hdr->vol_type = UBI_VID_DYNAMIC; 879 vid_hdr->data_size = cpu_to_be32(len); 880 vid_hdr->copy_flag = 1; 881 vid_hdr->data_crc = cpu_to_be32(crc); 882 883 retry: 884 pnum = ubi_wl_get_peb(ubi, dtype); 885 if (pnum < 0) { 886 err = pnum; 887 goto out_leb_unlock; 888 } 889 890 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", 891 vol_id, lnum, vol->eba_tbl[lnum], pnum); 892 893 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); 894 if (err) { 895 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d", 896 vol_id, lnum, pnum); 897 goto write_error; 898 } 899 900 err = ubi_io_write_data(ubi, buf, pnum, 0, len); 901 if (err) { 902 ubi_warn("failed to write %d bytes of data to PEB %d", 903 len, pnum); 904 goto write_error; 905 } 906 907 if (vol->eba_tbl[lnum] >= 0) { 908 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0); 909 if (err) 910 goto out_leb_unlock; 911 } 912 913 vol->eba_tbl[lnum] = pnum; 914 915 out_leb_unlock: 916 leb_write_unlock(ubi, vol_id, lnum); 917 out_mutex: 918 mutex_unlock(&ubi->alc_mutex); 919 ubi_free_vid_hdr(ubi, vid_hdr); 920 return err; 921 922 write_error: 923 if (err != -EIO || !ubi->bad_allowed) { 924 /* 925 * This flash device does not admit of bad eraseblocks or 926 * something nasty and unexpected happened. Switch to read-only 927 * mode just in case. 928 */ 929 ubi_ro_mode(ubi); 930 goto out_leb_unlock; 931 } 932 933 err = ubi_wl_put_peb(ubi, pnum, 1); 934 if (err || ++tries > UBI_IO_RETRIES) { 935 ubi_ro_mode(ubi); 936 goto out_leb_unlock; 937 } 938 939 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 940 ubi_msg("try another PEB"); 941 goto retry; 942 } 943 944 /** 945 * is_error_sane - check whether a read error is sane. 946 * @err: code of the error happened during reading 947 * 948 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we 949 * cannot read data from the target PEB (an error @err happened). If the error 950 * code is sane, then we treat this error as non-fatal. Otherwise the error is 951 * fatal and UBI will be switched to R/O mode later. 952 * 953 * The idea is that we try not to switch to R/O mode if the read error is 954 * something which suggests there was a real read problem. E.g., %-EIO. Or a 955 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O 956 * mode, simply because we do not know what happened at the MTD level, and we 957 * cannot handle this. E.g., the underlying driver may have become crazy, and 958 * it is safer to switch to R/O mode to preserve the data. 959 * 960 * And bear in mind, this is about reading from the target PEB, i.e. the PEB 961 * which we have just written. 962 */ 963 static int is_error_sane(int err) 964 { 965 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || 966 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) 967 return 0; 968 return 1; 969 } 970 971 /** 972 * ubi_eba_copy_leb - copy logical eraseblock. 973 * @ubi: UBI device description object 974 * @from: physical eraseblock number from where to copy 975 * @to: physical eraseblock number where to copy 976 * @vid_hdr: VID header of the @from physical eraseblock 977 * 978 * This function copies logical eraseblock from physical eraseblock @from to 979 * physical eraseblock @to. The @vid_hdr buffer may be changed by this 980 * function. Returns: 981 * o %0 in case of success; 982 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_CANCEL_BITFLIPS, etc; 983 * o a negative error code in case of failure. 984 */ 985 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, 986 struct ubi_vid_hdr *vid_hdr) 987 { 988 int err, vol_id, lnum, data_size, aldata_size, idx; 989 struct ubi_volume *vol; 990 uint32_t crc; 991 992 vol_id = be32_to_cpu(vid_hdr->vol_id); 993 lnum = be32_to_cpu(vid_hdr->lnum); 994 995 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); 996 997 if (vid_hdr->vol_type == UBI_VID_STATIC) { 998 data_size = be32_to_cpu(vid_hdr->data_size); 999 aldata_size = ALIGN(data_size, ubi->min_io_size); 1000 } else 1001 data_size = aldata_size = 1002 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); 1003 1004 idx = vol_id2idx(ubi, vol_id); 1005 spin_lock(&ubi->volumes_lock); 1006 /* 1007 * Note, we may race with volume deletion, which means that the volume 1008 * this logical eraseblock belongs to might be being deleted. Since the 1009 * volume deletion un-maps all the volume's logical eraseblocks, it will 1010 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. 1011 */ 1012 vol = ubi->volumes[idx]; 1013 spin_unlock(&ubi->volumes_lock); 1014 if (!vol) { 1015 /* No need to do further work, cancel */ 1016 dbg_wl("volume %d is being removed, cancel", vol_id); 1017 return MOVE_CANCEL_RACE; 1018 } 1019 1020 /* 1021 * We do not want anybody to write to this logical eraseblock while we 1022 * are moving it, so lock it. 1023 * 1024 * Note, we are using non-waiting locking here, because we cannot sleep 1025 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is 1026 * unmapping the LEB which is mapped to the PEB we are going to move 1027 * (@from). This task locks the LEB and goes sleep in the 1028 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are 1029 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the 1030 * LEB is already locked, we just do not move it and return 1031 * %MOVE_CANCEL_RACE, which means that UBI will re-try, but later. 1032 */ 1033 err = leb_write_trylock(ubi, vol_id, lnum); 1034 if (err) { 1035 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); 1036 return MOVE_CANCEL_RACE; 1037 } 1038 1039 /* 1040 * The LEB might have been put meanwhile, and the task which put it is 1041 * probably waiting on @ubi->move_mutex. No need to continue the work, 1042 * cancel it. 1043 */ 1044 if (vol->eba_tbl[lnum] != from) { 1045 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to " 1046 "PEB %d, cancel", vol_id, lnum, from, 1047 vol->eba_tbl[lnum]); 1048 err = MOVE_CANCEL_RACE; 1049 goto out_unlock_leb; 1050 } 1051 1052 /* 1053 * OK, now the LEB is locked and we can safely start moving it. Since 1054 * this function utilizes the @ubi->peb_buf1 buffer which is shared 1055 * with some other functions - we lock the buffer by taking the 1056 * @ubi->buf_mutex. 1057 */ 1058 mutex_lock(&ubi->buf_mutex); 1059 dbg_wl("read %d bytes of data", aldata_size); 1060 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size); 1061 if (err && err != UBI_IO_BITFLIPS) { 1062 ubi_warn("error %d while reading data from PEB %d", 1063 err, from); 1064 err = MOVE_SOURCE_RD_ERR; 1065 goto out_unlock_buf; 1066 } 1067 1068 /* 1069 * Now we have got to calculate how much data we have to copy. In 1070 * case of a static volume it is fairly easy - the VID header contains 1071 * the data size. In case of a dynamic volume it is more difficult - we 1072 * have to read the contents, cut 0xFF bytes from the end and copy only 1073 * the first part. We must do this to avoid writing 0xFF bytes as it 1074 * may have some side-effects. And not only this. It is important not 1075 * to include those 0xFFs to CRC because later the they may be filled 1076 * by data. 1077 */ 1078 if (vid_hdr->vol_type == UBI_VID_DYNAMIC) 1079 aldata_size = data_size = 1080 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size); 1081 1082 cond_resched(); 1083 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size); 1084 cond_resched(); 1085 1086 /* 1087 * It may turn out to be that the whole @from physical eraseblock 1088 * contains only 0xFF bytes. Then we have to only write the VID header 1089 * and do not write any data. This also means we should not set 1090 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. 1091 */ 1092 if (data_size > 0) { 1093 vid_hdr->copy_flag = 1; 1094 vid_hdr->data_size = cpu_to_be32(data_size); 1095 vid_hdr->data_crc = cpu_to_be32(crc); 1096 } 1097 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi)); 1098 1099 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); 1100 if (err) { 1101 if (err == -EIO) 1102 err = MOVE_TARGET_WR_ERR; 1103 goto out_unlock_buf; 1104 } 1105 1106 cond_resched(); 1107 1108 /* Read the VID header back and check if it was written correctly */ 1109 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); 1110 if (err) { 1111 if (err != UBI_IO_BITFLIPS) { 1112 ubi_warn("error %d while reading VID header back from " 1113 "PEB %d", err, to); 1114 if (is_error_sane(err)) 1115 err = MOVE_TARGET_RD_ERR; 1116 } else 1117 err = MOVE_CANCEL_BITFLIPS; 1118 goto out_unlock_buf; 1119 } 1120 1121 if (data_size > 0) { 1122 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size); 1123 if (err) { 1124 if (err == -EIO) 1125 err = MOVE_TARGET_WR_ERR; 1126 goto out_unlock_buf; 1127 } 1128 1129 cond_resched(); 1130 1131 /* 1132 * We've written the data and are going to read it back to make 1133 * sure it was written correctly. 1134 */ 1135 1136 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size); 1137 if (err) { 1138 if (err != UBI_IO_BITFLIPS) { 1139 ubi_warn("error %d while reading data back " 1140 "from PEB %d", err, to); 1141 if (is_error_sane(err)) 1142 err = MOVE_TARGET_RD_ERR; 1143 } else 1144 err = MOVE_CANCEL_BITFLIPS; 1145 goto out_unlock_buf; 1146 } 1147 1148 cond_resched(); 1149 1150 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) { 1151 ubi_warn("read data back from PEB %d and it is " 1152 "different", to); 1153 err = -EINVAL; 1154 goto out_unlock_buf; 1155 } 1156 } 1157 1158 ubi_assert(vol->eba_tbl[lnum] == from); 1159 vol->eba_tbl[lnum] = to; 1160 1161 out_unlock_buf: 1162 mutex_unlock(&ubi->buf_mutex); 1163 out_unlock_leb: 1164 leb_write_unlock(ubi, vol_id, lnum); 1165 return err; 1166 } 1167 1168 /** 1169 * print_rsvd_warning - warn about not having enough reserved PEBs. 1170 * @ubi: UBI device description object 1171 * 1172 * This is a helper function for 'ubi_eba_init_scan()' which is called when UBI 1173 * cannot reserve enough PEBs for bad block handling. This function makes a 1174 * decision whether we have to print a warning or not. The algorithm is as 1175 * follows: 1176 * o if this is a new UBI image, then just print the warning 1177 * o if this is an UBI image which has already been used for some time, print 1178 * a warning only if we can reserve less than 10% of the expected amount of 1179 * the reserved PEB. 1180 * 1181 * The idea is that when UBI is used, PEBs become bad, and the reserved pool 1182 * of PEBs becomes smaller, which is normal and we do not want to scare users 1183 * with a warning every time they attach the MTD device. This was an issue 1184 * reported by real users. 1185 */ 1186 static void print_rsvd_warning(struct ubi_device *ubi, 1187 struct ubi_scan_info *si) 1188 { 1189 /* 1190 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably 1191 * large number to distinguish between newly flashed and used images. 1192 */ 1193 if (si->max_sqnum > (1 << 18)) { 1194 int min = ubi->beb_rsvd_level / 10; 1195 1196 if (!min) 1197 min = 1; 1198 if (ubi->beb_rsvd_pebs > min) 1199 return; 1200 } 1201 1202 ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d," 1203 " need %d", ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); 1204 if (ubi->corr_peb_count) 1205 ubi_warn("%d PEBs are corrupted and not used", 1206 ubi->corr_peb_count); 1207 } 1208 1209 /** 1210 * ubi_eba_init_scan - initialize the EBA sub-system using scanning information. 1211 * @ubi: UBI device description object 1212 * @si: scanning information 1213 * 1214 * This function returns zero in case of success and a negative error code in 1215 * case of failure. 1216 */ 1217 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1218 { 1219 int i, j, err, num_volumes; 1220 struct ubi_scan_volume *sv; 1221 struct ubi_volume *vol; 1222 struct ubi_scan_leb *seb; 1223 struct rb_node *rb; 1224 1225 dbg_eba("initialize EBA sub-system"); 1226 1227 spin_lock_init(&ubi->ltree_lock); 1228 mutex_init(&ubi->alc_mutex); 1229 ubi->ltree = RB_ROOT; 1230 1231 ubi->global_sqnum = si->max_sqnum + 1; 1232 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; 1233 1234 for (i = 0; i < num_volumes; i++) { 1235 vol = ubi->volumes[i]; 1236 if (!vol) 1237 continue; 1238 1239 cond_resched(); 1240 1241 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), 1242 GFP_KERNEL); 1243 if (!vol->eba_tbl) { 1244 err = -ENOMEM; 1245 goto out_free; 1246 } 1247 1248 for (j = 0; j < vol->reserved_pebs; j++) 1249 vol->eba_tbl[j] = UBI_LEB_UNMAPPED; 1250 1251 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i)); 1252 if (!sv) 1253 continue; 1254 1255 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) { 1256 if (seb->lnum >= vol->reserved_pebs) 1257 /* 1258 * This may happen in case of an unclean reboot 1259 * during re-size. 1260 */ 1261 ubi_scan_move_to_list(sv, seb, &si->erase); 1262 vol->eba_tbl[seb->lnum] = seb->pnum; 1263 } 1264 } 1265 1266 if (ubi->avail_pebs < EBA_RESERVED_PEBS) { 1267 ubi_err("no enough physical eraseblocks (%d, need %d)", 1268 ubi->avail_pebs, EBA_RESERVED_PEBS); 1269 if (ubi->corr_peb_count) 1270 ubi_err("%d PEBs are corrupted and not used", 1271 ubi->corr_peb_count); 1272 err = -ENOSPC; 1273 goto out_free; 1274 } 1275 ubi->avail_pebs -= EBA_RESERVED_PEBS; 1276 ubi->rsvd_pebs += EBA_RESERVED_PEBS; 1277 1278 if (ubi->bad_allowed) { 1279 ubi_calculate_reserved(ubi); 1280 1281 if (ubi->avail_pebs < ubi->beb_rsvd_level) { 1282 /* No enough free physical eraseblocks */ 1283 ubi->beb_rsvd_pebs = ubi->avail_pebs; 1284 print_rsvd_warning(ubi, si); 1285 } else 1286 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; 1287 1288 ubi->avail_pebs -= ubi->beb_rsvd_pebs; 1289 ubi->rsvd_pebs += ubi->beb_rsvd_pebs; 1290 } 1291 1292 dbg_eba("EBA sub-system is initialized"); 1293 return 0; 1294 1295 out_free: 1296 for (i = 0; i < num_volumes; i++) { 1297 if (!ubi->volumes[i]) 1298 continue; 1299 kfree(ubi->volumes[i]->eba_tbl); 1300 ubi->volumes[i]->eba_tbl = NULL; 1301 } 1302 return err; 1303 } 1304